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Abstract: The presence of environmental microorganisms is inevitable in our surroundings, and
segmentation is essential for researchers to identify, understand, and utilize the microorganisms; make
use of their benefits; and prevent harm. However, the segmentation of environmental microorganisms
is challenging because their vague margins are almost transparent compared with those of the
environment. In this study, we propose a network with an uncertainty feedback module to find
ambiguous boundaries and regions and an attention module to localize the major region of the
microorganism. Furthermore, we apply a mid-pred module to output low-resolution segmentation
results directly from decoder blocks at each level. This module can help the encoder and decoder
capture details from different scales. Finally, we use multi-loss to guide the training. Rigorous
experimental evaluations on the benchmark dataset demonstrate that our method achieves higher
scores than other sophisticated network models (95.63% accuracy, 89.90% Dice, 81.65% Jaccard, 94.68%
recall, 0.59 ASD, 2.24 HD95, and 85.58% precision) and outperforms them.

Keywords: environmental organisms; semantic segmentation; deep learning; computer vision;
uncertainty revising network

1. Introduction

Environmental microorganisms (EMs) generally refer to living organisms found in the
environment that are too small to be seen by the naked eye [1]. On the one hand, harmful
microbial species are responsible for crop yield reduction, food spoilage, and even human
epidemics. However, some kinds of EMs can benefit humans and can be used in medicine,
the chemical industry, food processing, and many other fields. Different types of EMs
have varying growth characteristics and metabolic processes and play different roles in
medicine and other industries. Thus, the classification and identification of EMs are of great
significance for understanding the overall picture of microorganisms and for the further
development and utilization of microbial resources.

The direct visual identification of EMs is an impossible task because they have small
sizes that range from 0.1 to 100 microns. To solve this issue, auxiliary equipment and tech-
nologies are often employed, with microscopy being one of the most common identification
techniques [2]. However, microscope image recognition is usually performed manually
and is time-consuming. Moreover, outlining EMs, that is, EM image segmentation, is also
a huge challenge because they often blend in with their surroundings and have a similar
visual appearance. Figure 1 shows the microscopic imaging of multiple EMs and the results
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of artificial segmentation. In this study, we aimed to automatically segment environmental
microorganisms using microscopic imaging based on computer vision technology.
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because of their transparency and the lens being out of focus.

Recently, deep learning has demonstrated its advantages in multiple computer vision
tasks, such as image classification and segmentation, and various deep networks have been
developed to improve its performance.

An encoder–decoder structure is an important depth model for semantic image seg-
mentation, and the research trends can be summarized as follows. The first is modifying
U-Net-like structures. This type of method maintains a nearly symmetrical structure of
the U-shape of the network by only adjusting each level of encoders and decoders or by
adding or changing modules (such as the attention module) or predicting stages, such
as TAU-Net [3] added and multiplied encoders at the deepest level. The second type is
changing the symmetrical architecture to extract more information. For example, some
transformer-based networks use multiple encoders but a single decoder to extract global
information more precisely. Some networks even discard the structure and turn to unified
update heads. The last type is enhancing the availability of models in different conditions.
For example, some studies have focused on reducing the param size of networks to deploy
models on integrated devices such as cameras.

The encoder–decoder depth model for semantic segmentation shows good perfor-
mance in fields such as scenes; however, the following challenges in the application of EM
segmentation remain. First, EMs vary significantly in size and shape, making them difficult
to distinguish from their background. Second, non-ideal environments for photography
and the inherent structure of EMs result in vague and blurry foreground boundaries. More-
over, the majority parts of some EMs are transparent. These parts can be easily segmented
as backgrounds, and some messy backgrounds can be mispredicted as EMs. Finally, EM
datasets are relatively small, with only a few hundred pictures, which makes convergence
difficult, particularly for transformer-based networks.

To this end, we propose a novel network built on top of a residual feedback network [4]
that has shown its effectiveness in medical image segmentation. More specifically, our
model consists of two stages of the prediction process: the uncertainty feedback module
to monitor segmentation failure and the attention module to capture spatial information.
Furthermore, we propose a mid-pred module and refined loss function to accelerate con-
vergence with higher segmentation accuracy. Rigorous experimental evaluations on a
benchmark dataset with 21 types of EMs demonstrated that the proposed method outper-
forms other state-of-the-art models. In summary, our contributions are fourfold:
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(1) A new network structure based on an encoder–decoder architecture is proposed.
The network integrates two-stage processing, uncertainty feedback, attention, and a
mid-pred module, thereby enhancing the segmentation accuracy.

