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Abstract: This paper presents a robust control framework with meta-heuristic intelligence to optimize
the energy performance of air handling units (AHUs) and to maximize the thermal comfort of
occupants by judiciously selecting the temperature set points of two controllers (i.e., the H∞ controller
and the boiler controller). The selection of these set points is formulated as a multi-objective optimization
problem, where the goal is to balance energy consumption with thermal comfort. Furthermore, the
uncertainty weights of the H∞ controller are estimated to minimize oscillations in the outflow air
temperature of the AHU plant. The performance of the proposed framework is investigated by
considering the real-time weather data of Auckland, New Zealand. The results of the simulation
show that the proposed robust control framework could significantly reduce oscillations in the
outflow air temperature compared with the conventional case, where the temperature set points are
selected empirically. Moreover, annual energy savings of 49.13% are achieved without compromising
the thermal comfort.

Keywords: air handling units; energy consumption; multi-objective optimization; occupant comfort;
set points

1. Introduction

The demand for energy consumption has been increasing at an alarming rate with the
increase in world population. To meet this increasing energy demand, a large dependence
of the world over the past decade or so has been non-renewable energy resources. This
trend is more likely to remain the same in the foreseeable future, even though heavy
investments are currently being made in the renewable energy sector. The complication is
that the availability of non-renewable resources is scarce. The rate at which they are being
consumed presently will make them insufficient for the increasing energy demand in the
future. Moreover, their increasing use is also posing a detrimental impact on the Earth’s
environment, which includes climate change (global warming), rising sea levels and so
on. To become independent from the use of non-renewable resources seems to be feasible.
However, this will not be dynamic, as it would take several decades to free ourselves from
the use of non-renewable energy resources and completely switch to renewable energy
resources [1]. Meanwhile, efficient utilization of the available energy resources can be
regarded as a highly capable substitute to address the aforementioned problems, as this
will prompt a reduced rate of non-renewable resource consumption [2]. The latest statistical
data released by U.S Energy Information Administration (EIA) indicates that over 40% of
the energy produced from the world’s resources is consumed by the buildings sector alone,
with residential and commercial buildings included, and more than one-third of this energy
consumed is utilized for space heating and cooling [3,4]. These statistics give a strong
implication that minimizing the energy usage of heating, ventilation and air conditioning
(HVAC) systems can be a principal element in realizing the curtailment of world’s energy
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consumption and, consequently, global climate change. A need for optimizing the operation
of HVAC systems is thus certain in order to minimize their overall uptime and energy
consumption in buildings, but this should be realized such that the thermal comfort of the
occupants is minimally affected. Maintenance of a comfortable environment for occupants
is critically acknowledged as one of the important goals in smart and energy-efficient
buildings [5,6]. Some of the factors which are fundamental in realizing the occupants’
overall comfort in a building environment include thermal comfort, air quality and visual
comfort [7]. Realization of improvement in any of these comfort factors results in higher
building energy consumption. One of the principal issues in building energy management
systems (BEMS) is therefore to create a balance between two objectives: occupants’ thermal
comfort and energy consumption.

In the past few decades, several useful energy management systems (EMS) have
been proposed for optimized energy performance and thermal comfort management in
buildings [7] using various control methods such as model predictive control (MPC) [8] and
robust control [9]. In order to guarantee thermal comfort to the occupants, it is necessary to
ensure minimal oscillations in the heating, ventilation and air conditioning (HVAC) plant
output so that the desired set point values can be realized within stipulated time steps [10].
To this end, controllers based on modern control methods, such as H∞, have been used in
the past in HVAC control applications [11–13]. For instance, in [11], Underwood designed
an H∞-based robust controller for an HVAC plant by considering the nominal linear model,
wherein the focus is on minimization of the oscillations in the outflow air temperature of the
plant. Although the controller proposed in [11] performs well under design load conditions,
it manifests oscillatory behavior in half and quarter load conditions. Such performance is
often undesirable from both the thermal comfort and energy consumption points of view.

