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Abstract: Since the outbreak of the Coronavirus Disease 2019 (COVID-19), the spread of the epidemic
has been a major international public health issue. Hence, various forecasting models have been
used to predict the infectious spread of the disease. In general, forecasting problems often involve
prediction accuracy decreasing as the horizon increases. Thus, to extend the forecasting horizon
without decreasing performance or prediction, this study developed a Dual Long Short-Term Memory
(LSTM) with Genetic Algorithms (DULSTMGA) model. The model employed predicted values
generated by LSTM models in short-forecasting horizons as inputs for the long-term prediction of
LSTM in a rolling manner. Genetic algorithms were applied to determine the parameters of LSTM
models, allowing long-term forecasting accuracy to increase as long as short-term forecasting was
accurate. In addition, the compartment model was utilized to simulate the state of COVID-19 and
generate numbers of infectious cases. Infectious cases in three countries were employed to examine
the feasibility and performance of the proposed DULSTMGA model. Numerical results indicated
that the DULSTMGA model could obtain satisfactory forecasting accuracy and was superior to
many previous studies in terms of the mean absolute percentage error. Therefore, the designed
DULSTMGA model is a feasible and promising alternative for forecasting the number of infectious
COVID-19 cases.

Keywords: COVID-19; forecasting; long short-term memory model; genetic algorithms

1. Introduction

Since the beginning of 2020, COVID-19 has spread rapidly and globally. Studies fore-
casting the spread of epidemics have attracted much more attention ever since. Infection
rates related to government policy, medical resources, vaccine coverage rates, and culture
have been provided by countries or regions. Modeling infectious disease cases is a mecha-
nism for investigating disease dissemination and is an effective way to develop strategies
for assessing and controlling epidemics [1]. The compartment model simplifying the math-
ematical modeling of the spread of an epidemic is a popular way of forecasting epidemics.
The Susceptible-Infected-Recovered (SIR) model [2,3] is an essential compartment model
commonly used in epidemiology.

The Long Short-Term Memory model [4,5], one of the deep learning techniques in
time series, has been broadly explored in forecasting COVID-19 infections. Verma et al. [6]
designed six recurrent and convolutional neural networks to forecast daily confirmed cases
of COVID-19 for 7, 14, and 21-day time windows. The study reported that the stacked LSTM
model and the hybrid LSTM model outperformed other models. Prasant et al. [7] proposed
a hybrid Grey Wolf Optimizer and LSTM model to predict daily new cases, cumulative
cases, and COVID-19 deaths. Using specific search terms related to COVID-19 and data
on its spread published by the European Centre for Disease Prevention and Control, the
study indicated that the hybrid LSTM model was superior to the other models in terms
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of forecasting accuracy. Darry et al. [8] investigated data on confirmed and recovered
COVID-19 cases in seven countries and used different deep learning models to conduct
the forecast. Numerical results revealed that the developed LSTM with convolutional
neural network models could generate more accurate forecasting results than other models.
Shastri et al. [5] developed three recurrent neural networks—stacked LSTM, bidirectional
LSTM, and convolutional LSTM—to predict confirmed and fatal cases of COVID-19 in
the coming month in India and the United States. The authors reported that, of the three
models, the convolutional LSTM was superior in terms of forecasting accuracy. Nabi
et al. [9] utilized four deep learning models to predict outbreak scenarios in Brazil, Russia,
and the United Kingdom. The study employed limited features and historical data while
forecasting. Numerical results reported that the convolutional neural network model
outperformed the LSTM model in terms of forecasting accuracy. Rguibi et al. [10] used
the autoregressive integrated moving average method and LSTM models to predict the
outbreak of COVID-19 in Morocco for the next two months. The study indicated that
the LSTM model could obtain more accurate forecasting results than the autoregressive
integrated moving average method. Ketu and Mishra [11] designed a hybrid LSTM model
that could accurately forecast the COVID-19 outbreak in India. The proposed model
employed an additional convolutional layer in the LSTM layer. Notably, the additional
layer improved the performance of the hybrid model. Jiao et al. [12] proposed an improved
LSTM model integrating the seasonal trend decomposition technique with multiple features
to predict COVID-19 deaths. The forecasting results were satisfactory. Tuli et al. [13]
presented a Weibull-based LSTM (W-LSTM) model for predicting COVID-19. Moreover,
this study employed the W-LSTM model to forecast the start and end of COVID-19 cycles
in many countries. The presented model achieved satisfactory results in 50 countries.
Table 1 lists the related studies and forecasting accuracy of COVID-19 predictions based on
LSTM models and the mean absolute percentage error (MAPE). In general, the forecasting
accuracy declines as the forecasting horizon increases [14–16].