(2) We created a new attention module that can effectively determine the position of
EMs and capture weights from the previous encoder with an accurate perception of
marginal areas.

(3) The proposed network is integrated with the mid-pred module, which can guide the
model in determining the position of the foreground area and avoid false predictions
in large, confusing areas.

(4) A new loss function was designed with mixed nominals to accelerate training.

The remaining parts of this article are organized as follows: Section 2 presents the
related work. Section 3 describes the proposed network structure and computing process
in detail. Section 4 presents the experimental evaluation and results. Finally, Section 5
presents the conclusions and future work.

2. Related Work
2.1. Review of Semantic Segmentation Methods in the Field of Computer Vision

In the early stages of image segmentation, an image is segmented into meaningful and
non-overlapping regions corresponding to the visual perception of humans. Many classical
algorithms have been developed for this task, such as the threshold-based method [5], the
region growing method [6], clustering algorithms [7], the watershed algorithm [8], the
graph cut method [9], the conditional random field (CRF) [10], the Markov random field
(MRF) algorithms [11], and sparse feature-based algorithms [12]. The calculations in these
methods are generally simple, and they depend less on the number of samples. However,
these methods have many limitations in complex scenarios.

With the growth of computing abilities and large-scale annotated datasets, research on
image segmentation has shifted towards pixel-level semantic segmentation, which requires
the classification of each pixel based on high-level semantic information. Recently, deep
learning methods have significantly improved semantic segmentation performance.

Fully convolutional networks (FCNs) [13] are among the pioneers of deep learning
methods in semantic segmentation, which provide end-to-end neural networks for semantic
segmentation. Subsequently, various neural networks have been proposed for semantic
segmentation. U-Net [14] is one of the representative models that propose an encoder–
decoder architecture based on FCN. U-Net employs deconvolution for up-sampling to
increase the dimension of feature maps, and it designs jump connections between the
corresponding encoding and decoding layers to preserve the low-level features of the
images. U-Net and similar encoder–decoder architectures are widely used for semantic
segmentation, especially for medical and satellite images. Several variants of U-Net, such
as UNet++ [15], Segnet [16], MC-Unet [17], and RefineNet [18], have been developed
to improve performance. The residual feedback network (RF-Net) [4] is a remarkable
recent method that uses an encoder–decoder architecture such as U-Net. In addition to
changing the encoder to ResNet, it also performs two-stage segmentation. Specifically, the
encoder extracts information from the residual feedback module, indicating the possibility
of segmentation failure. Compared with other networks, it has a higher accuracy and
robustness for the segmentation of breast lesion images.

A recurrent neural network (RNN) provides another strategy to improve segmentation
results, which focuses on modeling the dependencies between pixels by establishing global
contextual relationships. ReNet [19] divides an image into different patches and scans
them both horizontally and vertically to convert the spatial information into sequential
information. Moreover, gating mechanisms such as a gated recurrent unit (GRU) and long
short-term memory (LSTM) [20] have also been applied to learn image texture information
and spatial model parameters and to achieve pixel-level segmentation.

Recently, transformers and their variants have also achieved significant success in
the field of computer vision. The vision transformer (ViT) [21] proposed the application
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of a transformer from the text domain [22] to the image domain, which slices the image
into 16 × 16 chunks and converts them into vectors with fixed lengths and then uses
classification networks for segmentation. Since then, transformer-based models have
gained popularity, such as the deformable patch-based transformer (DPT) [23], which
adjusts the patch size to locate targets more accurately. With sufficient pre-training data,
transformer-based networks can outperform CNN (convolutional neural network) models
with fewer computations for both segmentation and target detection tasks.

