
Citation: Pandey, R.; Uziel, S.;

Hutschenreuther, T.; Krug, S.

Towards Deploying DNN Models on

Edge for Predictive Maintenance

Applications. Electronics 2023, 12, 639.

https://doi.org/10.3390/

electronics12030639

Academic Editor: Ping-Feng Pai

Received: 9 January 2023

Revised: 21 January 2023

Accepted: 23 January 2023

Published: 27 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Towards Deploying DNN Models on Edge for Predictive
Maintenance Applications
Rick Pandey 1,* , Sebastian Uziel 1, Tino Hutschenreuther 1 and Silvia Krug 1,2

1 System Design Department, IMMS Institut für Mikroelektronik- und Mechatronik-Systeme Gemeinnützige
GmbH (IMMS GmbH), Ehrenbergstraße 27, 98693 Ilmenau, Germany

2 Department of Computer and Electrical Engineering, Mid Sweden University, Holmgatan 10,
851 70 Sundsvall, Sweden

* Correspondence: rick.pandey@imms.de

Abstract: Almost all rotating machinery in the industry has bearings as their key building block and
most of these machines run 24 × 7. This makes bearing health prediction an active research area for
predictive maintenance solutions. Many state of the art Deep Neural Network (DNN) models have
been proposed to solve this. However, most of these high performance models are computationally
expensive and have high memory requirements. This limits their use to very specific industrial
applications with powerful hardwares deployed close the the machinery. In order to bring DNN-
based solutions to a potential use in the industry, we need to deploy these models on Microcontroller
Units (MCUs) which are cost effective and energy efficient. However, this step is typically neglected
in literature as it poses new challenges. The primary concern when inferencing the DNN models
on MCUs is the on chip memory of the MCU that has to fit the model, the data and additional code
to run the system. Almost all the state of the art models fail this litmus test since they feature too
many parameters. In this paper, we show the challenges related to the deployment, review possible
solutions and evaluate one of them showing how the deployment can be realized and what steps
are needed. The focus is on the steps required for the actual deployment rather than finding the
optimal solution. This paper is among the first to show the deployment on MCUs for a predictive
maintenance use case. We first analyze the gap between State Of The Art benchmark DNN models
for bearing defect classification and the memory constraint of two MCU variants. Additionally, we
review options to reduce the model size such as pruning and quantization. Afterwards, we evaluate
a solution to deploy the DNN models by pruning them in order to fit them into microcontrollers. Our
results show that most models under test can be reduced to fit MCU memory for a maximum loss of
3% in average accuracy of the pruned models in comparison to the original models. Based on the
results, we also discuss which methods are promising and which combination of model and feature
work best for the given classification problem.

Keywords: predictive maintenance; artificial intelligence (AI); embedded AI; edge AI; pruning;
model deployment

1. Introduction

Rotating machinery is an inevitable part of industrial infrastructure and bearings
are a key component in rotating machinery. Industrial machines are typically functional
all around the year and an unwanted interruption in their operation due to faults in the
bearings can be costly. Over time, certain extreme operating temperature or load conditions
can lead to bearing failures. It is important to identify such failures in order to schedule
timely maintenance [1] with minimal or almost no loss in operation pipeline. So far,
the most common solution to this problem is to replace the bearings based on life cycle
estimations. This leads to two possible unoptimized results. One is the replacement of
still good bearings which would be operational for some time. The other is a sudden

Electronics 2023, 12, 639. https://doi.org/10.3390/electronics12030639 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12030639
https://doi.org/10.3390/electronics12030639
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7575-3355
https://orcid.org/0000-0003-0282-5471
https://doi.org/10.3390/electronics12030639
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12030639?type=check_update&version=2

Electronics 2023, 12, 639 2 of 21

shut down in the operation line because of an unexpected fault occurring before the next
maintenance cycle.

A considerable amount of research was done in the area of predictive maintenance
(Pdm) to identify the defects, classify their type, or predict remaining useful life (RUL) of
a bearing in a system with rotating machinery. Pdm is tackled using both traditional ML
and end-to-end Deep Neural Network (DNN). While traditional ML involves an expensive
feature engineering phase and a specific classifier, DNN approaches to identify the relevant
features during training themselves. Most of the time, both methods are explored on public
benchmark data to evaluate the performance of a solution and show promising results.
However, the actual integration of a solution into the industrial process remains open. The
main reasons are that these models are typically run on specialized hardware or servers
in the cloud, while industrial partners prefer local on premise processing to ensure timely
decisions and security. To cover this, the models should be executed closer to the actual
machine and thus be realized as Edge-AI.

Shifting the execution of ML models to the edge for predictive maintenance is still an
open problem and is typically not addressed by any SOTA works in the field of industrial
machine diagnosis. In this paper, the term edge is strictly constrained to low power micro
controller units (MCUs) rather than Jetson Nano, Raspberry Pi or other similar micro
computers with significantly higher computational resources. We chose this definition
because MCU-based components are easy to integrate into the machinery. This allows
running a ML-model close to the actual industrial process. However, MCUs typically are
constrained in computational resources as well as available memory. Therefore, executing
SOTA ML-models becomes a challenge since their requirements typically do not match. In
this paper, we will first highlight this mismatch and then introduce an approach to reduce
the model size and thus mitigate the constraint. Our solution thus enables the integration
of ML-solutions into the industrial process. In addition, we will discuss the impact of our
approach on model accuracy and highlight further challenges towards the implementation
into the machinery.

To prove the insufficiency of the SOTA solutions, we chose a benchmark study [2] as
the baseline of our work. Out of the discussed datasets in the study, we selected a public
bearing dataset [3] as a base for our work. Regarding the considered models, we follow
the benchmark and considered the Autoencoder (AE), its variations Sparse Autoencoder
(SAE) and Denoising Autoencoder (DAE) as well as CNN based models (AlexNet, ResNet,
LeNet). Though these DNN models are accurate in classifying the type of bearing defect, it
was impossible to inference them on MCUs as is.

Therefore, we focus on the deployment of pretrained models, i.e., models are trained
on powerful hardware and then transferred together with the trained weights to the
target hardware to perform inference. Transferring DNN models to MCUs poses memory
problems because DNN models typically have a high number of parameters. In addition,
DNN models require lots of computational cycles to get the desired inference result which
also makes them power hungry. To solve these problems, we propose a solution to trim the
benchmarked Pdm models using state of the art pruning algorithms [4] in order to fit them
into MCUs.

In this paper, we present the following contributions:

• Evaluation of challenges in deploying state of the art DNN models to MCUs
• Review options to reduce the model size
• Show the impact of pruning the weights as reduction method on model size and

inference time on the MCU

The remainder of the paper is organized as follows. In Section 2, we first give an
overview of the models targeting the bearing defect classification problem and then review
works targeting model size reduction. Afterwards, we describe our method in Section 3. We
introduce the dataset and models used for our study as well as the required fundamentals
of the pruning approach. In addition, we give details regarding model training and
deployment. Section 4 presents the results of our experiments which are then discussed in

Electronics 2023, 12, 639 3 of 21

Section 5. Finally, the paper is concluded in Section 6 where we also indicate our plans for
further studies.

2. Literature Review

In this section, we review a number of state of the art papers, that present approaches
to handle bearing health prediction. With the advancement of high end ML libraries
like TensorFlow [5], keras and sklearn, it is possible to implement better data analysis
algorithms and develop complex models to achieve benchmark results in fault diagnosis.
Data driven models have gained popularity with help from such sophisticated APIs. As a
result, many solutions to Pdm of bearings or other rotating machinery have been suggested
and several different algorithms and flavors exist.

Models like Autoencoders (AEs) have been a popular choice because of their semi-
supervised learning approach. The authors in [6] used a customized AE loss function and
Artificial Fish Swarm Algorithm (AFSA) for parameter optimization. In [7], the authors
introduce stacked AE for bearings functioning at low operating speeds. The Sparse Autoen-
coder (SAE) was applied for data fusion and feature encoding in [8] before classifying them
with Deep Belief Network (DBN). Another variation of SAE called Deep Nonnegativity-
Constraint SAE (DNSAE) was applied in [9] to encode features and achieve high diagnosis
accuracy even with few labeled dataset. AEs were also used with convolutional layers [10]
in some cases to denoise the input. These functional or structural modifications in AE
produced better results compared to the general models.

Though AEs had an advantage of semi supervised learning and feature encoding
capabilities, Convolutional Neural Networks (CNNs) outperform them in feature extraction
with less trainable parameters. CNNs are used extensively in image classification as they
can extract different types of features using stacked filters. One option to feed vibration
signals into the CNN is to convert the signals to 2-D image and use this as input for the CNN.
This allows the reuse of popular models from image classification. In [11], the authors use
Empirical Mode Decomposition (EMD) and CNN for signal analysis and feature extraction.
EMD can decompose the signal into its components and CNN extracts the spatial features
in the signal components. The extracted features are fused and used to classify faults.
In [12,13], the authors used CNNs as replacement of hand crafted feature extraction.