The controllers discussed above are essentially based on the concept of classical
feedback control. It has been acknowledged that in order to have an effective thermal
control system (strategy) in buildings, it should account for both of the above objectives
(i.e., thermal comfort and energy consumption) simultaneously under all operating con-
ditions [14,15]. To address this issue, many researchers in the area of smart BEMS have
formulated the problem from a multi-objective optimization (MOO) perspective [16–20]
where, in general, the concept of classical feedback control is integrated with heuristics. For
instance, Jindal et al. [19] proposed an energy management scheme for controlling the
HVAC systems in the classrooms of a university building, wherein a heuristic algorithm
was proposed to optimally schedule the usage of HVAC. The results of the work indicated
a 19.75% reduction in the energy demand by HVAC systems for an entire week without
affecting the thermal comfort of the occupants. However, the nonlinear nature of the HVAC
system was not taken into account. In [10], the problem of maximizing the energy efficiency
of HVAC systems was formulated as a nonlinear optimization problem and solved using
the particle swarm optimization (PSO) technique. Wang et al. [20] proposed a multi-agent
framework with heuristic intelligence for optimizing the overall occupant comfort and
energy consumption in buildings. However, the influence of varying weather conditions,
which are often responsible for causing heavy oscillations in an HVAC system’s output, was
not considered. Some other recent research where multi-objective techniques have been
utilized with a focus on HVAC systems in particular can be found in [21–25]. For instance,
in [22], a convex programming (CP)-based DR optimization framework is presented for the
load management of various household appliances through BEMS in a smart home. This
work primarily targets the objectives which focus on optimizing the energy performance
of HVAC systems. A multi-objective mixed-integer linear programming (MOMILP)-based
framework was proposed in [24] to minimize building energy consumption. Furthermore,
Li et al. [25] formulated an MOO problem for minimizing the operational costs of the utility,
along with maximizing DR aggregators’ and users’ benefits. All the research mentioned
and discussed above address very significant aspects of energy and comfort management
in buildings. However, relatively less evidence could be found in the literature, where
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the nonlinear nature of the HVAC system model is considered along with focus on the
balancing of energy consumption and comfort.

In the present study, a novel robust control framework is proposed which focuses on
optimization of the energy performance of an air handling unit (AHU) while maintaining
better occupant thermal comfort. This is achieved by effectively controlling the outflow
air temperature of the AHU via two different controllers: an H∞ controller and a boiler
controller. The performance of these controllers is critically determined by the set points
(reference signals). Therefore, in the proposed framework, the selection of these set points
to the controllers is formulated as a multi-objective optimization problem, wherein the
goal is to balance the energy consumption of the AHU with the thermal comfort. In the
optimization process, the optimal set points to these controllers are computed (in accordance
with the occupant’s specified comfort parameters) using a well-known meta-heuristic: NSGA-
II [26–28]. Some highlights of the proposed framework and main contributions of this
paper are summarized as follows:

1 A key aspect of our framework is that the multi-objective optimization is performed
online, (i.e., the optimal set points are computed while considering the time-varying
weather data of Auckland, New Zealand in real time during the simulations).

2 To reduce the computation time per time step and to expedite the online optimization
process, an approximation scheme is developed to estimate the water mass flow rate
(an important variable in one of the objective functions). This reduces the complexity
of the proposed framework as well.

3 A nonlinear thermal model of a typical AHU plant [29,30] is used as a benchmark to
validate the performance of the proposed framework.

4 During the optimization process, an a posteriori approach is used to select the knee
point solution from the pool of evaluated non-dominated optimal solutions. This
ensures a proper balance between minimization of energy consumption and maintenance
of thermal comfort.

5 The uncertainty weights of the H∞ controller are estimated to reduce oscillations in
the outflow air temperature of the AHU plant.

The remainder of this paper is organized as follows. Section 2 provides a brief de-
scription of the AHU plant model considered in this study. Section 3 explains the problem
formulation. The structure of the control system is discussed in Section 4, followed by the
simulation results and conclusions in Sections 5 and 6, respectively.

2. Dynamic Model of the AHU Plant

The dynamics of the AHU plant (see Figure 1) derived from the first principles and
considered in this study are given by [29].

Figure 1. Schematic of the heating coil unit (HCU) of the AHU.
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Cw θ̇wo = µwcw(θwi − θwo)−Qw

Cm θ̇m = Qw −Qa

where, Qw = Uw Aw(θwo − θm)

Qa = Ua Aa(θm − θao)

(1)

where Cw and Cm denote the thermal capacities of water and the heat exchanger material,
respectively, θwo, θwi, θm and θao are the outflow water, inflow water, heat exchanger
material and outflow air temperatures, respectively, Qw and Qa represent the heat transfer
rates of water and air, respectively, Uw and Ua denote the thermal transmission coefficients
of water and air, respectively, µw represents the water mass flow rate and cw is a constant
(4.194 kJ·kg−1·K−1) denoting the specific heat capacity of water.

Assuming an instantaneous heat transfer between the air and the heating coil, we have

Qa = µaca(θao − θai) (2)

where µa denotes the air mass flow rate, ca is a constant (1.002 kJ·kg−1·K−1) denoting the
specific heat capacity of air and θai represents the inflow air temperature.

From the expression of Qa given in Equations (1) and (2), we have

θao =
µacaθai + Ua Aaθm

µaca + Ua Aa
(3)

The thermal transfer coefficient on the water side of the coil for the turbulent-forced
convection (heavy thermal load) Uw is given by

Uw =(5.823 + 1.153× 10−1θwo − 1.48× 10−4θ2
wo)

×
[

µw

ntbd2.25
i

]0.8 (4)

and for the laminar forced convection (light thermal load), we have

Uw =
4.36
di
× (0.5702 + 1.79× 10−3θ̄m

− 6.7714× 10−6θ̄2
wm) (5)

where θ̄wm =
θwo + θm

2

Equations (4) and (5) represent a sharp edge, but the transition between the turbulent
and laminar flow of liquid is gradual. For this purpose, the transition between the two has
been relaxed as follows:

Uw = max
(
Uw|Re≥2300, Uw|Re<2300

)
(6)

The thermal transfer coefficient on the air side of the coil Ua is given by

Ua = 60.37 + 140.3× exp
(

28.62− θm

9.796

)
(7)

Furthermore, assuming that the hysteresis due to the actuator linkage mechanism is
negligible within the control valve, the mass flow rate of the water flowing through the coil
can be represented as follows:

τaµ̇w = Ψµwd − µw (8)

where
Ψ = γ× [γ2(1−N ) +N ]−

1
2 (9)
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Since equal percentage characteristics are assumed for the control valve, we have

γ = f (1−u1)
o (10)

A first-order representation is also assumed for the temperature sensor:

τsΦ̇ = θao −Φ (11)

3. Problem Formulation

The present study proposes a meta-heuristic based framework for robust control
of the outflow air temperature θao of a typical AHU plant (see Figure 1). Herein, the
prime goal is to achieve two objectives simultaneously: (1) minimization of AHU plant
energy consumption by reducing the thermal load on the AHU and (b) maximization of
thermal comfort by reducing the oscillations in the AHU plant output θao. To this end,
two different controllers, an H∞ controller and a boiler controller, are used to control the
outflow air temperature of the AHU plant (discussed in Section 4). The performance of
these controllers is critically determined by the reference signals (set points) θ

re f
ao and θ

re f
wi .

Therefore, the goal in this work is to determine the optimal values of these reference signals
using a suitable multi-objective optimization technique such that the above two conflicting
objectives are balanced.

Let us consider the pth solution set Θp:

Θp =
[
θ

p
1 , θ

p
2

]
(12)

where θ1 and θ2 are being used to represent θ
re f
ao and θ

re f
wi , respectively, for the sake of

simplicity. The superscript p represents the pth candidate solution set (particle) from
the optimization technique (PSO) used in this paper. Hence, θ

p
1 denotes the candidate

outflow air temperature set point, and θ
p
2 denotes the candidate inflow water temperature

set point. These form the decision variables in the optimization process. The goal of the
optimization task is to evaluate the optimal solution set (i.e., Θ∗(= [θ∗ao, θ∗wi] or [θ∗1 , θ∗2 ]))
as shown below:

Θ? = arg min
∀Θp∈Θdom

J1(Θp)

J2(Θp)
(13)

where Θdom = [Θmin, Θmax] represents the search domain of the decision variables to be
specified by the decision maker (occupant). The objective functions J1(·) and J2(·) are
mathematically expressed as follows:

I. Energy function:

J1(Θp) = 1− δ

1−
(

θ
p
1 − θai

θ
p
1

)2
 (14)

where δ is an occupant-specified parameter (to be called the energy index) which
determines the amount of thermal load on the AHU plant. It is worth emphasizing
here that the energy consumption of the AHU plant is determined by the thermal
load, which is influenced by the difference between the outside temperature θai and
the set-point (i.e., θ

p
1 ). Thus, the smaller this temperature difference, the smaller the

thermal load on the AHU plant is.
II. Discomfort function:

J2(Θp) =

∣∣∣∣∣ θao − θ
p
1

θ
p
1

∣∣∣∣∣ where, (15)
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θao =
µwcw

µaca
(θ

p
2 − θ

p
1 ) + θai

The corresponding comfort level is calculated as follows:

Com f ort = 1− J2(Θp) (16)

For the above expression of θao, refer to Section 3.1. Note that the occupants’ thermal
discomfort is determined by the difference between the outflow air temperature θao
and the set point θ

p
1 . As this temperature difference decreases, the discomfort level of

the occupants decreases (i.e., the comfort level increases).

For the pth candidate’s solution, at the kth time step (i.e., Θp
k ), the objective functions

J1(·) and J2(·) are evaluated as per Algorithm 1. It should be noted that for better func-
tionality of the method, both objectives J1(·) and J2(·) are normalized (see Algorithm 1
(Line 11)).

Algorithm 1: Evaluation of objective functions at the kth time step.

Input :Search Agent, Θp
k = {θp

1 (k), θ
p
2 (k)}; Outside Weather Profile,W ; Energy Index, δ,

AHU Plant Output, θao(k− 1)
Output :Objective values: J1(·) and J2(·)

*/ Outside Sensor (temperature) data

1 Collect the outside temperature value, i.e., θai(k)←W , k = 1, 2, . . . , N

*/ Evaluate the Objective Functions

*/ Intuitive energy consumption level

2 J1(Θ
p
k )← 1− δ

1−
(

θ
p
1 (k)− θai(k)

θ
p
1 (k)

)2


*/ Approximate Mass-flow Rate, µw(k)

3 Calculate error (see Figure 2); e(k)← θ
p
1 (k)− θao(k− 1)

*/ Compute Robust Controller Output, u1(t)

4 for t = t0 to t f inal do

5 u1(t)← f (K(s), e(k), t)