Table 1. LSTM models for COVID-19 predictions.

References Scenarios Time Intervals of Data MAPE

[6] Predicting COVID-19
cases in India 30 January 2020 to 10 July 2021 17.01% (confirmed cases)

[7] Forecasting spread of
COVID-19 24 February 2020 to 20 May 2020 8.808% (total cumulative cases)

[8] Comparative study for
COVID-19 transmission forecasting 22 January to 6 September 2020 20.394% (averaged for confirmed

and recovered cases)

[5] Prediction and analysis of
COVID-19 cases

7 February 2020 to 7 July 2020
(USA, confirmed cases);

26 February 2020 to 7 July 2020
(USA, deaths)

10.00% (confirmed cases)

[9] Forecasting COVID-19 cases 2 February 2020 to
18 November 2020 8.00% (deaths)

[10] Forecasting COVID-19 transmission 22 January 2020 to
22 November 2020 13.33% (confirmed cases)

[11] COVID-19 prediction and current
status of medical resource availability 30 January to 10 June 2020 40.98% (confirmed cases)

[12] Prediction during
COVID-19 pandemic 22 January 2020 to 21 January 2021 35.94% (deaths)

[13] Modeling for prediction of spread
and severity of COVID-19 7 March 2020 to 22 August 2020 15.7 % (confirmed cases)

This study developed the DULSTMGA model to forecast infectious COVID-19 cases
using predicted values provided by LSTMGA models in a rolling manner. When forecasting,
theoretically and practically, the accuracy decreases as the forecasting horizon increases.
Thus, in general, using accurately predicted values as input for the other forecasting
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model can improve forecasting accuracy. The main contribution of this study is to employ
predicted values provided by an LSTM model as the input to predict infectious cases of
COVID-19 in the long term in a rolling way.

The rest of this study is organized as follows. Section 2 depicts the DULSTMGA
model in forecasting infectious cases of COVID-19. Numerical examples are illustrated in
Section 3 to demonstrate the performance of the designed DULSTMGA model in forecasting
infectious COVID-19 cases. Conclusions are provided in Section 4.

2. The DULSTMGA in Forecasting Infectious Cases of COVID-19
2.1. Long Short-Term Memory with Genetic Algorithms

By solving gradient problems of recurrent neural networks with long-term dependen-
cies, the Long Short-Term Memory [17] model is a recurrent neural network that learns and
predicts long sequences to perform forecasting tasks. Thus, LSTM is more effective than
recurrent neural networks in learning dependencies with long-term features. However,
the LSTM cell structure is relatively complex. A single cell is basically a memory unit;
however, each cell contains four units, rather than a single unit, such as the cells of recurrent
neural networks. Figure 1a,b illustrate a cell contained in the LSTM model and the LSTM
architecture, respectively [18,19]. The * indicates the operation of multiplication.

Figure 1. Long Short-Term Memory neural networks. [20].
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A cell comprises the input gate, the forget gate, the output gate, and the cell state. The
forget gate determines which information in the memory of the previous cell is permitted
to be conveyed to the new cell. The function of the input gate is to update the cell state
and decide the proportions of new data information delivered into the memory. The
output gate determines ways of updating the memory and the amount of information
fed to the next layer. The LSTM network calculates the mapping from the input sequence
IS = (ISt . . . . . . ISt+n) to the output sequence OS = (OSt . . . . . . OSt+n), initially with the
input gates denoted as GIt and represented as seen in Equation (1):

GIt = Sig(Wi ISt + Uiht−1 + βi) (1)

In Equation (1), Sig is the sigmoid activation function, which normalizes the variable
to [0,1]. The input gate activation vector stores new information in the cell state, and ˆGCt is
created by each tanh layer and can be illustrated as Equation (2).