Different structural formulations of CNNs have been experimented with bearing
datasets for predictive maintenance applications. Different variations of AlexNet [14–17],
ResNet [18–22] and LeNet [23,24] are used in different research works for fault diagnosis
of rolling bearing elements. In [14,15], the authors proposed an one dimensional model
slightly deeper than the original AlexNet model to enhance the bearing fault classification
and compared their model with AlexNet. Instead of this, [17] shows that a AlexNet
model can be used by just retraining the fully connected (FC) layers at the end to identify
bearing defects. Thermal images were used as input to AlexNet in [16] in order to detect
bearing faults.

ResNet models have the potential to provide better diagnostic accuracy without
increasing the model depth due to the residual blocks. This makes them interesting
candidates for bearing diagnosis. In [18], bearing faults were identified using continuous
wavelet transform of raw signals by using pretrained ResNet-50 model with transfer
learning. A wavelet transform based intelligent fault classifier for rolling bearing was built
in [19]. The classifier is based on ResNet with a new pooling layer. Principal Component
Analysis was used in [20] for noise reduction in bearing signals before using them to classify
faults using ResNet. In [21], ResNet is used to generalize the bearing fault diagnosis in
a more generalized and unified way. A global average pooling layer is used in ResNet
instead of multiple FC layer for classification in [22] in order to reduce the parameters.

LeNet is comparatively the shallowest among the three CNN models mentioned here.
It is therefore more interesting for inference on MCUs. Different variations of LeNet model
have been used i.e., in [23,24] to improve the fault diagnosis results in comparison to the
basic LeNet-5. In [23], the authors added convolution and pooling layers and calculated

Electronics 2023, 12, 639 4 of 21

the sensitivity of the pooling operation based on the error. The authors in [24] focus on
solving the convergence issue and generalization problem of LeNet-5 architecture. A batch
normalization layer after every convolutional layer was added to improve the convergence
speed and the one dimensional vibration signal was converted to 2D to improve the
diagnosis results. Thus this paper aims at an improvement in model performance while
not attempting to actually deploy the model to real hardware.

On one side, most of the research investigating the improvement in predictive main-
tenance proposed some novelty in model architecture, selection of hyper parameters or
dataset preprocessing. On the other side, there has been extensive research in order to re-
duce the memory and computational requirement of DNN models. This broadly comprises
two different strategies, quantization of the weights of the model and pruning the unneces-
sary weights. The authors in [25,26] proposed automatic model compression strategy in
order to structurally prune weights based on Alternating Direction Method of Multipliers
and Sparse Connectivity Learning, respectively. In [27], network width search is automated
by adding a depth-wise learnable binary convolutional layer. Quantization also reduces the
number of flops in the network. A reduction in the number of bits directly accelerates the
model inference time. In [28], the authors used a hardware friendly quantization approach
which tries to bring best of both uniform and non-uniform quantization. Value aware
quantization can reduce the model size more aggressively as shown in [29]. Here, the
authors exploited the distribution of weight values to reduce the quantization results.

In summary, the focus of the state of the art work is either on fine tuning the pretrained
models or compress the models in order to make them inference friendly. To the best of
our knowledge, only few approaches consider the model deployment challenge. Authors
in [30] have discussed the cost of two spectral feature extraction methods and their trade
offs while inferencing them on MCUs. But it does not involve DNNs and the the problem
was addressed only from a theoretical perspective. Another example is described in [31].
The proposed Deployment Oriented to Memory (DORY) tool for DNNs is focused on
better memory hierarchy management and deployment on MCUs with less than 1 MB of
on-chip SRAM. However, this approach is particularly tuned to Parallel Ultra Low Power
Paradigm (PULP) architecture and thus not suitable for general purpose MCUs. In [25], the
researchers deploy a pruned model on a smartphone. This shows that pruning is suitable
to reduce the model size to fit them into embedded devices. But modern smartphones
feature rather powerful hardware and large memory.

Therefore, only powerful embedded hardware has been considered as deployment
candidate. Our perspective on Edge AI is inspired by the industrial applications where
general purpose MCUs are key to get the models close to the process in an energy-efficient
way. Table 1 provides a comparison among the SOTA results and the current work.

Table 1. Comparison among the State Of The Art works and the current work.

SOTA Bearing Diagnostics ML/DNN Model Compression Deployment

[9] X SAE
[21] X ResNet
[17] X AlexNet
[30] X Spectral Features (Theoretical)

[26,27] ResNet X
[25] ResNet X X (Smartphone)
[31] DNNs X (PULP)

[28,29] ResNet X
This X ResNet, AlexNet, AE X X (MCU)

Hence, we suggest to investigate whether optimized deep learning models can be
practically deployed to general purpose MCUs and thus check if they are feasible in
industrial scenarios. Such an analysis is crucial to highlight open gaps towards actual
deployment and application of Pdm within industrial machinery.

Electronics 2023, 12, 639 5 of 21

3. Materials and Methods
3.1. Dataset

There are plenty of public datasets available for bearing condition monitoring and [2]
provides a brief explanation of popular datasets as well as classification accuracies achieved
by all the six models explained in Section 3.2. We selected XJTU bearing dataset [3] for our
experiments. We chose this dataset because all models provide a good accuracy for the
problem and thus we can focus on the inference phase showing differences resulting from
the deployment.

The dataset contains fifteen run to failure bearing measurements recorded with ac-
celerometers at different load conditions. The majority of the bearing operation duration
consists of optimal operable state and only small portion at the end of bearing life shows
defect indications. This can be clearly understood form Figure 1 which shows vibration
measurement for a bearing for ≈2 h and the defect can be indicated starting from ≈80 min.
If the bearing is functional for a long duration, the dataset could be imbalanced as relatively
many measurements from the operable state will create a bias and DNN model will not
generalize anymore. Such scenarios can introduce the class imbalance problem while train-
ing the model. As a solution to that, we selected only the last four minutes of measurement
from the bearing lifetime, which is feasible for a task classifying the type of defect. This
equalizes the data available from each bearing type irrespective of their operation duration.
This is valid since our models are focused on solving a classification problem with respect
to different type of defects in the bearings operating at variable conditions.

0 1000 2000 3000 4000 5000 6000 7000 8000

−10

0

10

Time (s)

A
m
p
lit
u
d
e
(g
)

Good State Defected State

1

Figure 1. Vibration signals acquired for a complete run to failure of a bearing.

Each minute of measurement contains 32,768 (≈32k) samples [3]. This is sub sampled
by dividing it into sets of m = 1024 samples each, xt ∈ Rm×1. With this sub sampling
approach, one minute of measurement yields 32 sets of data from each minute. As we are
using last four minutes of data from each bearing lifetime, we have (32× 4 = 128) sets of
data from each bearing operating at a particular condition. With fifteen such bearings we
have 1920 (n = 128× 15) data samples.

We formulated the collected measurement samples in five different features as dis-
cussed in [2].

3.1.1. Time Domain Signals

The time domain signals are the raw measurement collected from the accelerometer
shown in Figure 1. With the above sub sampling of the time domain we can formulate a
dataset Xt ∈ Rn×m×1 which can be used as an input to the model. We normalize the signal
before using it on any DNN model or for further feature extraction selecting one approach
presented in [2]. The time signals Xt is normalized using Equation (1) where xi represents
one row of Xt where as xµ

i and xσ
i denotes the mean and standard deviation of xi. In the rest

of the paper, we do not explicitly mention or denote normalized Xt differently but every
time Xt is used, it should be considered normalized data using Equation (1).

Electronics 2023, 12, 639 6 of 21

xnorm
i =

xi − xµ
i

xσ
i

, i = 1, 2, . . . , n (1)

3.1.2. 2D Time Signals

We can reshape the 1D time domain signal xi into 2D by using the functionR : xi ∈
Rm×1 7→ Xi ∈ R

√
m×√m shown in Equation (2). This helps in determining the relation

between temporal samples in a certain time period.

X2D
i = R(xi), i = 1, 2, . . . , n (2)

3.1.3. Spectral Signals

Fast Fourier Transformation (FFT) is a widely used approach to inspect the spectral
characteristics of the signal. As we have the bearing measurements with different types of
operating failure, spectral features play and important role in identification of the types of
defects. The Fourier transform is obtained by using Equation (3) where xi represent one
data sample and FT (.) is the FFT operator.

x f f t
i = FT (xi), i = 1, 2, . . . , n (3)

3.1.4. Time-Frequency Signal

Both the time and spectral analysis provide high resolution information in temporal
and spectral domain only. With time domain analysis we don’t have better resolution in
spectral domain and vice-versa. Hence time-frequency analysis of the signal focuses on
both signal characteristics simultaneously.

Short Time Fourier Transform

Short Time Fourier Transform (STFT) is performed by using section of signals in small
time windows. In this work, we have used Hann window as it is one of the most widely
used windows in signal processing generating less artifacts. The length of the window
used in this case is hw = 64 and overlap ow = 32. The STFT operation is defined in
Equation (4) by ST (.) where ST : x ∈ Rm×1 7→ Xst f t ∈ Rτ×φ. In Equation (4) τ = hw/2
and φ = m/(hw − ow).