6 end

7 γ← f
1−u1(t f inal)
o

8 µw(k) ≈ µwd × γ× [γ2(1−N ) +N ]−
1
2

*/ Approximate θao(k)

9 θao(k) ≈
µw(k)cw

µaca
(θ

p
2 (k)− θ

p
1 (k)) + θai(k)

*/ Occupant discomfort level, J2(·)

10 J2(Θ
p
k )←

∣∣∣∣∣ θao(k)− θ
p
1 (k)

θ
p
1 (k)

∣∣∣∣∣
*/ Normalize J1(·) and J2(·) between [0, 1]

11 J1(·)←
J1(·)−J1,min
J1,max−J1,min

; J2(·)← J2(·)−J2,min
J2,max−J2,min



Electronics 2023, 12, 661 7 of 18

Figure 2. Approximation approach to evaluating Equation (22).

3.1. Approximation Approach to Evaluate θao

Since AHU plants are characterized by slower dynamics, it can be assumed at a given
instant that

θ̇wo ≈ 0; θ̇m ≈ 0 (17)

Based on this assumption, from Equation (1), we have

Qw = µwcw(θwi − θwo) and Qw ≈ Qa (18)

Furthermore, from Equations (2) and (18), we have

µaca(θao − θai) ≈ µwcw(θwi − θwo)
µwcw

µaca
(θwi − θwo) ≈ θao − θai

θao ≈
µwcw

µaca
(θwi − θwo) + θai

(19)

Under ideal conditions, it can be assumed that

θao ≈ θwo ≈ θ
re f
ao and θwi ≈ θm ≈ θ

re f
wi (20)

Using Equation (20) in Equation (19), θao can thus be represented as follows:

θao ≈
µwcw

µaca
(θ

re f
wi − θ

re f
ao ) + θai (21)

For the pth solution set (i.e., Θp(= [θ
p
1 , θ

p
2 ])), we have

θao ≈
µwcw

µaca
(θ

p
2 − θ

p
1 ) + θai (22)

where cw = 4.194 kJ·kg−1·K−1, ca = 1.002 kJ·kg−1·K−1 and µa = 0.3144 kg·s−1 are all constants.
It is worth mentioning here that the ideal goal of the optimization task is to minimize

J1(·) and J2(·). However, these objectives are conflicting and cannot be minimized simul-
taneously in practice. Therefore, the goal is to search for the best possible solution which
balances (satisfies) both objectives J1(·) (energy function) and J2(·) (discomfort function).

To this end, the framework comprises the following two processes.

3.2. Search Process

The principal step in the optimization process is to formulate an effective search strat-
egy to find the optimal solution set, which in this case is Θ∗ (see Equation (13)). In this study,
a multi-objective evolutionary algorithm (MOEA) called Non-Dominated Sorting Genetic
Algorithm II (NSGA-II) is used for this purpose because of its popularity and efficiency
in solving multi-objective optimization problems. NSGA-II is a seminal dominance-based
MOEA which utilizes dominance-based relations for ranking and segregating the entire
population of solutions into successive fronts using a well-known non-dominated sorting
operation. Implementation and other details pertaining to NSGA-II are out of the scope of
this paper and can be found elsewhere [31,32]. Although there are several multi-objective
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evolutionary algorithms (MOEAs) which are suitable for the task, such as Multi-Objective
Particle Swarm Optimization (MOPSO), the Pareto Archived Evolution Strategy (PAES) and
the Strength Pareto Evolutionary Algorithm (SPEA), this study considered the use of Non-
Dominated Sorting Genetic Algorithm -II (NSGA-II). The rationale behind utilizing NSGA-II
in this work is that it has been proven to perform well for solving multi-objective optimization
problems (MOOPs) [33]. Further, NSGA-II is also known to be computationally better than
its previous version (i.e., NSGA), apart from being able to give comparable performance to
that of its two contemporary MOEAs (i.e., PAES and SPEA) [32,34].

In the framework, each search agent in NSGA-II represents a candidate solution set
Θp, the performance of which is evaluated as per the steps outlined in Algorithm 1. Note
that the optimization process is performed online, and therefore for the pth candidate
solution at the kth time step (i.e., Θp

k ), the objective functions J1(·) and J2(·) are evaluated:

J1(Θ
p
k ) = 1− δ

1−
(

θ
p
1 (k)− θai(k)

θ
p
1 (k)

)2
 (23)

J2(Θ
p
k ) =

∣∣∣∣∣ θao(k)− θ
p
1 (k)

θ
p
1 (k)

∣∣∣∣∣ (24)

Due to the stochastic nature of NSGA-II, the best solution sets Θ∗r evaluated over
multiple independent algorithm runs (denoted by R), are considered at every single time
step k (see Algorithm 2 (Lines 2–5)).