ˆGCt = tanh(Wc ISt + Ucht−1 + βc) (2)

Furthermore, the forget gate activation vector FGt is calculated by Equation (3).

FGt = Sig
(

W f xt + U f ht−1 + β f

)
(3)

The forget gate removes the message from the cell state and reorganizes the memory
cell by ˆGCt and FGt to generate the new state of the memory cell GCt represented as
Equation (4).

GCt = GIt × ˆGCt + FGt × GCt−1 (4)

Then, the output gate activation vector OGt is generated, as illustrated by Equation (5).

OGt = Sig(Wo ISt + Uoht−1 + βo) (5)

Finally, the output vector OTt of the LSTM is obtained and expressed as Equation (6).

OTt = OGttanh(GCt) (6)

where Ui, Uc, U f , Uo are Input weights; Wi, Wc, W f , Wo are recurrent weights; and
βi, βc, β f , βo are biases.

The output gate can compute the output by the cell state and cell activation function.
The training phase uses the weight matrix to learn according to the bias vector. This
study used a single hidden layer for LSTM models, and the ReLU function served as the
activation function. In addition, a gradient-based Adam optimizer was employed to adjust
the weights of the network.

For the LSTM training phases, a genetic algorithm [21,22] was employed to determine
the parameters, including dropout rates, learning rates, and batch sizes of LSTM models.
The forecasting MAPE is the fitness of the genetic algorithm in this study. Thus, for each
iteration, the genetic algorithm provided parameters for LSTM models to generate the
MAPE value not larger than the previous iteration. If the parameters yielded by the genetic
algorithm did not result in a smaller MAPE value, the new parameter set did not replace
the original parameter set. The genetic algorithm was conducted iteratively to decrease the
MAPE value until the termination condition was reached [23–28]. A finalized LSTMGA
model was used to perform forecasting tasks. According to a literature review [29], the
population size, crossover rate, mutation rate, and the number of iterations of genetic
algorithms are 8, 1.0, 0.2, and 40, respectively. In addition, genetic algorithms tend to
converge when a satisfactory number of iterations is conducted [30,31]. Figure 2 illustrates
the interactive procedure of using genetic algorithms to determine LSTM parameters.
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Figure 2. LSTM with GA for parameter selection.

2.2. The Proposed Dual Long Short-Term Memory with Genetic Algorithms (DULSTMGA) Model

Figure 3 illustrates the flowchart of the proposed DULSTMGA model for forecasting
infectious COVID-19 cases. The initial phase was carried out by collecting data, including
confirmed cases, deaths, and recovered cases. After gathering original data, the Susceptible-
Infected-Recovered-Deceased (SIRD) model procedure was performed to obtain the number
of infectious cases. Normalization was further conducted for infectious data, which was
then divided into the training dataset and the testing dataset. The training dataset was used
to determine forecasting models by parameter tuning. The testing dataset was employed to
examine the performance of finalized forecasting models. In this study, two testing datasets,
namely testing dataset I and testing dataset II, were used to investigate the performance
of the proposed DULSTMGA model. Figure 4 depicts the forecasting procedure using
testing dataset I and testing dataset II, respectively. Testing dataset I was used to measure
forecasting performance when forecasting infectious cases using actual data. In contrast,
testing dataset II was employed to measure forecasting performance by adding predicted
values generated from actual data in a rolling manner in order to forecast numbers of
infectious cases. In this study, infectious cases from the past 30 days were used to forecast
future infectious cases.

Figure 3. The proposed DULSTMGA model.
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Figure 4. The training dataset, the testing dataset I, the testing dataset II for the DULSTMGA model.

For testing dataset I, the LSTMGA models were used to predict infectious cases in
the next 14 days using infectious cases from the past 30 days. For testing dataset II, the
DULSTMGA models used predicted values provided by the LSTMGA models, as well as
actual values, with a total of 30 data occurring in a rolling manner to forecast the infectious
cases from the 15th to the 28th day.