Xst f t
i = ST (xi), i = 1, 2, . . . , n (4)

Continuous Wavelet Transform

In FFT and STFT, we use complex exponentials and windowed complex exponentials
respectively. With FFT, we have no time resolution where as with STFT, we have fixed
time resolution. However, a combined view would be useful as well. This is solved using
continuous wavelet transform as it provides multi resolution signal decomposition. The
Continuous Wavelet Transform (CWT) uses the mother wavelet (ψ(t)) and compares the
signal by translating and scaling it. In this work, Mexican Hat is used as mother wavelet
represented in Equation (5) and the transform is represented by CT (.) in Equation (6)

ψ(t) =
2√

3 4
√

π
exp−

t2
2 (1− t2) (5)

Xcwt
i = CT (xi), i = 1, 2, . . . , n (6)

3.2. Fundamentals of Benchmark DNN Models

A wide spectrum of model architectures are used for predictive maintenance and
every structure has some advantage over another. This work is focused on classification of
bearing defect types and hence Autoencoders and Convolutional Neural Networks and
their variations were used as they provide the best classification accuracies. We chose the

Electronics 2023, 12, 639 7 of 21

same DNN models as a benchmark study on prognostics [2] for comparison. This is a
non exclusive selection. Many other options exist to solve the bearing health classification
problem. Several such as EfficientNet also show better results than the models presented
here. However, we focus on the evaluation of the deployment and how to reduce the model
size. Therefore, we decided to use the benchmark models as examples and compare them to
that paper. The method is however applicable to other models as well. A brief description
of models’ architectures used in this work are discussed in Section 3.2.2. In addition, we
discuss the theory of two crucial layers in such models, that allow the later use of pruning
in order to reduce the model size.

3.2.1. Theory Behind FC Layers and Convolutional Layers
Convolutional Layer

The Convolutional layer computes an activation map from a local region of the input
to which its weights or filters are connected. The filter kernel in the layer slides through
the incoming data and hence at a time the filter is connected to only a small region of the
input data. This makes convolutional layers computationally less expensive compared to
fully connected layer and memory efficient. The operation at the convolutional layer is
explained in Equation (7) where X ∈ RH×W×D is the input to a convolutional layer and
W ∈ Rη×η×D×N is the weight matrix which maps the input at the convolutional layer to
the next layer via a convolution operation represented by ∗.

Oj =
D

∑
k=1

X:,:,k ∗W:,:,k,j (7)

While N is the total number of output filters, η describes the kernel dimension and D
is the total channels present in the input data, in Equation (7) Oj ∈ RH′×W ′ is the jth output
feature map from one of the N output filters.

The number of output filters N at a particular convolutional layer is a hyperparameter
and is selected before the training. Increasing the number of filters increases the potential
of the layer to learn complex features but there is an increase in the number of learnable
parameters as well.

The convolutional operation in Equation (7) is illustrated in Figure 2a for a case where
the value of input channels (D) is 3 and number of output filters(N) is 2. The filter kernel
η × η can be described as 3× 3 and every output filter is equipped with a bias represented
by b0 and b1. The regions connected to the kernel are R1, R2, R3 and R4 and are equal to the
kernel dimension η × η. Hence, the total learnable parameters in a layer can be described
by Equation (8)

pconv = ((η × η × D) + 1)× N (8)

Though convolutional layers are good at generating informative feature maps, they
are sensitive to presence of features at specific spatial locations. Pooling layers solve
this problem by preventing the model from overfitting to spatial regions while extracting
features. Pooling layers are used to down sample the input feature map either by selecting
the maximum feature known as max pooling or by averaging features known as average
pooling from the defined pooling window. An example for both max and average pooling
is illustrated in Figure 2b. The down sampling though is done only along the spatial
dimensions. Pooling parameters w and s are window and stride respectively and function
P down samples input X ∈ RH×W×D to X′ ∈ RH′×W ′×D only spatially. This causes a
dimension reduction since H′ < H and W ′ < W.

Electronics 2023, 12, 639 8 of 21

1 2 0 2 1

0 1 1 0 1

0 1 2 2 1

0 1 2 2 1

2 0 2 2 0

0 0 1

1 −1 1

−1 −1 −1

0 −1 −1

−1 −1 1

1 1 −1

1 −3

−1 1

0 2 0 0 1

1 0 1 1 0

0 1 0 1 2

1 0 0 2 0

1 1 2 1 0

1 1 1

−1 1 0

0 1 −1

0 −1 −1

−1 −1 1

1 1 −1

1 4

7 1

0 2 1 1 1

1 2 2 2 0

0 0 2 1 1

2 1 1 2 0

2 0 0 0 1

1 −1 1

0 0 0

0 −1 0

0 −1 −1

−1 −1 1

1 1 −1

1 4

7 1

R1 R2

R3 R4

R1 R2

R3 R4

R1 R2

R3 R4

W00

W01

W02

W10

W11

W12

R1 �W00+R1 �W01+R1 �W02+b0

R2 �W00+R2 �W01+R2 �W02+b0

R3 �W00+R3 �W01+R3 �W02+b0

R4 �W00+R4 �W01+R4 �W02+b0

R1 �W10+R1 �W11+R1 �W12+b1

R2 �W10+R2 �W11+R2 �W12+b1

R3 �W10+R3 �W11+R3 �W12+b1

R4 �W10+R4 �W11+R4 �W12+b1

O1

O2

Filter size:η × η = 3× 3 W ∈ R3×3×3×2 O ∈ R2×2×2 Strides= 2

X ∈ R5×5×3 Filter 1 W[:, :, :, 0] Filter 2 W[:, :, :, 1] Output

1

(a)

1 3 0 2 1
0 1 1 0 6
0 1 2 3 3
0 1 2 2 1
1 0 2 5 7

3 6
2 7

1 3 0 2 1
0 1 1 0 6
0 1 2 3 3
0 1 2 2 1
1 0 2 5 7

1 2
1 3

8 2 0 7 7
5 9 1 11 0
7 1 3 0 16
2 0 0 2 4
5 7 2 5 4

9 16
7 16

8 2 0 7 7
5 9 1 11 0
7 1 3 0 16
2 0 0 2 4
5 7 2 5 4

4 5
3 4

R1 R2

R3 R4

R1 R2

R3 R4

R1 R2

R3 R4

R1 R2

R3 R4

m
a

x
(X

R
1

)
m

a
x

(X
R

2
)

m
a

x
(X

R
1

)
m

a
x

(X
R

2
)

a
v

g
(X

R
1

)
a

v
g

(X
R

2
)

a
v

g
(X

R
1

)
a

v
g

(X
R

2
)

m
a

x
(X

R
3

)

m
a

x
(X

R
4

)

a
v

g
(X

R
3

)

a
v

g
(X

R
4

)

m
a

x
(X

R
3

)

m
a

x
(X

R
4

)

a
v

g
(X

R
3

)

a
v

g
(X

R
4

)

X
[:,

:,
1]

X
[:,

:,
0]

X
[:,

:,
1]

X
[:,

:,
0]

O
[:,

:,
1]

O
[:,

:,
0]

O
[:,

:,
1]

O
[:,

:,
0]

X ∈ R5×5×2 O ∈ R2×2×2 Pooling Window = 3× 3 Stride = 2

Max Pooling Average Pooling

1

(b)

Figure 2. Illustration of convolutional and pooling operation in respective layers. (a) Convolution
operation in CNN; (b) Average and Max pooling operation in CNN.

Fully Connected Layer

In this layer, every node is connected to every node in the previous layer as well as
every node in the next layer. Figure 3a is an example of three FC layers stacked one after
another and Figure 3b highlights connection of one node in layer L2 to all nodes in L1 and
L3. The number of learnable parameters in a FC layer are calculated using Equation (9)
where n1 and n2 are number of nodes in the previous and current layer respectively. If
there is a bias term, then one is added to the learnable parameters p f c.

p f c = n1 × n2 + 1 (9)

A FC layer learns a function F : x ∈ Rn1×1 7→ x ∈ Rn2×1 in order to transform the
input to a different output feature space and thereby learning some useful information
from the input using the weight matrix W ∈ Rn1×n2 . This operation is represented in
Equation (10).

xn2 = WT · xn1 (10)

3.2.2. DNN Model Description
Autoencoder (AE)

Autoencoders can be defined as a special type of feed forward neural network. The
network is constructed in two parts: an encoder and a decoder. The encoder is used to
represent the input data in a coded form and the decoder uses the coded input data to
reconstruct the input. The coded layer is called the bottleneck of the network because,
if the coded layer is larger than the required dimension, then the network will try to
model the noise by keeping the residual noise variance unchanged. However, if the coded
dimension is smaller than the required dimension then the residual noise variance will
increase as the data can be better explained with more dimensions. If h = f (x) is an
encoder function which can encode the network input x to a compressed representation h,
then the decoder function r = g(h) can be used to produce the reconstruction r from the
compressed representation h.

Electronics 2023, 12, 639 9 of 21

L1 L2 L3

WL1,L2 ∈ R5×5 WL2,L3 ∈ R5×5

1

(a)

L1 L2 L3

1

(b)

Figure 3. Figure 3a shows an illustration of FC layer and its connections. Figure 3b highlights the
connections of one neuron with its previous and next layer. (a) Fully Connected Layer; (b) Connections
of one node in FC Layer.