Algorithm 2: Meta-heuristic solution set selection.
Input :Search Domain, Θdom
Output :Optimized Solution-set, Θ∗ = [θ∗1 , θ∗2 ]

*/ Time-steps

1 for k = 1 to N do

*/ ‘R’ independent runs of NSGA-II

2 Π← ∅, Γ← ∅

3 for r = 1 to R do

*/ Store the approximate Pareto solutions

4 Π← {Π ∪Θ∗r }, Γ←
{

Γ ∪
[

J1(Θ∗r ), J2(Θ∗r )
]}

5 end

*/ Keep only the non-dominated solutions

6 Γ∗ ≺ Γ, Π∗ ≺ Π

*/ A posteriori selection

7 Select the knee-point solution set, Θ∗k ∈ Π∗, using MMD approach [26]

8 θ∗1 (k)→ H∞ controller reference & θ∗2 (k)→ boiler controller reference; at kth
time-step.

9 end

3.3. Best Solution Selection Process

After all the runs are complete, the non-dominated solutions over R-runs are treated
as the Approximate Pareto Front (APF) (i.e., Π∗). Subsequently, the optimal set points θ∗1 (k)
and θ∗2 (k) are selected from the APF by following the steps outlined in Lines 6 and 7 of
Algorithm 2. Since the premise of this work is based on creating a balance between the
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above two objectives, an a posteriori selection approach called the minimum Manhattan
distance (MMD) was adopted to select a knee point solution from the APF [26–28]. To
this end, the Manhattan distance D(·) was determined between the hypothetical ideal
point zideal

o and each non-dominated solution in the APF Π∗. Following this, the solution
corresponding to the minimum distance D(·) was selected:

Θ∗ =
{

Θj | D(Θj) = arg min D(Θj), ∀Θj ∈ Π∗
}

(25)

where Θj ∈ Π∗ denotes the jth non-dominated solution in the APF Π∗. Finally, the
identified knee point solutions (i.e., Θ∗ = {θ∗1 (k), θ∗2 (k)}) are sent to the H∞ and the boiler
controllers, respectively.

4. Structure of the Control System

The structure of the control system is shown in Figure 3. In particular, the two
controllable inputs u1 and u2 of the AHU plant are controlled via the H∞ controller K(s)
and the boiler controller, respectively. Moreover, to achieve the objectives described in
Section 3, the system consists of an optimizer which has two parts: Part I and Part II.
The purpose of Part I is to utilize the outside environmental information (i.e., the dry-
bulb temperature θai) collected by outside sensor and the occupant-specified comfort
parameters to determine the optimal (best) temperature set point θ∗ao at each time step. This
optimized set point is received by the H∞ controller, which controls the water mass flow
rate µw flowing through the AHU coil by controlling the fractional valve-stem position F
for temperature control. Part II of the optimizer focuses on controlling the inflow water
temperature θwi of the AHU plant. Note that the dead time (delay) between the inflow
water temperature θwi delivered by the boiler control system and the set point θ∗wi evaluated
by our algorithm was assumed to be negligible (i.e., at a given time instant, θwi ≈ θ∗wi).

Figure 3. Structure of control system.

The design of the H∞ controller followed similar procedure to that given in [11], and
it is therefore discussed briefly here for the sake of completeness.

Initially, the outflow air temperature θao of the AHU plant is generated via simulations
from its nonlinear model (described in Section 2). The values of the parameters of the
model used in the simulation can be found in [29]. A first-order lag plus delay linear
time-invariant (LTI) model is fitted to this data:

G(s) = gpt ×
exp(−∆pts)
(τpts + 1)

(26)

The uncertainty bounds of various terms of the model in Equation (26) are determined
by curve fitting and are given as [g−pt, g+pt] = [8.9 K, 48.4 K], [∆−pt, ∆+

pt] = [23.3 s, 41.3 s] and
[τ−pt , τ+

pt ] = [47.9 s, 61.5 s]. Note that these bounds reflect the structural uncertainties of the
model which are considered during the design of the H∞ controller.
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The uncertainty in the gain (gpt) and time delay (∆pt) parameters are used to derive
the uncertainty weights, which consist of an integrator for performance (W1) and first-
order lead lag for the model uncertainty (W3), resulting in a fifth-order augmented plant
description. Note that the controller weight (W2) has been neglected in this design, the
reason for which is explained well in [11]. The resulting augmented plant model is used
to develop a robust controller (K) which minimizes the H∞ norm of the closed-loop plant
(based on the solution of 2-Riccati algebraic equations), which is given as follows:

min
K

∥∥∥∥∥∥∥
W1S

W2KS
W3T

∥∥∥∥∥∥∥
∞

(27)

where S and T denote the normalized and complementary sensitivity functions, respectively.
The transfer function of the stabilizing H∞ controller is given as

K(s) =
2.69s4 + 3.51s3 + 0.87s2 + 0.054s + 0.008

s5 + 4.48s4 + 8.04s3 + 5.27s2 + 0.712s
(28)

Note that in this work, the set point θ∗1 (i.e., θ∗ao) varied after every 600 s as per the
outside temperature (discussed in Section 5) θai. Thus, the purpose of the H∞-based
controller was to maintain stability and performance of the AHU in all operating conditions
by regarding the varying optimal set point θ∗1 (i.e., θ∗ao) as a disturbance.