3. Numerical Examples
3.1. Forecasting of Infectious COVID-19 Cases

The designed DULSTMGA model was created using the Keras application program-
ming interface. The interval of the forecast data is daily, limited to a certain range. Before
training the LSTM models, the selected dataset needs to be preprocessed to obtain a time se-
ries of daily infectious data, which is used to create an input sequence for the dataset. First,
the number of infected people was calculated through the SIRD model and used as input
datasets. Then, the input data for the LSTM models were normalized using Equation (7).

Dn =
D− Dmin

Dmax − Dmin
(7)

where D, Dn, Dmin, and Dmax represent the original time series data, the normalized time
series data, and the minimum and maximum values of the time series data, respectively.
Then, a time series dataset was converted to a supervised learning dataset, where previous
time steps (t− n) were used as input, and current time steps (t) or future time steps
(t + n) were used as output for observational data. The data were split into training data
and test data. Notably, the data shape needed to be reshaped because the LSTM input
was in the matrix of three dimensions: samples, time steps, and features. The original
dataset was a two-dimensional array of samples and features; hence, it was converted
into a three-dimensional array. The network structure for establishing the LSTM model
consists of one hidden layer and two LSTM units, and the activation function uses ReLU.
The optimizer uses the Adam algorithm. In other studies [32–34], the values of exponential
decay rate β1 and β2 were proposed as 0.9 and 0.999, respectively. In addition, a small value
of epsilon was suggested for LSTM models. The learning rates, batch sizes, and dropout
rates were determined by GA with MAPE as the fitness function. According to previous
studies [35,36], 100 epochs can obtain satisfactory results in LSTM models. Thus, LSTM is
equipped with 100 epochs.
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Three measurements—namely mean absolute error (MAE), root mean square error
(RMSE), and mean absolute percentage error (MAPE)—were used to evaluate forecast
performance and are represented by Equations (8)–(10), respectively.

MAE =
1
m ∑m

i=1|Xi −Yi| (8)

RMSE =

√
1
m ∑m

i=1(Xi −Yi)
2 (9)

MAPE =
100
m ∑m

i=1

∣∣∣∣Yi − Xi
Yi

∣∣∣∣ (10)

where m is the number of forecasting periods, Xi is the ith actual value, and Yi is the ith

forecasting value.

3.2. Datasets

COVID-19 data provided by Johns Hopkins University, including daily confirmed
deaths and recovery [37] cases, were used in this study. The Susceptible-Infected-Recovered-
Deceased (SIRD) model was applied to generate infectious cases. Aimed at the initial
outbreak of COVID-19 and fast-spreading periods, data from three countries, France,
Germany, and the UK, were appropriate for short and long-term analyses to demonstrate
the performance of the DULSTMGA model. The outbreak and fast-spreading time periods
differed between countries; thus, the days used for training and testing were different
within the three countries. Data used to train the models were depicted as follows: The
France dataset included 424 days from 22 January 2020 to 20 March 2021; the Germany
dataset contained 435 days from 22 January 2020 to 31 March 2021; and the United Kingdom
dataset included 273 days from 22 January 2020 to 20 October 2020. The days immediately
after the training datasets of three countries were used as the testing datasets of LSTMGA
and DULSTMGA models to measure forecasting performance. Training datasets and testing
datasets for the three countries are listed in Table 2. The GA was used to determine the
parameters of the LSTM models during the training phases. Based on the parameters
generated, the LSTMGA models were used to predict both the first term, from the first day
to the fourteenth day, and the second term, from the fifteenth day to the twenty-eighth day.
The DULSTMGA models were employed for the second term forecasting only using the
predicted values provided by LSTMGA models in a rolling manner.

Table 2. Training datasets and testing datasets for three countries.