The dimension of h is constrained to be smaller than x in order to extract useful
features from input data. The loss function L(x, g(f (x))) in Equation (11) is used for the
back propagation algorithm which penalizes r = g(f (x)) for not being similar to x. Here, x
and r represent the ground truth and output of the network respectively.

Lae(x, g(f (x))) =
1
N

N

∑
n=1
‖xi − ri‖2

2 (11)

where xi is one data sample and ri is reconstruction from xi. N is total number of data samples.

Sparse Autoencoder (SAE)

Sparse Autoencoder is a variation of Autoencoder which tries to keep the average
activation of the neurons in the hidden layers close to zero. This is done by adding an
additional regularization term with the loss function (cf. Equation (12)).

Lsae(x, g(f (x))) = Lae(x, g(f (x))) + KL(ρ‖ρ̂) (12)

Sparse Autoencoders do not differ with the basic Autoencoder structurally rather the
main difference lies in the loss functions. In Equation (12) the additional term KL(ρ‖ρ̂) is
a regularization term known as the Kullback-Leibler (KL) Divergence loss. Here, ρ is the
sparsity parameter we want to achieve and ρ̂ is the average activation of the neuron. KL
Divergence measures how different is the average activation from the expected average
activation. The additional term is high, if the average neuron activation diverges from the
sparsity parameter and the loss function is higher.

Denoising Autoencoder (DAE)

Denoising Autoencoder is also a variation of AE which prevents the model from
overfitting by restricting it from learning an Identity or Null function. This is done by
corrupting the input data on purpose with noise. But as in AE input is used as labels,
DAE uses the corrupted data as input but original signals as output. The input to DAE is
described in Equation (13) and its loss function in Equation (14) whereN (µ, σ2) represents a

Electronics 2023, 12, 639 10 of 21

random Gaussian noise, x is the input signal, x′ is the noisy signal and r is the reconstruction
from x′.

x′ = x +N (µ, σ2) (13)

Ldae(x, g(f (x′))) =
1
N

N

∑
n=1
‖xi − ri‖2

2 (14)

After the training of the Autoencoder is done, the encoder part is separated and a
classification layer with softmax activation is added to the encoder model. The model
is then fine tuned to classify bearing faults. Table 2 provides details about the encoder
with classifier model structure. Depending on the input features, the model is either one
dimensional or two dimensional.

Table 2. Structural details for the AE, SAE and DAE models. As SAE and DAE are structurally similar
to AE only details for AE are mentioned.

Autoencoder (1D) Autoencoder (2D)

Layers Parameters Layers Parameters

Input 512× 1 or 1024× 1 Input 32× 32× 1
FC 1 + Batch Norm Units: 1024 or 512 Conv 1 + Batch Norm kernel: 3× 3, Filters: 3
FC 2 + Batch Norm Units: upre/2 Conv 2 + Batch Norm kernel: 3× 3, Filters: 32
FC 3 + Batch Norm Units: upre/2 Conv 3 + Batch Norm kernel: 3× 3, Filters: 32
FC 4 + Batch Norm Units: upre/2 Conv 4 + Batch Norm kernel: 3× 3, Filters: 32
FC 5 + Batch Norm Units: upre/2
FC 6 Units: 64 FC 1 Units: 256
FC 6 Units: 16 FC 2 Units: 16
Output 15 classes Output 15 classes
Wlearn 1,755,983 Wlearn 2,120,915

AlexNet

AlexNet is a type of convolutional neural network with five convolutional layers, three
pooling layers and three FC layers [32]. The first two convolutional layers are followed
by a pooling layer while the next three convolutional layers are directly connected and
a pooling layer follows after the last convolutional layer. Three FC layers at the end are
used for classification. The dropout layers can be added in between the FC layers to avoid
overfitting. A structure of the AlexNet model is shown in Figure 4a.

ResNet

ResNet is a type of CNN which is deeper and has a different architecture by adding
residuals from previous layers to the next layer. While other CNN models learn a mapping
function C : x 7→ y, ResNet tries to learn Cres : (C + x) 7→ y where C represents the plain
convolution operation and Cres denotes the residual convolution operation which has an
additional identity function denoted by x.

This is done to avoid learning an identity function which might happen in deeper
neural networks if the accuracy gets saturated with increase in depth [33]. An architecture
for the ResNet model used in this work is shown in Figure 4b which has three among
four residual blocks with convolution and batch normalization layer and one with a direct
shortcut from the previous layer.

LeNet

LeNet is another CNN architecture comparatively less deep than both AlexNet and
ResNet. It consists of three convolutional and pooling layers as well as two to three FC
layers for classification. A global pooling layer is used before the FC layers to reduce the
parameters in the FC layers. Batch normalization layers are used to avoid overfitting. An
overview of the LeNet model used in this work is illustrated in Figure 4c.

Electronics 2023, 12, 639 11 of 21

Model Input

Convolution Layer 1

Max Pooling

Convolution Layer 2

Max Pooling

Convolution Layer 3

Convolution Layer 4

Convolution Layer 5

Average Pooling

Dropout

Fully Connected 1

Dropout

Fully Connected 2

Fully Connected 3

Fe
at

ur
e

E
xt

ra
ct

io
n

C
la

ss
ifi

ca
ti

on

(a) AlexNet Model

Model Input

Convolution Layer 1

Batch Normalization

Max Pooling

Convolution Layer 2

Batch Normalization

Convolution Layer 3

Batch Normalization

Concat + ReLU

Convolution Layer

Batch Normalization

Convolution Layer

Batch Normalization

Concat + ReLU

Residual Conv Layer

Residual Batch Norm

Global Max Pooling

Fully Connected

Fe
at

ur
e

E
xt

ra
ct

io
n

C
la

ss
ifi

ca
ti

on
×3

(b) ResNet Model

Model Input

Convolution Layer 1

Batch Normalization

Max Pooling

Convolution Layer 2

Batch Normalization

Max Pooling

Convolution Layer 3

Global Max Pooling

Fully Connected 1

Fully Connected 2

Fully Connected 3

Fe
at

ur
e

E
xt

ra
ct

io
n

C
la

ss
ifi

ca
ti

on

(c) LeNet Model

Figure 4. Block Diagram of CNN models.

3.3. Model Pruning

In order to reduce the model size and thus fit the model into the MCU memory, we
have to either manually restructure the models which is a time consuming job or approach
the problem using some pruning algorithms which can decide an optimal number of
neurons or filters in a layer. Restructuring the model by pruning and removing unnecessary
filters or neurons in a layer reduces the weight matrix and thus reduces the memory size of
the model.

The pruning approach used in this work is inherited from [4] which uses L2 norm
of the weights at an element of the DNN as a metric to evaluate its importance in the
prediction. In the following, we will give an introduction how pruning can be done in
general. However, all steps are covered by the autoflow framework. The L2 norm can be
represented by Equation (15)

wnorm = ‖w‖2 =
p

∑
k=1

wk, where w =
[
w1 w2 . . . wp

]T (15)

3.3.1. Pruning FC Layers

As discussed for FC layers in Figure 3b, a neuron in layer L2 has five connections
highlighted from the previous layer. The importance of the highlighted third neuron is
decided by the L2 norm of all the weights of incoming connections from the previous layer.
A smaller value of L2 norm suggests that a particular neuron contributes less in the decision
making for the next layers.

Considering Equation (10), we know the weight matrix W ∈ Rn1×n2 and each column
of W corresponds to a neuron in the current layer while the values in the column represent
the connection weights from the previous layer. Therefore, if we want to delete a neuron
from the current layer we have to remove a column corresponding to that neuron.

Deleting a neuron produces some structural instability in the model which can lead
to a broken DNN network. Removing a neuron from the ith FC layer can be explained by
function Di

FC in Equation (16).

Di
FC : W ∈ Rn1×n2 7→ W ∈ Rn1×(n2−1) (16)

As the deleting changes the output space of W the input space of the weight matrix at
the next layer has to be changed as well using Di+1

FC in Equation (17)

Electronics 2023, 12, 639 12 of 21

Di+1
FC : W ∈ Rn2×n3 7→ W ∈ R(n2−1)×n3 (17)

Figure 5a shows the sorted L2 norm of weights at two FC layers containing 512 and
1024 neurons, respectively. The values in both layers clearly show how some neurons
contribute more than others in decision making, stressing on the fact that all the nodes are
not necessary for solving the objective function. The plot contains sorted average weight
values, thus the number of neurons does not correspond to their location in the network.
Such a plot helps to identify whether there are neurons which are less important and later
removing them to reduce the model size.

0 100 200 300 400 500 600 700 800 900 1,000 1,100
2.8

3

3.2

Number of Neurons

S
or
te
d
A
v
g
w
ei
gh

t

FC Layer 1
FC Layer 2

1

(a)

0 50 100 150 200 250 300 350 400

0

2

4

6

Number of Filters

S
o
rt
ed

A
v
g
w
ei
g
h
t

Conv Layer 1
Conv Layer 2
Conv Layer 3
Conv Layer 4
Conv Layer 5

1

(b)

Figure 5. Analysis of sorted weights for FC and convolutional layers from AE and AlexNet model
respectively. (a) Sorted Avg weights from two FC layers of AE model; (b) Sorted Avg weights from
five convolutional layers of AlexNet model.