5. Simulation Results and Discussion

The efficacy of the proposed framework in balancing the two conflicting objectives
was investigated via simulations in a MATLAB®/Simulink® environment, considering the
real-time weather profile of Auckland City. This was obtained from the meteorological data
provided by the National Institute of Water and Atmospheric Research Limited (NIWA) in
New Zealand [35].

5.1. Simulation Set-Up

The optimization was carried out online, where the objective functions J1(·) and J2(·),
corresponding to the pth candidate solution set at the kth time step (i.e., Θp

k ), were evaluated
as per Equations (23) and (24), respectively. Note that the value of the energy index δ was
in the range of [0, 1]. In this work, δ is assumed to be one (i.e., minimizing the thermal load
is assigned the highest priority).

The search domain Θdom used in this study is shown in Table 1. This was in compliance
with the operative room temperatures recommended by the ASHRAE standard [36] (i.e.,
20–23 °C during winter and 23–25 °C during summer). It is worth noting that the thermal
comfort range (i.e., [θmin

1 , θmax
1 ]) and the energy index δ were occupant (decision maker)-

specified parameters and were key in evaluating the optimal (knee point) solutions θ∗1 (i.e.,
θ∗ao) and θ∗2 (i.e., θ∗wi).

The optimization was performed using the NSGA-II algorithm (see Section 3.2). To
accommodate the stochastic nature of the NSGA-II algorithm, a total of 10 independent
runs were carried out at each time step. Furthermore, single-point crossover was used as
the recombination mechanism with the following crossover and mutation probabilities:
{pc, pm} = {0.7, 0.05}. Each run of NSGA-II was terminated after 5000 function evaluations
(FEs), and the population size ps was fixed at 50.

Table 1. Search domain of decision variables.

Decision Variable
Search Domain (Θdom)

Min Max

θ1 (°C) 19 25
θ2 (°C) 10 40
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5.2. Performance Evaluation of the H∞ Controller without the Optimizer

Initially, the H∞ controller (described in Section 4) was designed to control the outflow
air temperature θao by varying u1 (see Figure 4). Without loss of generality, the investigation
was carried out while considering both a notional periodic square waveform and a step
signal as the reference (i.e., θ

re f
ao ) to the H∞ controller. Note that the AHU plant dynamics

here were simulated for a duration of 4000 s (using square wave input) and 1000 s (using
step input), respectively, at a sampling interval of 1 ms. Furthermore, the reference of the
boiler controller θ

re f
wi was chosen to be 28 °C. The output of the AHU plant (θao) and the

corresponding comfort level for these reference inputs are shown in Figures 5 and 6 for
three specific thermal load conditions. It was observed that the output of the AHU exhibited
highly oscillatory behavior, particularly under part-load conditions, which resulted in a
decreasing comfort level. Consequently, the power consumed by the AHU plant over
a given duration also showed high oscillatory behavior with significant overshoots (see
Figures 7 and 8). Note that these observations are inline and consistent with the earlier
investigations in [29], wherein similar oscillatory behavior was also observed under part-
load conditions. Thus, the reference signals to the H∞ controller and the boiler controller
shall be judiciously selected to achieve better comfort with less energy consumption.

Figure 4. Illustration of conventional control of θao.

(a) Design load (−3 °C) (b) Half load (8.5 °C) (c) Quarter load (14.25 °C)

Figure 5. AHU plant response with H∞ controller at three different thermal load conditions (square
wave input).

(a) Design load (−3 °C) (b) Half load (8.5 °C) (c) Quarter load (14.25 °C)

Figure 6. AHU plant response with H∞ controller at three different thermal load conditions
(step input).
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(a) Design load (−3 °C) (b) Half load (8.5 °C) (c) Quarter load (14.25 °C)

Figure 7. AHU system power consumption with H∞ controller at three different thermal load
conditions (square wave input).

(a) Design load (−3 °C) (b) Half load (8.5 °C) (c) Quarter load (14.25 °C)

Figure 8. AHU system power consumption with H∞ controller at three different thermal load
conditions (step input).

5.3. Performance Evaluation of the H∞ Controller with the Optimizer

Following the simulation set-up described in Section 5.1 and the procedures ex-
plained in Section 3, the final output from the optimizer (i.e., the knee point solution(s)
Θ∗(= [θ∗ao, θ∗wi])), were used as reference signals for the controllers, which controlled the
fractional valve-stem position u1, and the inflow water temperature u2 of the AHU plant
(see Figure 3). To supplement the understanding of this, Figures 9 and 10 show the Pareto
optimal fronts and the corresponding knee point solutions determined by our algorithm at
four different outside temperatures θai.