Datasets/Countries Forecasting Models France Germany United Kingdom

Training data LSTMGA DULATMGA From 22 January 2020
to 20 March 2021

From 22 January 2020
to 31 March 2021

22 January 2020
to 20 October 2020

Testing dataset I
(1st to 14th day) LSTMGA From 21 March 2021

to 3 April 2021
From 1 April 2021 to 14

April 2021
From 21 October 2020
to 3 November 2020

Testing dataset II
(15th to 28th day)

LSTMGA
DULATMGA

From 4 April 2021
to 17 April 2021

From 15 April 2021
to 28 April 2021

From 4 November 2020
to 17 November 2020

3.3. Numerical Results

The first part of this study employed LSTMGA models to perform the next fourteen
days of forecasting. Tables 3 and 4 illustrate the measurements of forecasting accuracy for
three countries by LSTMGA models and ARIMA models, receptively. Due to the fact that
the values of MAE and RMSE tend to be influenced by actual values of testing data, the
MAPE values are relatively stable when measuring and comparing forecasting accuracy.
The MAPE values generated by LSTMGA models are less than 10%. According to the
report provided by Lewis [38], Table 5 indicates the ranks of the forecasting accuracy of the
MAPE values. Thus, the LSTMGA models are suitable and accurate in forecasting numbers
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of infectious COVID-19 cases for the forecasting horizon of 1–14 days. The point-to-point
comparisons of actual and predicted values of France, Germany, and the United Kingdom
are illustrated in Figure 5. Thus, the numerical results reveal that the LSTMGA models
were able to capture numbers and trends of infectious cases one to fourteen days ahead
across three countries.

Table 3. Measurements and parameters of LSTMGA models for predicting the first day to the
fourteenth day into the future.

France Germany United Kingdom

MAPE (%) 9.449 4.692 9.261
RMSE 53,590 12,815 36,961
MAE 48,545 11,130 28,186

Parameters of LSTMGA

Dropouts 0.17 0.06 0.25
Learning rates 0.0082 0.0159 0.02784

Batch sizes 27 28 23

Table 4. Measurements of ARIMA models for predicting the first day to the fourteenth day into
the future.

French Germany United Kingdom

ARIMA(p,d,q) ARIMA(1,0,6) ARIMA(6,2,6) ARIMA(4,1,0)

MAPE (%) 10.571 13.764 10.858
RMSE 68,543.62 37,880.53 34,821.33
MAE 55,773.42 33,412.59 32,285.87

Table 5. Ranks of forecasting accuracy of ranges of MAPE values.

Ranges of MAPE Values (%) Ranks

Less than 10 Highly accurate prediction
From 10 to 20 Good prediction
From 20 to 50 Reasonable prediction
Larger than 50 Inaccurate prediction

Figure 5. Cont.
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Figure 5. Forecasting results of dataset I for three countries.

The dropout rates were used randomly to adjust the neural network structure and to
prevent neuronal coadaptation. Basically, the large dropout rate resulted in fewer connec-
tions between two consecutive neurons; therefore, neural networks with less complicated
structures were generated. The dropout rate used for Germany was smaller than the
dropout rates employed for France and the United Kingdom. Thus, during the training
stage of LSTMGA models, the data pattern of Germany was more complex than the data
patterns of France and the United Kingdom. Further, batch size influences the generaliza-
tion ability of LSTM models; generally, a small batch size leads to better generation by the
LSTM model [39].

The second part of this study involved applying ARIMA models, LSTMGA models,
and DULSATMGA models to forecast from the 15th to the 28th days and compare the results.
The point-to-point comparisons between the actual and the predicted values in France,
Germany, and the United Kingdom are illustrated in Figure 6. In addition, the measurement
forecasting accuracies for France, Germany, and the United Kingdom are listed in Tables 6–8.
It can be concluded that the DULSTMGA models outperformed the LSTMGA models and
ARIMA models in terms of forecasting accuracy across the three countries. Furthermore, the
MAPE values generated by the DULSTMGA models for the three countries were less than 10.
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In addition, the DULSTMGA models captured data patterns in long-term forecasting and
outperformed the ARIMA models and LSTMGA models in terms of forecasting accuracy.
Thus, the developed DULSTM models using predicted values as inputs are useful in
generating more accurate results for longer-period forecasting.

Table 6. Forecasting measurements in France for dataset II.

Performance
Measurements ARIMA LSTMGA DULSTMGA

MAPE (%) 22.06 18.950 7.711
RMSE 128,907.91 115,652 53,090
MAE 126,251.57 109,020 44,162

ARIMA(p,d,q) ARIMA(1,0,6)

Parameters of DULSTMGA

Dropouts 0.17
Learning rates 0.0082

Batch sizes 27

Table 7. Forecasting measurements in German for dataset II.