3.3.2. Pruning Convolutional Layers

The pruning for convolutional layer uses the same L2 norm approach as for FC layers.
Due to differences in the weight matrix structure and the connections for the convolutional
layer explained in Section 3.2.1 Figure 2a compared to FC layer, there are some small
changes. For convolutional layers, we delete filters rather than deleting the neurons. In
Section 3.2.1, the weight matrix W ∈ Rη×η×D×N gives information about the filter kernel,
input channels and number of filters used at the current convolutional layer.

If we decide to delete an output filter from the convolutional layer, we have to delete
a three dimensional weight matrix for the 2D convolution operation. Figure 2a is helpful
to understand this operation. In the illustration, there are two filters. If we want to delete
the last filter W1 ∈ R3×3×3, we have to delete W10, W11, W12 which constitute the three
dimensional weight matrix W1.

Figure 5b shows the sorted L2 norm of weights at output filters of five convolutional
layers. It is also evident here how only few filters contribute to the decision making in
all of the convolutional layers in the model and there is opportunity to reduce the model
size. The filter deletion function for ith convolutional layer can be represented by Di

conv in
Equation (18).

Di
conv : W ∈ Rη×η×D×N 7→ W ∈ Rη×η×D×(N−1) (18)

Equation (19) shows the function that changes the input space of the immediate
convolutional layer that follows after the current convolutional layer.

Di+1
conv : W ∈ Rη×η×D×N 7→ W ∈ Rη×η×(D−1)×N (19)

There are high chances that other layer types can also follow the current convolutional
layer. The possible combinations that exist in the models explained here are illustrated in
Figure 6. If there is a FC layer following the convolutional layer, a flatten layer is introduced
in between to make the connections compatible. Equation (20) can be referred for the
mathematical function responsible to update transformation matrix mapping the output
space of the current convolutional layer to the next FC layer by deleting the rows which
were connected to the deleted filter.

Electronics 2023, 12, 639 13 of 21

Di+1
convFC

: W ∈ RHWN×ni+1 7→ W ∈ RHW(N−1)×ni+1 (20)

It can be noticed in Figure 6 that the update of the input space for the next layer ends
either at the next convolutional layer or at the next FC layer. For other layers like the
dropout, pooling, batch norm or flatten layers as also shown in the red box in Figure 7 only
the input space changes as there are no learnable parameters.

Conv Layer

Conv Layer

Conv Layer

Pooling

Conv Layer

Conv Layer

Pooling

Flatten

FC

Conv Layer

Batch Norm

Pooling

Conv Layer

Conv Layer

Batch Norm

Pooling

Flatten

FC

Conv Layer

Batch Norm

Pooling

Flatten

Dropout

FC

Figure 6. Possible permutations of layers after a convolutional layer.

The illustration for the pruning algorithm is shown in Figure 7. The filters or neurons
having the lower L2 norm for their weights from the sorted list are removed iteratively.
The pruning of a layer stops, when the provided target percentage (e.g., 15%) of neurons
has been removed. The process is repeated for all the layers except the output layer. The
model is repeatedly pruned until the pruned model accuracy is greater or equal the original
accuracy minus three percent.

Pruning (Percent to prune)

If FC or Conv layerConv Layer Found FC Layer Found

NO

Next Layer

Conv Layer(Di
conv) FC Layer(Di

FC)

FC Layer Conv Layer Batch Norm Pooling Dropout Flatten FC LayerBatch Norm

Next Layer Next Layer

Di+1
convFC

Di+1
conv Di+1

FC

Is Next layer Output layer NO

YES

Pruning Finish

Figure 7. Flow chart for the pruning algorithm.

3.4. Model and Training Setup

The details of CNN and AE model architectures used in the work are described in
Table 3 and Table 2 respectively. Autoencoder models which have one dimensional input
use fully connected layers indicated by FC while the two dimensional input based models
have convolutional layers denoted by Conv in Table 2. The number of neurons used in
each layer is half of the previous layer represented by upre/2 [2]. All CNN models can
have either one dimensional or a two dimensional input based on the features used from
the dataset. Use of Conv and FC in Table 3 represents a convolutional layer and a FC
layer respectively. ReLU is used as activation in all convolutional and FC layers except at
the output layer which has softmax as activation function. Total learnable parameters in
the model are represented by Wlearn and varies based on input features. As the ResNet
model has 4 residual blocks shown in Figure 4b, use of keyword right and left provides the
parameters for the right and left branch for the residual block respectively.

For each feature in Section 3.1 six separate models (AE, DAE, SAE, AlexNet, ResNet
and LeNet) as discussed in Section 3.2 are trained. 80% of the dataset was used for
training and 20% was used for testing. For problems related to RUL prediction, it is

Electronics 2023, 12, 639 14 of 21

not recommended to distort the order of the data but for classification this is not a very
important parameter. In reference to this theory, the dataset was split into training and
testing in a random order. A detailed Table 4a can be referred for more information. Based
on the feature type, either one dimensional or two dimensional model is chosen. The
parameters used for training the model are listed in Table 4b. Each model is trained five
times and the average of best accuracy over five training runs is concluded to be the model
accuracy for a particular feature.

Table 3. Structural details of AlexNet, ResNet and LeNet used in this work.

AlexNet ResNet LeNet

Layers Parameters Layers Parameters Layers Parameters

Input 32× 32× 1 or 1024× 1 Input 32× 32× 1 or 1024× 1 Input 32× 32× 1 or 1024× 1
or 512× 1 or 512× 1 or 512× 1

Conv 1 kernel: 3× 3, Filters: 64 Conv 1 kernel: 7× 7, Filters: 64 Conv 1 kernel: 5× 5, Filters: 6
Conv 2 kernel: 3× 3, Filters: 192 Res Block 1: Conv(right) kernel: 3× 3, Filters: 64,64 Conv 2 kernel: 5× 5, Filters: 16
Conv 3 kernel: 3× 3, Filters: 384 Res Block 2: Conv(right) kernel: 3× 3, Filters: 128,128 Conv 3 kernel: 5× 5, Filters: 120
Conv 4 kernel: 3× 3, Filters: 256 Res Block 2: Conv(left) kernel: 1× 1, Filters: 128
Conv 5 kernel: 3× 3, Filters: 384 Res Block 3: Conv(right) kernel: 3× 3, Filters: 256,256

Res Block 3: Conv(left) kernel: 1× 1, Filters: 256
Res Block 4: Conv(right) kernel: 3× 3, Filters: 512,512
Res Block 4: Conv(left) kernel: 1× 1, Filters: 512

FC 1 Units: 4096 FC 1 Units: 120
FC 2 Units: 4096 FC 2 Units: 84
Output 15 classes Output 15 classes Output 15 classes
Wlearn 1,235,456 (1D) Wlearn 1,235,456 (1D) Wlearn 1,235,456 (1D)

1,235,456 (2D) 1,235,456 (2D) 1,235,456 (2D)

Table 4. Dataset and model training details.

(a) Dataset Description (b) Training parameters

Features Description Training Details

Data Samples Dimension Parameters Values

Time domain signals 1920 1024× 1 Epochs 100
FFT 1920 512× 1 Batch size 64

STFT 1920 32× 32 Optimizer Adam
CWT 1920 32× 32 Learning rate 0.001

2D Time Signals 1920 32× 32 Loss function Sparse Categorical Cross Entropy

In order to do inference using the combinations on a MCU, it is important to inspect
the memory requirements of different models as that is the fundamental constraint on
MCUs. We trained each model for the given features on sever and estimated afterwards
their memory requirement on the MCU. Figure 8 displays the memory requirements of
different models. DAE and SAE are not shown as they have memory requirements same as
AE. The data in Figure 8 is in logarithmic scale.

As we have tested our models on two different microcontrollers STM32F401RE and
STM32H743Z2 from ST Microelectronics (STM) having 512 kilobytes (Kb) and 2048 Kb of
flash memory respectively, their flash memory are also provided in the graph.

It should be evident that all of the space on the MCU cannot be used for just saving
the model weights rather some space is also required to store some data and variables. In
our work, the memory used for code, internal variables and incoming bearing data was
equivalent to ≈130 KB. From Figure 8 it is clear that apart from LeNet, all of the models
failed to match the memory constraint of MCU.

Electronics 2023, 12, 639 15 of 21

Time
FFT

STFT
CWT

Time→
2D

0

2

4
3.24 3.35 3.31 3.31 3.31

3.73

3.35

4.45 4.45 4.45

3.26 3.26

3.68 3.68 3.68

1.71 1.71
1.91 1.91 1.92

M
od

el
Si

ze
(L

og
10

(s
iz

e k
b
))

AE
AlexNet
ResNet
LeNet

Nucleo F401RE

Nucleo H743Z2

1

Figure 8. Comparison of required memory size of AE, AlexNet, ResNet and LeNet for different
feature sets.

The pruned models were deployed on ST MCUs (Nucleo F401RE, Nucleo H743Z2)
using TensorFlow Lite (TF Lite) [34] as well as XCubeAI [35] tool chains. The toolchains
provide the memory size required including the code overhead. To verify the execution, we
performed actual inference runs of selected models with adapted test data. This showed
that the execution is feasible.