It is worth mentioning that the AHU plant dynamics here were simulated while
considering the Auckland weather profile data for the entire year (i.e., for a duration of
8640 h and with a sampling interval of 1 ms). Further, given that the slower dynamics tend
to dominate the plant performance in HVAC system control, the set points were optimized
at an interval of 10 min (i.e., the optimizer was operating at a step size of 600 s). For brevity
purposes, we presented the performance of the H∞ controller with the proposed optimizer
during a typical warm and a cool day in Figures 11 and 12, respectively. Figure 11a shows
the variation of optimized set points θ∗ao and θ∗wi, evaluated by the optimizer in accordance
with the inflow air temperature θai (i.e., outside air temperature). It is worth noting that
there was a huge fluctuation in the optimized inflow water temperature set point θ∗wi over
time, particularly between 12:00 a.m. and 8:00 a.m. The reason for this was based on the
working mechanism of the AHU plant (see Figure 1). In particular, the main variables
which controlled the outflow air temperature θao were the fractional valve-stem position u1
and the inflow water temperature θwi. During the time between 12:00 a.m. and 8:00 a.m.,
the outside temperature θai was recorded to be the minimum, and as a result, the optimizer
pushed the value of the optimized set point θ∗wi higher to keep the value of θao within the
defined comfort range [19 °C, 25 °C] as per our proposed framework (see Table 1). Similar
behavior can be observed in the trend of θ∗wi in Figure 12a, which was simulated for a day
during the winter season. It can be observed that the H∞ controller with the optimizer (see
Figure 3) was able to minimize the energy consumption compared with the H∞ controller
without the optimizer (see Figure 4). Furthermore, this controller with the optimizer could
maintain the occupant comfort at a higher level.
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(a) At θai = 16 °C (b) At θai = 26 °C

Figure 9. Pareto optimal fronts generated at minimum (16 °C) and maximum (26 °C) outside
temperatures θai recorded during summer.

(a) At θai = 8.1 °C (b) At θai = 11.8 °C

Figure 10. Pareto optimal fronts generated at minimum (8.1 °C) and maximum (11.8 °C) outside
temperatures θai recorded during winter.

(a) (b) (c)

Figure 11. System performance during typical warm day in Auckland (first day of January).
(a) Optimized set-points. (b) Comfort level comparison. (c) AHU system power consumption
for temperature control.

(a) (b) (c)

Figure 12. System performance during typical cool day in Auckland (first day of June).
(a) Optimized set points. (b) Comfort level comparison. (c) AHU system power consumption
for temperature control.
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Note that to determine and compare the overall energy performance, the AHU plant
dynamics were simulated with the conventional (see Figure 4) and proposed framework
(see Figure 3) individually, considering the weather profile data for the entire year (i.e.,
51,840 time steps). The corresponding AHU energy consumption EAHU was evaluated as
per Equation (18):

EAHU =
t

∑
q=1


 1

Nh

Nh

∑
k=1

Qw

× ∆t

 (29)

where t denotes the number of hours in a considered time duration, ∆t is the considered
time step interval, Nh designates the number of time steps per hour and Qw is the thermal
load (i.e., AHU power consumption) at the Nth

h time step.
Tables 2 and 3 summarize the overall energy performance and the corresponding

thermal comfort performance, respectively, provided by the AHU system. From the tables,
it can be observed that the proposed control strategy could achieve annual energy savings
of 49.13%, with significant improvements in the occupant thermal comfort levels.

Table 2. Overall energy performance of the AHU in kWh.

Time Duration (t)

Energy Consumption (kWh)
Energy
Saving
(kWh)

Without
Optimizer

(EAHU )

With
Optimizer

(E∗
AHU )

First Day
of January (24 h) 27.41 6.49 20.92

First Day
of June (24 h) 94.25 68.85 25.4

Entire Year
(8640 h) 24,272.24 12,345.10 11,927.14

Table 3. Number of time steps recorded with high comfort level values.

Time Duration (N)

Number of Time Steps with
Comfort Levels > 0.9 Increase in

Comfort Levels
(%)

Without
Optimizer

(Cn)

With
Optimizer

(C∗
n )

First Day
of January

(144 time steps)
89 136 52.80%

First Day
of June

(144 time steps)
26 91 250%

Entire Year
(51,840 time steps) 22,869 40,090 75.30%

5.4. Computational Time Incurred by the Proposed Algorithm

Since, the proposed algorithm delivered good performance in minimizing the energy
consumption and maximizing the thermal comfort, it is worthwhile to mention the compu-
tational aspect of the approach. One of the key contributions of the proposed framework in
the paper is the approximation scheme, which was given in Section 3.1, for evaluating the
approximate value of the outflow air temperature θao. This was developed in particular to
reduce the computation time per time step and to expedite the online optimization process.
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The approximate value of θao is given by Equation (22). This approximated value is used
in the objective function J2(·) of the framework (see Equation (24)). The advantage of this
is that instead of generating all the AHU plant dynamics at each time step, the proposed
framework uses Equation (22) to evaluate the approximate value of θao, corresponding to
the inflow air temperature θai. This approximation technique reduced the computation time
of the proposed algorithm at each time step to 0.1 s. If all the AHU plant dynamics were
to be simulated during each time step, then the computational time incurred by the pro-
posed algorithm would be 5 min (per time step). Therefore, the proposed multi-objective
framework based on this approximation provides a significant improvement from the
computational perspective.