Performance
Measurements ARIMA LSTMGA DULSTMGA

MAPE (%) 21.63 17.797 10.572
RMSE 66,508.56 55,813 37,987
MAE 64,025.78 53,346 32,048

ARIMA(p,d,q) ARIMA(6,2,6)

Parameters of DULSTMGA

Dropouts 0.06
Learning rates 0.0159

Batch sizes 28

Figure 6. Cont.
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Figure 6. Forecasting results of dataset II for three countries.

Table 8. Forecasting measurements in UK for dataset II.

Performance
Measurements ARIMA LSTMGA DULSTMGA

MAPE (%) 14.82 16.178 9.628
RMSE 52,054.21 60,994 39,332
MAE 51,324.39 55,768 33,297

ARIMA(p,d,q) ARIMA(4,1,0)

Parameters of DULSTMGA

Dropouts 0.25
Learning rates 0.02784

Batch sizes 23
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4. Conclusions

This study designed a DULSTMGA model incorporated with the SIRD technique
to forecast infectious COVID-19 cases in three countries. The developed DULSTMGA
model employed predicted values to conduct longer-term forecasting in a rolling manner.
The infectious COVID-19 cases in France, Germany, and the United Kingdom were used
to demonstrate the performance of the proposed model. The main finding of this study
involves identifying the effectiveness of employing predicted values generated by LSTMGA
models as inputs of other LSTM models. The contribution of the proposed DULSTMGA
model is to moderate the problem of decreasing forecasting accuracy as the forecasting
horizon grows. The promising numerical results reveal two clues for increasing the long-
term forecasting accuracy of infectious COVID-19 cases. The first clue is that using predicted
values as inputs is a feasible way to perform long-term forecasting. The second clue is that
accurate long-term forecasting can be achieved when short-term forecasting is reliable. This
finding can be duplicated to integrate different forecasting models together and conduct
forecasting tasks in a rolling way in order to increase long-term forecasting accuracy.
Another possibility is to use other parameter-selection approaches to determine model
parameters. Finally, infectious data from other countries or regions can be used to verify
the feasibility of the proposed DULSTMGA model.

Author Contributions: Conceptualization, J.-P.L. and P.-F.P.; data curation, J.-P.L.; formal analysis,
J.-P.L. and P.-F.P.; methodology, J.-P.L. and P.-F.P.; software, J.-P.L.; visualization, J.-P.L. and P.-F.P.;
writing—original draft, J.-P.L.; review and editing, P.-F.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The dataset is available at https://data.humdata.org/dataset/novel-
coronavirus-2019-ncov-cases (accessed on 15 May 2021). The algorithms used in the proposed model
are available on reasonable request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Daley, D.J.; Gani, J. Epidemic Modelling: An Introduction; Cambridge University Press: Cambridge, UK, 2005.
2. Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A Contain. Pap.

A Math. Phys. Character 1927, 115, 700–721.
3. Harko, T.; Lobo, F.S.; Mak, M. Exact analytical solutions of the susceptible-infected-recovered (sir) epidemic model and of the sir

model with equal death and birth rates. Appl. Math. Comput. 2014, 236, 184–194. [CrossRef]
4. Cruz-Mendoza, I.; Quevedo-Pulido, J.; Adanaque-Infante, L. Lstm Perfomance Analysis for Predictive Models Based on COVID-

19 Dataset. In Proceedings of the 2020 IEEE XXVII International Conference on Electronics, Electrical Engineering and Computing
(INTERCON), Lima, Peru, 3–5 September 2020; IEEE: New York, NY, USA, 2020; pp. 1–4.