4. Results

Using the presented pruning method, we were able to reduce the memory requirement
of the models. A comparison of the pruned and original learnable model parameters is
shown in Table 5. A smaller number of parameters implies less computational overhead
and smaller memory footprint. This is very important during the inference phase. The
impact of reducing the redundant parameters can be realized from the sorted average
weights of the layers in Figure 9a,b.

Table 5. Comparison of learnable parameters in original and pruned model.

Features AE AlexNet ResNet LeNet

Original Pruned Original Pruned Original Pruned Original Pruned

Time Signals 1,755,983 668,980 5,511,631 97,673 1,761,679 228,137 36,255 4995
FFT 2,283,343 11,757 3,414,479 9826 1,761,679 87,907 36,255 927

CWT 2,120,915 95,324 28,534,479 656,620 4,910,095 415,394 76,695 34,120
2D Time Signals 2,120,915 798,933 28,534,479 75,627 4,910,095 244,522 76,695 12,887

STFT 2,120,915 2496 28,534,479 75,627 4,910,095 205,241 76,695 1967

After pruning the layers, the average weights are illustrated in Figure 9a and Figure 9b
for two FC layers of the Autoencoder and five convolutional layers of AlexNet respectively.
The layers used in Figures 5 and 9 are the same except for the fact that the former are from
the original model and later from the pruned model. Changes in the number of neurons
and average weights result from the changed layer structure after pruning.

The sorted average weights have a flatter distribution after pruning compared to the
weights in the original model. This justifies that after pruning the models, the remaining
neurons contribute equally to the decision making for the current layer, while reducing the
memory requirement.

Whether a model is suitable for the given inference task, does however depend on its
accuracy. Therefore, there is a trade off between size reduction and achievable accuracy.
The maximum accuracy difference between the pruned models and the original models is
3%. An aggressive structured pruning is used in this work which is inference friendly for
its dense matrix operations. But this poses a disadvantage of steep degradation in accuracy

Electronics 2023, 12, 639 16 of 21

if no threshold is used. We chose a 3% threshold in this work. This explains the maximum
accuracy loss, since the method ensures a minimal model size while staying within the
threshold. Whether 3% are too much loss, is application specific and the threshold needs to
be tuned for each scenario.

0 50 100 150 200 250 300 350 400 450 500

2.5

3

Number of Neurons

S
or
te
d
A
v
g
w
ei
gh

t

FC Layer 1
FC Layer 2

1

(a)

0 5 10 15 20 25 30 35 40 45 50 55 60
0

2

4

Filters

A
v
g(
in
co
m
in
g
w
ei
g
h
t)

Conv Layer 1
Conv Layer 2
Conv Layer 3
Conv Layer 4
Conv Layer 5

1

(b)

Figure 9. Analysis of sorted weights for FC and convolutional layers from pruned AE and AlexNet
model respectively after retraining. (a) Sorted average weights from two FC layers from pruned AE
model; (b) Weights from five convolutional layers from pruned AlexNet model.

The confusion matrix from the original and pruned model predictions are shown in
Figure 10 for LeNet. We chose to highlight the confusion matrix only for one model with
CWT features, the results are however similar for all other combinations. There are three
different types of bearing usage and each type has five bearing defects. In the figures
showing confusion matrix, the three columns represent the three different bearing usage
types. The first row of sub figures in Figure 10 are the results from the original models
while the second row of confusion matrices are from pruned models for the same features.

O
ut
er 93% 0% 0% 0% 0%

O
ut
er 1% 93% 0% 0% 0%

O
ut
er 0% 0% 91% 1% 0%

C
ag
e

1% 1% 6% 82% 0%

In
ne
r/
O
ut
er 1%

O
ut
er

0%

O
ut
er

0%

O
ut
er

1%

C
ag
e

95%

In
ne
r/
O
ut
er

O
u
tp
u
t
C
la
ss

Target Class

In
ne
r

79% 0% 5% 0% 0%

O
ut
er 0% 97% 0% 0% 0%

C
ag
e

6% 0% 87% 0% 0%

O
ut
er 0% 0% 0% 95% 0%

O
ut
er 0%

In
ne
r

0%

O
ut
er

0%

C
ag
e

0%

O
ut
er

96%

O
ut
er

O
u
tp
u
t
C
la
ss

Target Class

O
ut
er 99% 0% 0% 0% 0%

IB
C
O 0% 90% 3% 4% 0%

In
ne
r

0% 2% 93% 5% 0%

In
ne
r

0% 4% 1% 81% 0%

O
ut
er 0%

O
ut
er

0%

IB
C
O

0%

In
ne
r

0%

In
ne
r

95%

O
ut
er

O
u
tp
u
t
C
la
ss

Target Class

O
ut
er 93% 0% 0% 0% 0%

O
ut
er 1% 92% 0% 0% 1%

O
ut
er 0% 0% 90% 2% 1%

C
ag
e

0% 0% 3% 78% 0%

In
ne
r/
O
ut
er 0%

O
ut
er

0%

O
ut
er

2%

O
ut
er

2%

C
ag
e

90%

In
ne
r/
O
ut
er

O
u
tp
u
t
C
la
ss

Target Class

In
ne
r

76% 0% 6% 0% 0%

O
ut
er 0% 97% 0% 0% 0%

C
ag
e

7% 0% 79% 0% 0%

O
ut
er 0% 0% 0% 93% 0%

O
ut
er 0%

In
ne
r

0%

O
ut
er

0%

C
ag
e

0%

O
ut
er

96%

O
ut
er

O
u
tp
u
t
C
la
ss

Target Class

O
ut
er 98% 0% 0% 0% 0%

IB
C
O 0% 85% 4% 3% 0%

In
ne
r

0% 3% 89% 6% 0%

In
ne
r

0% 5% 3% 79% 0%

O
ut
er 0%

O
ut
er

0%

IB
C
O

0%

In
ne
r

0%

In
ne
r

91%

O
ut
er

O
u
tp
u
t
C
la
ss

Target Class

Figure 10. The figure represents confusion matrix for LeNet model with CWT features. We have three
types of bearing load conditions with each condition having five defects. Three columns represent
three bearing load conditions. The first and second row represent prediction results from original
and pruned LeNet model respectively.

In some cases individual classes might show an accuracy difference higher than 3%
compared to the original model. The average accuracy difference of the pruned models
are not higher than 3% when compared to average accuracy of the original model. This

Electronics 2023, 12, 639 17 of 21

can be verified from Table 6, which also shows the accuracy of all combinations under test.
It should be noted that the accuracy difference threshold (3% in this work) is a sensitive
parameter and depending on the application it can be bigger or smaller. A bigger threshold
margin increases the chance to reduce the memory footprint of the model. We selected
this threshold arbitrarily to demonstrate the pruning bottleneck in the work. For real
applications, this threshold can be different for various applications and datasets.

Table 6. Comparison of accuracy for original and pruned model.

Features AE AlexNet ResNet LeNet

Original Pruned Original Pruned Original Pruned Original Pruned

Time Signals 80.2% 77.60% 96.1% 93.23% 99.73% 97.02% 97% 95.31%
FFT 99.73% 97.39% 98.4% 96.87% 99.21% 97.84% 98.03% 96.09%

CWT 89.67% 87.15% 90.02% 87.43% 92.91% 90.23% 80.47% 78.36%
2D Time Signals 85.14% 84.17% 97.7% 95.35% 95.57% 93.23% 96.5% 94.01%

STFT 99.67% 98.18% 98.37% 97.65% 99.6% 96.35% 98.07% 97.13%

Table 7 shows the inference time for AE and AlexNet model. Three different features
STFT, CWT and 2D Time Signal were selected for this comparison as all of them have same
dimensions. The model size corresponding to these features provides a bigger spectrum
of analysis. While the STFT feature corresponds to one of the smallest models, CWT
and 2D Time Signal correspond to models with more parameters. As already discussed in
Section 3.4, the models were deployed on two different MCUs. Here, only the inference time
on Nucleo H743Z2 is shown as the available flash memory suits the memory requirement
of all the selected models. From the inference results, it is evident that XCubeAI is faster in
comparison to TF Lite. As the MCU does not have a neural network accelerator hence the
better performance in fast calculation can only be justified by a better software framework
implementation from STM for XCubeAI. The inference time comparisons are consistent
with the model size or the number of parameters for the TF Lite framework. On the
other hand XCubeAI has ≈3 ms inference time for models with ≈3k, ≈75k and with
≈95k parameters.

Table 7. Comparison of Inference time for CWT, STFT and 2D time signal features for AlexNet and
AE on Nucleo H743Z2.

Model CWT STFT 2D Time Signal

XCubeAI TF Lite XCubeAI TF Lite XCubeAI TF Lite

AE 4 ms 8905 ms 3 ms 135 ms 40 ms 39,775 ms
AlexNet 34 ms 38,173 ms 3 ms 5195 ms 3 ms 5196 ms

Figure 11a–d show the size comparison between the original model and the pruned
model for different feature sets. This shows that most of the pruned models fit in both
STM32 MCUs discussed in this work irrespective of the features used. However, there are
differences in the resulting size depending on the choice of combination of feature and
model. Clearly, spectral features (STFT and FFT) are the best choice for bearing classification.
All the different types of model require less parameters to train on the spectral features. It is
though interesting to observe that all the CNN models (AlexNet, ResNet, LeNet) use more
parameters to train on CWT. On the other hand, 2D Time Signals needs less parameters
to train on the same models. Although there have been many instances of application of
Wavelet transforms (DWT) [36] for bearing fault detection but authors in this work have
avoided to change the features compared to the benchmark study. It would interesting to
investigate this in our future work though. The DWT implementation on arm MCUs are
more energy efficient in comparison to the CWT implementation.