5.5. Modeling Assumptions and Limitations of the Approach

The MOO framework which we developed in this study can be applied to a wide
range of AHU plant models. However, the results presented above are specific to the type
of AHU plant considered in this work. Thus, it makes it worthwhile to discuss some of the
assumptions involved in the plant modeling and limitations of the overall approach. The
AHU plant model utilized in this work was developed by adopting the lumped-capacity
approach, wherein each heat exchange zone is assumed to behave as a ‘continuous stirred
tank’ [29]. In other words, the heat exchange on the air side and the water side of the AHU
(see Figure 1) is assumed to be instantaneous. Furthermore, a first-order representation was
assumed for the control valve and actuator, which means the hysteresis due to the actuator
linkage mechanism was assumed to be negligible, as mentioned in Section 2. Likewise,
a first-order representation was assumed for the temperature sensor. The value of the
thermal capacity of water Cw was based on the static water mass of the coil multiplied by
the specific heat capacity of the water cw, which was assumed to be constant in the model.
Although the considered model was nonlinear and was experimentally verified in [29],
because of the above assumptions, it is a particularly ‘idealistic’ representation of the AHU
plant, and a more practical approach needs to be considered in future work. Moreover, the
thermal model only considers a single output viz. the outflow air temperature θao, and
other factors which contribute towards the thermal comfort, such as humidity, were not
considered as model outputs in the present work. Thus, future studies should consider
evaluating the performance of the proposed MOO framework on a more versatile thermal
model of the AHU plant.

6. Conclusions and Future Work

A robust control framework with meta-heuristic intelligence has been proposed,
wherein the focus is on optimizing the energy performance of air handling units (AHUs)
with minimal impact on thermal comfort. This is achieved by judiciously selecting the
temperature set points of two controllers (i.e., the H∞ controller and the boiler controller).
The selection of these set points is formulated as a multi-objective optimization problem
using a well-known meta-heuristic: Non-Dominated Sorting Genetic Algorithm-II (NSGA-
II). Moreover, the uncertainty weights of the H∞ controller are estimated to minimize the
oscillations in the outflow air temperature of the AHU plant. The results of the simulation
show the following:

• The two controllers (with optimal set points) could significantly reduce the oscillations
in the outflow air temperature compared with the conventional case, where the
temperature set points were selected empirically.

• Annual energy savings of 49.13% were achieved, with comfort levels maintained 75.3%
of the time.

• The proposed multi-objective framework is computationally effective.

Thus, the proposed framework successfully achieved a balance between AHU energy
consumption and thermal comfort.

For future work, as a benchmark for experimentally validating and applying the
proposed framework, a miniaturized form of the AHU plant can be set up in a laboratory.
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This would require the proposed framework to be written using suitable scripts on plat-
forms such as Python or C and executed on devices such as field programmable gate arrays
(FPGAs). A good starting point would be to structure the control system as per Figure 3 in
an experimental set-up. Furthermore, a suitable interface could also be devised between
the controller and the user for specifying the priorities of thermal comfort maximization
and energy consumption minimization.

It is worth mentioning here that the overall thermal comfort is influenced by both the
temperature and humidity. However, the performance of the proposed multi-objective
framework in this paper was studied on a thermal model of an AHU plant, which consisted
of a single output viz. the outflow air temperature. A more versatile thermal model of the
AHU plant can be developed in future work, where humidity control can be considered as
an additional aspect of the research.

Lastly, this work considered the usage of only NSGA-II as an optimization technique.
Future work will consider the implementation of other recently proposed techniques
in addition to classical optimization techniques such as MOPSO, PAES and SPEA for
comprehensive performance comparison and analysis.
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Abbreviations
The following abbreviations are used in this manuscript:

AHU Air handling unit
ASHRAE American Society of Heating Refrigerating and Air-Conditioning Engineers
BEMS Building energy management systems
HVAC Heating, ventilation and air conditioning
HCU Heating coil unit
MOOP Multi-objective optimization problem
NSGA Non-Dominated Sorting Genetic Algorithm
Nomenclature
Symbol
F Fractional valve-stem position
A Heating exchanger (coil) surface area
Q Heat transfer rate
n Integer number
g Gain
µ Mass-flow rate
Re Reynolds number
Φ Sensor output (feedback signal)
c Specific heat capacity
θ Temperature
C Thermal capacity
U Thermal transmission coefficient
τ Time constant
d Tube diameter
fo Valve let-by
N Valve authority
Ψ Valve installed characteristics
γ Valve inherent characteristics
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Subscripts and Superscripts
a Air
ai Inflow air
i Internal
ao Outflow air
pt Plant
wi Inflow water
wo Outflow water
m Heating exchanger (coil) material
s Sensor (detector)
tb Tube
w Water
wd Water-design condition
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