5. Shastri, S.; Singh, K.; Kumar, S.; Kour, P.; Mansotra, V. Time series forecasting of COVID-19 using deep learning models: India-USA
comparative case study. Chaos Solitons Fractals 2020, 140, 110227. [CrossRef]

6. Verma, H.; Mandal, S.; Gupta, A. Temporal deep learning architecture for prediction of COVID-19 cases in India. Expert Syst.
Appl. 2022, 195, 116611. [CrossRef]

7. Prasanth, S.; Singh, U.; Kumar, A.; Tikkiwal, V.A.; Chong, P.H. Forecasting spread of COVID-19 using google trends: A hybrid
gwo-deep learning approach. Chaos Solitons Fractals 2021, 142, 110336. [CrossRef]

8. Dairi, A.; Harrou, F.; Zeroual, A.; Hittawe, M.M.; Sun, Y. Comparative study of machine learning methods for COVID-19
transmission forecasting. J. Biomed. Inform. 2021, 118, 103791. [CrossRef]

9. Nabi, K.N.; Tahmid, M.T.; Rafi, A.; Kader, M.E.; Haider, M.A. Forecasting COVID-19 cases: A comparative analysis between
recurrent and convolutional neural networks. Results Phys. 2021, 24, 104137. [CrossRef]

10. Rguibi, M.A.; Moussa, N.; Madani, A.; Aaroud, A.; Zine-Dine, K. Forecasting COVID-19 transmission with arima and lstm
techniques in morocco. SN Comput. Sci. 2022, 3, 1–14. [CrossRef]

11. Ketu, S.; Mishra, P.K. India perspective: Cnn-lstm hybrid deep learning model-based COVID-19 prediction and current status of
medical resource availability. Soft Comput. 2022, 26, 645–664. [CrossRef]

12. Jiao, F.; Huang, L.; Song, R.; Huang, H. An improved stl-lstm model for daily bus passenger flow prediction during the COVID-19
pandemic. Sensors 2021, 21, 5950. [CrossRef]

https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases
https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases
http://doi.org/10.1016/j.amc.2014.03.030
http://doi.org/10.1016/j.chaos.2020.110227
http://doi.org/10.1016/j.eswa.2022.116611
http://doi.org/10.1016/j.chaos.2020.110336
http://doi.org/10.1016/j.jbi.2021.103791
http://doi.org/10.1016/j.rinp.2021.104137
http://doi.org/10.1007/s42979-022-01019-x
http://doi.org/10.1007/s00500-021-06490-x
http://doi.org/10.3390/s21175950


Electronics 2023, 12, 759 13 of 13

13. Tuli, S.; Tuli, S.; Verma, R.; Tuli, R. Modelling for prediction of the spread and severity of COVID-19 and its association with
socioeconomic factors and virus types. Biomed. Res. Clin. Rev. 2020. [CrossRef]

14. Cao, R.-M.; Liu, X.F.; Xu, X.-K. Why cannot long-term cascade be predicted? Exploring temporal dynamics in information
diffusion processes. R. Soc. Open Sci. 2021, 8, 202245. [CrossRef]

15. Lai, J.-P. Intervention and Prediction of the Spread of COVID-19 Infectious Disease. Ph.D. Thesis, National Chi Nan University,
Taiwan, China, 2021, (unpublished doctoral dissertation). Available online: https://hdl.handle.net/11296/z3gr7k (accessed on 30
May 2021).

16. Okamura, H.; Osada, Y.; Nishijima, S.; Eguchi, S. Novel robust time series analysis for long-term and short-term prediction. Sci.
Rep. 2021, 11, 11938. [CrossRef]

17. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
18. Hua, Y.; Zhao, Z.; Li, R.; Chen, X.; Liu, Z.; Zhang, H. Deep learning with long short-term memory for time series prediction. IEEE

Commun. Mag. 2019, 57, 114–119. [CrossRef]
19. Zeroual, A.; Harrou, F.; Dairi, A.; Sun, Y. Deep learning methods for forecasting COVID-19 time-series data: A comparative study.

Chaos Solitons Fractals 2020, 140, 110121. [CrossRef]
20. Chandra, R.; Jain, A.; Singh Chauhan, D. Deep learning via lstm models for COVID-19 infection forecasting in india. PloS ONE

2022, 17, e0262708. [CrossRef] [PubMed]
21. Holland, J.H. Adaptation in Natural and Artificial Systems; The University of Michigan Press: Ann Arbor, MI, USA, 1975.
22. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
23. Armano, G.; Marchesi, M.; Murru, A. A hybrid genetic-neural architecture for stock indexes forecasting. Inf. Sci. 2005, 170, 3–33.