Electronics 2023, 12, 639 18 of 21

Time
FFT

STFT
CWT

Time→
2D

0

2

3.24 3.35 3.31 3.31 3.31

2.89

1.32

1.04

2.01

2.89

M
od

el
Si

ze
(L

og
10

(s
iz

e k
b
))

AE
PrunedNucleo F401RE

Nucleo H743Z2

1

Time
FFT

STFT
CWT

Time→
2D

0

2

4 3.73

3.35

4.45 4.45 4.45

2.04

1.34

1.91

2.81

1.91

M
od

el
Si

ze
(L

og
10

(s
iz

e k
b
))

AlexNet
Pruned

Nucleo F401RE

Nucleo H743Z2

1

(a) (b)

Time
FFT

STFT
CWT

Time→
2D

0

2

4
3.26 3.26

3.68 3.68 3.68

2.37

1.95

2.3

2.61
2.38

M
od

el
Si

ze
(L

og
10

(s
iz

e k
b
))

ResNet
Pruned

Nucleo F401RE

Nucleo H743Z2

1

Time
FFT

STFT
CWT

Time→
2D

0

2 1.71 1.71
1.91 1.91 1.92

1.23
1.07

0.95

1.63

1.32

M
od

el
Si

ze
(L

og
10

(s
iz

e k
b
))

LeNet
Pruned

Nucleo F401RE

Nucleo H743Z2

1

(c) (d)

Figure 11. Comparison of size of AE, AlexNet, ResNet and LeNet for different feature sets with
pruned model sizes. (a) Comparison of model size between benchmark and pruned AE model for
different features; (b) Comparison of model size between benchmark and pruned AlexNet model for
different features; (c) Comparison of model size between benchmark and pruned ResNet model for
different features; (d) Comparison of model size between bench mark and pruned LeNet model for
different features.

Regardless of features convolutional neural networks like AlexNet, ResNet and LeNet
all perform quite well in bearing defect classification. Due to the smaller design and less
number of layers in the LeNet model it is considered to be the most energy efficient and
inference friendly. But the same design finds learning the CWT features problematic where
the model achieves only ≈78% accuracy. Authors can only justify by understanding that
the CWT feature needs deeper models like ResNet with ≈90% accuracy. ResNet model
being the deepest of all, with highest number of parameters achieves best accuracy but
requires larger memory and more flops while inferencing.

It should be noted, that the models which do not fit on the MCU is not because of a
direct shortcoming of the pruning framework. This is rather the size we achieved when
applying the accuracy vs memory footprint trade off with an accuracy difference threshold.
In case of more sensitive applications where accuracy loss is unaffordable, other pruning
approaches should be used.

In this work, we have not focused on a comparison of the available pruning approaches
but rather on enabling inferencing the model on the edge for Pdm applications. Hence, we
have not explored other ideas in order to reduce the memory footprint while keeping the
model accuracy as it is. The results show, that there is further potential in testing different
options to reduce the memory footprint.

In addition to the model memory footprint, other code will have to be executed. When
inferencing our deployed models, we used a test dataset suitable to the model but the
features were not extracted on the edge. The models which do fit into the memory but with
a very slight margin cannot be considered a 100% success because the data acquisition and
feature extraction has to be done on edge as well and thus will add further code overhead.

5. Discussion

The goal of this work was to bring DNN based decision making models for predictive
maintenance on low power MCUs which is demonstrated successfully in the results. This

Electronics 2023, 12, 639 19 of 21

is helpful in optimized replacement strategies of bearings and avoiding sudden shut down
in industrial appliances. Enabling the execution on the MCU comes at the cost of some
compromise in accuracy. There is a trade off between model size and accuracy. The
threshold of 3% loss in accuracy between the original and the pruned model was decided
before training and pruning the models. If the loss in accuracy is not feasible, decreasing the
pruning percentage would also decrease the accuracy loss but will lead to bigger models
as in our study. Hence there is a constrained bottleneck but our analysis on the weight
distribution of fully connected and convolutional layers gives us new insights on further
pruning strategies.

A pruning requirement for more sensitive industrial application cannot be neglected
where margin of compromise of accuracy will be minimum or almost zero. In such
cases, the pruning of the model becomes a strict constrained optimization problem. The
discussion in Section 3.3 portrays optimization of only nodes or filters in detail which
is one DNN hyperparameter as the pruning framework in [4] works only on trimming
the network based on weights. But there can be several more approaches in optimizing
the hyperparameters of the network which are unexplored for pruning the predictive
maintenance models. This can be help in achieving the goal even with less loss in accuracy
between the original and the pruned model.

The actual deployment of the model on MCU moves the theoretical perspective to a
more pragmatic point of view. The deployment and inferencing of DNN models on MCU
is a key novelty of this work. Clearly, as discussed in Section 4 XCubeAI inferences the
DNN models faster as compared to TF Lite. But this has a vendor constraint. In order to
deploy model with XCubeAI, only MCUs from STM must be used as of now as it does
not support MCU from other vendors. But it should be understood that inference time is
a very application dependent parameter. In a scenario of object tracking or detection on
MCU, inference time is of utmost importance. On the other hand, in industrial scenarios
where measurements are sometimes collected once or twice in a day an inference time of
40 s or even 1 min will not be a problematic parameter. In addition to this, we understand
that more parameters imply a higher number of flops which inherently implies more clock
cycles and larger inference time. Therefore, an important concern can be raised about
energy consumption for all models implemented with XCubeAI with network parameters
up to ≈95k. As the scope of the work does not include energy benchmarking based on the
inference time, we will address this in our future work.

Our work focused on the deployment of DNN models on arm based MCUs with two
STM MCUs as example. Further hardware such as MCUs from different vendors will be
tested in the future. We did not consider specialized signal processing hardware such as
Digital Signal Processors (DSPs) or Field Programmable Gate Arrays (FPGAs). DSPs and
FPGAs can accelerate the execution of models thanks to specialized blocks. However, this
kind of hardware can be programmed and tuned quite flexibly. Thus, this requires specific
development to utilize the specific capabilities. Our method is however applicable to other
hardware as well, because the pruning is the first step to fit the model into the memory
which is then followed by a hardware dependent implementation. Therefore, the results
will differ depending on the used toolchain, as e.g., XCubeAI gives specific optimized
results for STM MCUs only.

6. Conclusions

In this paper, we investigated whether state of the art benchmark DNN models could
be run on general purpose MCUs. Our study showed that this is not possible in most
cases and that the model size needs to be reduced in order to enable the deployment. We
then showed how such a reduction can be performed using a pruning framework. While
this showed promising results, the reduction was not sufficient in some cases. As a final
step, we deployed the models on the MCU in order to measure the inference time. The
deployment brings together the theoretical approaches for model tuning and compression
for predictive maintenance applications.

Electronics 2023, 12, 639 20 of 21

As a next step, we will analyze different pruning approaches to further reduce the
model size while achieving higher model accuracy. Quantization methods will be added to
a follow up comparison as well. The testing of the pruned models can be done with feature
extraction on edge in order to consider the code overhead involved in the inferencing phase.
Further investigations are needed to estimate the energy consumption during inference
and to enhance the performance on the MCUs. In addition, we plan to evaluate the method
on further hardware to see generalization effects.

Author Contributions: Conceptualization, R.P., S.K. and S.U.; methodology, R.P.; software, R.P.;
validation, R.P., S.K. and S.U.; formal analysis, R.P.; investigation, R.P. and S.U.; data curation, R.P.;
writing—original draft preparation, R.P. and S.K.; writing—review and editing, R.P., S.K., T.H. and
S.U.; visualization, R.P. and S.K.; supervision, S.K.; project administration, S.U.; funding acquisition,
T.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was financed by IMMS with funds from the German state of Thüringen.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Upadhyay, R.K.; Kumaraswamidhas, L.A.; Azam, M.S. Rolling element bearing failure analysis: A case study. Case Stud. Eng.

Fail. Anal. 2013, 1, 15–17. [CrossRef]
2. Zhao, Z.; Li, T.; Wu, J.; Sun, C.; Wang, S.; Yan, R.; Chen, X. Deep learning algorithms for rotating machinery intelligent diagnosis:

An open source benchmark study. ISA Trans. 2020, 107, 224–255. [CrossRef]
3. Wang, B.; Lei, Y.; Li, N.; Li, N. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings.

IEEE Trans. Reliab. 2018, 69, 401–412. [CrossRef]
4. Konegen, D.; Rüb, M. AutoFlow. 2021. Available online: https://github.com/Hahn-Schickard/AUTOflow (accessed on

20 December 2022).
5. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow:

Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467.
6. Shao, H.; Jiang, H.; Zhao, H.; Wang, F. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis.