[CrossRef]
24. Kostiantis, S. Supervised machine learning: A review of classification techniques. Informatica 2007, 31, 249–268.
25. Bhasin, H.; Bhatia, S. Application of genetic algorithms in machine learning. IJCSIT 2011, 2, 2412–2415.
26. Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Multi-sequence lstm-rnn deep learning and metaheuristics for electric load forecasting.

Energies 2020, 13, 391. [CrossRef]
27. Stajkowski, S.; Kumar, D.; Samui, P.; Bonakdari, H.; Gharabaghi, B. Genetic-algorithm-optimized sequential model for water

temperature prediction. Sustainability 2020, 12, 5374. [CrossRef]
28. Yu, T.; Zhu, H. Hyper-parameter optimization: A review of algorithms and applications. arXiv 2020, arXiv:2003.05689.
29. Hassanat, A.; Almohammadi, K.; Alkafaween, E.a.; Abunawas, E.; Hammouri, A.; Prasath, V.S. Choosing mutation and crossover

ratios for genetic algorithms—A review with a new dynamic approach. Information 2019, 10, 390. [CrossRef]
30. Rudolph, G. Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Netw. 1994, 5, 96–101. [CrossRef]
31. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80,

8091–8126. [CrossRef]
32. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the ICLR 2015-Conference Track Proceedings,

San Diego, CA, USA, 7–9 May 2015.
33. Alqahtani, F.; Abotaleb, M.; Kadi, A.; Makarovskikh, T.; Potoroko, I.; Alakkari, K.; Badr, A. Hybrid deep learning algorithm for

forecasting sars-cov-2 daily infections and death cases. Axioms 2022, 11, 620. [CrossRef]
34. Hamed, H.; Helmy, A.; Mohammed, A. Holy quran-italian seq2seq machine translation with attention mechanism. In Proceedings

of the 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), Cairo, Egypt, 8–9 May 2022;
IEEE: New York, NY, USA, 2022; pp. 11–20.

35. Chen, W.; Wu, H.; Ren, S. Cm-lstm based spectrum sensing. Sensors 2022, 22, 2286. [CrossRef]
36. Wang, Y.; Chen, Z.; Chen, Z. Dynamic graph conv-lstm model with dynamic positional encoding for the large-scale traveling

salesman problem. Math. Biosci. Eng. 2022, 19, 9730–9748. [CrossRef]
37. 2019. Available online: https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases (accessed on 15 May 2021).
38. Lewis, C.D. Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting; Butterworth-

Heinemann: Oxford, UK, 1982.
39. Shen, M.; Yang, J.; Li, S.; Zhang, A.; Bai, Q. Nonlinear hyperparameter optimization of a neural network in image processing for

micromachines. Micromachines 2021, 12, 1504. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.31579/2692-9406/014
http://doi.org/10.1098/rsos.202245
https://hdl.handle.net/11296/z3gr7k
http://doi.org/10.1038/s41598-021-91327-8
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1109/MCOM.2019.1800155
http://doi.org/10.1016/j.chaos.2020.110121
http://doi.org/10.1371/journal.pone.0262708
http://www.ncbi.nlm.nih.gov/pubmed/35089976
http://doi.org/10.1038/scientificamerican0792-66
http://doi.org/10.1016/j.ins.2003.03.023
http://doi.org/10.3390/en13020391
http://doi.org/10.3390/su12135374
http://doi.org/10.3390/info10120390
http://doi.org/10.1109/72.265964
http://doi.org/10.1007/s11042-020-10139-6
http://doi.org/10.3390/axioms11110620
http://doi.org/10.3390/s22062286
http://doi.org/10.3934/mbe.2022452
https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases
http://doi.org/10.3390/mi12121504
http://www.ncbi.nlm.nih.gov/pubmed/34945353

	Introduction 
	The DULSTMGA in Forecasting Infectious Cases of COVID-19 
	Long Short-Term Memory with Genetic Algorithms 
	The Proposed Dual Long Short-Term Memory with Genetic Algorithms (DULSTMGA) Model 

	Numerical Examples 
	Forecasting of Infectious COVID-19 Cases 
	Datasets 
	Numerical Results 

	Conclusions 
	References