Mech. Syst. Signal Process. 2017, 95, 187–204. [CrossRef]
7. Saufi, S.R.; Ahmad, Z.A.B.; Leong, M.S.; Lim, M.H. Low-speed bearing fault diagnosis based on ArSSAE model using acoustic

emission and vibration signals. IEEE Access 2019, 7, 46885–46897. [CrossRef]
8. Chen, Z.; Li, W. Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network. Trans.

Instrum. Meas. 2017, 66, 1693–1702. [CrossRef]
9. Li, X.; Jiang, H.; Zhao, K.; Wang, R. A deep transfer nonnegativity-constraint sparse autoencoder for rolling bearing fault

diagnosis with few labeled data. IEEE Access 2019, 7, 91216–91224. [CrossRef]
10. Shi, H.; Chen, J.; Si, J.; Zheng, C. Fault diagnosis of rolling bearings based on a residual dilated pyramid network and full

convolutional denoising autoencoder. Sensors 2020, 20, 5734. [CrossRef]
11. Xie, Y.; Zhang, T. Fault diagnosis for rotating machinery based on convolutional neural network and empirical mode decomposi-

tion. Shock Vib. 2017, 2017, 3084197. [CrossRef]
12. Wen, L.; Li, X.; Gao, L.; Zhang, Y. A new convolutional neural network-based data-driven fault diagnosis method. IEEE Trans.

Ind. Electron. 2017, 65, 5990–5998. [CrossRef]
13. Pinedo-Sanchez, L.A.; Mercado-Ravell, D.A.; Carballo-Monsivais, C.A. Vibration analysis in bearings for failure prevention using

CNN. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 628. [CrossRef]
14. Xie, S.; Ren, G.; Zhu, J. Application of a new one-dimensional deep convolutional neural network for intelligent fault diagnosis of

rolling bearings. Sci. Prog. 2020, 103, 0036850420951394. [CrossRef]
15. Xu, W. Research on bearing fault diagnosis base on deep learning. In Proceedings of the 4th International Conference on Artificial

Intelligence and Big Data (ICAIBD), Chengdu, China, 28–31 May 2021; pp. 261–264.
16. Sharma, K.; Goyal, D.; Kanda, R. Intelligent Fault Diagnosis of Bearings based on Convolutional Neural Network using Infrared

Thermography. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2022, 236, 2439–2446. [CrossRef]
17. Wang, J.; Mo, Z.; Zhang, H.; Miao, Q. A deep learning method for bearing fault diagnosis based on time-frequency image. IEEE

Access 2019, 7, 42373–42383. [CrossRef]
18. Chen, Z.; Cen, J.; Xiong, J. Rolling bearing fault diagnosis using time-frequency analysis and deep transfer convolutional neural

network. IEEE Access 2020, 8, 150248–150261. [CrossRef]
19. Liang, P.; Wang, W.; Yuan, X.; Liu, S.; Zhang, L.; Cheng, Y. Intelligent fault diagnosis of rolling bearing based on wavelet transform

and improved ResNet under noisy labels and environment. Eng. Appl. Artif. Intell. 2022, 115, 105269. [CrossRef]

http://doi.org/10.1016/j.csefa.2012.11.003
http://dx.doi.org/10.1016/j.isatra.2020.08.010
http://dx.doi.org/10.1109/TR.2018.2882682
https://github.com/Hahn-Schickard/AUTOflow
http://dx.doi.org/10.1016/j.ymssp.2017.03.034
http://dx.doi.org/10.1109/ACCESS.2019.2909756
http://dx.doi.org/10.1109/TIM.2017.2669947
http://dx.doi.org/10.1109/ACCESS.2019.2926234
http://dx.doi.org/10.3390/s20205734
http://dx.doi.org/10.1155/2017/3084197
http://dx.doi.org/10.1109/TIE.2017.2774777
http://dx.doi.org/10.1007/s40430-020-02711-w
http://dx.doi.org/10.1177/0036850420951394
http://dx.doi.org/10.1177/13506501221082746
http://dx.doi.org/10.1109/ACCESS.2019.2907131
http://dx.doi.org/10.1109/ACCESS.2020.3016888
http://dx.doi.org/10.1016/j.engappai.2022.105269

Electronics 2023, 12, 639 21 of 21

20. Peng, X.; Wang, Z.; Li, B.; Qian, L.; Jiao, B. Rolling Bearing Fault Diagnosis Based on PCA-ResNet. J. Phys. Conf. Ser. 2022, 2218,
012082. [CrossRef]

21. Wang, C.; Xie, Y.; Zhang, D. Deep learning for bearing fault diagnosis under different working loads and non-fault location point.
J. Low Freq. Noise Vib. Act. Control 2021, 40, 588–600. [CrossRef]

22. Hao, X.; Zheng, Y.; Lu, L.; Pan, H. Research on Intelligent Fault Diagnosis of Rolling Bearing Based on Improved Deep Residual
Network. Appl. Sci. 2021, 11, 10889. [CrossRef]

23. Li, S.; Xie, G.; Ji, W.; Hei, X.; Chen, W. Fault Diagnosis of Rolling Bearing Based on Improved LeNet-5 CNN. In Proceedings of the
9th Data Driven Control and Learning Systems Conference (DDCLS), Liuzhou, China, 20–22 November 2020; pp. 117–122.

24. Wan, L.; Chen, Y.; Li, H.; Li, C. Rolling-element bearing fault diagnosis using improved LeNet-5 network. Sensors 2020, 20, 1693.
[CrossRef]

25. Liu, N.; Ma, X.; Xu, Z.; Wang, Y.; Tang, J.; Ye, J. Autocompress: An automatic dnn structured pruning framework for ultra-high
compression rates. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020;
Volume 34, pp. 4876–4883. [CrossRef]

26. Tang, Z.; Luo, L.; Xie, B.; Zhu, Y.; Zhao, R.; Bi, L.; Lu, C. Automatic Sparse Connectivity Learning for Neural Networks. IEEE
Trans. Neural Netw. Learn. Syst. 2022, 1–15. . [CrossRef]

27. Li, Y.; Zhao, P.; Yuan, G.; Lin, X.; Wang, Y.; Chen, X. Pruning-as-Search: Efficient Neural Architecture Search via Channel Pruning
and Structural Reparameterization. arXiv 2022, arXiv:2206.01198.

28. Liu, Z.; Cheng, K.T.; Huang, D.; Xing, E.P.; Shen, Z. Nonuniform-to-Uniform Quantization: Towards Accurate Quantization
via Generalized Straight-Through Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 4942–4952.

29. Park, E.; Yoo, S.; Vajda, P. Value-aware quantization for training and inference of neural networks. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 580–595.

30. Onus, U.; Uziel, S.; Hutschenreuther, T.; Krug, S. Trade-off between Spectral Feature Extractors for Machine Health Prognostics
on Microcontrollers. In Proceedings of the 2022 IEEE 9th International Conference on Computational Intelligence and Virtual
Environments for Measurement Systems and Applications (CIVEMSA), Chemnitz, Germany, 15–17 June 2022; pp. 1–6.

31. Burrello, A.; Garofalo, A.; Bruschi, N.; Tagliavini, G.; Rossi, D.; Conti, F. Dory: Automatic end-to-end deployment of real-world
dnns on low-cost iot mcus. IEEE Trans. Comput. 2021, 70, 1253–1268. [CrossRef]

32. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

33. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

34. David, R.; Duke, J.; Jain, A.; Janapa Reddi, V.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Wang, T.; et al. Tensorflow lite
micro: Embedded machine learning for tinyml systems. Proc. Mach. Learn. Syst. 2021, 3, 800–811.

35. Microelectronics, S. X-CUBE-AI—AI Expansion Pack for STM32CubeMX. 2017. Available online: https://www.st.com/en/
embedded-software/x-cube-ai.html (accessed on 20 December 2022).

36. Patil, A.B.; Gaikwad, J.A.; Kulkarni, J.V. Bearing fault diagnosis using discrete Wavelet Transform and Artificial Neural Network.
In Proceedings of the 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology
(iCATccT), Bengaluru, India, 21–23 July 2016; pp. 399–405. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1088/1742-6596/2218/1/012082
http://dx.doi.org/10.1177/1461348419889511
http://dx.doi.org/10.3390/app112210889
http://dx.doi.org/10.3390/s20061693
http://dx.doi.org/10.1609/aaai.v34i04.5924
http://dx.doi.org/10.1109/TNNLS.2022.3141665
http://dx.doi.org/10.1109/TC.2021.3066883
http://dx.doi.org/10.1145/3065386
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/embedded-software/x-cube-ai.html
http://dx.doi.org/10.1109/ICATCCT.2016.7912031

	Introduction
	Literature Review
	Materials and Methods
	Dataset
	Time Domain Signals
	2D Time Signals
	Spectral Signals
	Time-Frequency Signal

	Fundamentals of Benchmark DNN Models
	Theory Behind FC Layers and Convolutional Layers
	DNN Model Description

	Model Pruning
	Pruning FC Layers
	Pruning Convolutional Layers

	Model and Training Setup

	Results
	Discussion
	Conclusions
	References