In improvement strategies for different network structures in image segmentation,
the attention mechanism is a widely used module that can simulate the cognitive function
of individuals by selectively focusing on parts of the senses of greater importance. By
reducing the information density and emphasizing certain parts, the attention module can
easily capture regions of interest and enhance the accuracy by slightly increasing the size
and computing complexity. Some studies, such as SA [24], MGFAN [25], CBAM [26], and
coordinate attention [27], have proved the effectiveness of the attention mechanism. How-
ever, the attention mechanism must be designed for specific applications and integrated
into selected networks to maximize their advantages.

In this study, we focused on the design of attention guidance, based on a residual
feedback network, to improve the performance of EM segmentation. In the experiment,
we compared the proposed model with different types of deep networks, such as CNNs,
RNNs, and transformers, and the experimental results proved the superiority of our model.

2.2. Review of Segmentation Methods in the Field of EM Image Segmentation

Various segmentation methods have been used for EM image segmentation, which
can be divided into traditional and machine-learning-based segmentation methods [28].
Traditional methods can be further divided into three categories: edge-based, threshold-
based, and region-based segmentation methods [29]. However, traditional methods are
often performed in an unsupervised manner and usually cannot satisfy their tasks, owing
to the transparency and complexity of the microorganisms. In general, traditional methods
are more suitable for small and opaque microorganisms. However, machine learning
methods, such as k-means clustering and conditional random fields, have been applied in
succession for these tasks. For example, Kyan et al. [30] proposed an organizing tree map
network for biofilm segmentation, which pioneered the use of machine learning methods
for EM segmentation.

Deep-learning methods have also gained popularity owing to improvements in com-
puting abilities and datasets. Generally, because convolutional neural networks perform
well in all types of computer vision tasks, researchers have applied CNNs to EM segmenta-
tion tasks. Kosov et al. [31] trained a DeepLab-VGG16 model to extract texture information
and used CRF models to classify pixels, whereas Hung and Carpenter [32] proposed using
Faster R-CNN (region with CNN features) to detect plasmodium-vivax-infected blood
cells and achieved surprising accuracy. In addition, U-Net has gained popularity owing
to its simple structure and surprisingly significant effects. Researchers have implemented
multiple modified U-Nets for EM segmentation. MRFU-Net (multiple receptive field U-Net)
changed the encoder from the FCN to the Reception module and achieved better results
in EM segmentation. LCU-Net [33] changed the 3 × 3 convolution to a 1 × 3 + 3 × 1
convolution to reduce the param size and accelerate the prediction.

In addition to the aforementioned models, GANs and transformer-based networks
have recently been used for EM segmentation. Aydin et al. [34] achieved a 71.72% mIoU
(mean intersection over union) score in segmenting yeast cells with the help of the SegNet
model, which is based on RNNs. In addition, Ang et al. [35] proposed a phase-stretch
transform for segmenting floc and filamentous bacteria with better results. These studies
have demonstrated the availability of new popular models for EM segmentation.

These studies achieved satisfactory results for EM image segmentation. However,
most studies have focused on certain types of microorganisms; therefore, they lack ver-
satility in dealing with various types of EMs. Furthermore, in EM segmentation tasks,
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the transparency of the foreground and uncertainty of the EM position may still cause
mispredictions, which remains a difficult problem. As a result, though the newest networks
often achieve the best results on most tasks, they might show problems when dealing with
EM images. For example, although transformer-based networks perform well for many
types of segmentation tasks, they require a large amount of computation before being
transferred to a certain task. In contrast to large datasets, such as ADE20K [36], which
has thousands of pictures, EMDS-6 [37] (which we used) has only 420 original images for
segmentation. Furthermore, blurry edges and transparent insides remain challenging to the
network. Therefore, there is still much scope for optimizing segmentation models. In the
visual comparison in Section 4.4, we can observe the limitations of previous segmentation
methods when faced with different types of EMs.

Therefore, in this study, we developed a novel method based on this motivation to
overcome existing difficulties. With the proposed method, a simple and effective encoder–
decoder structure can learn sufficient knowledge from a small number of data, and the new
modules can accelerate the training process and improve accuracy.

3. Method

In this section, we introduce in detail the architecture of the proposed semantic segmen-
tation network. Section 3.1 introduces our overall network architecture, and Section 3.2 de-
scribes the uncertainty revising network. The mid-pred module is described in Section 3.3.
The attention module is described in Section 3.4. Finally, the proposed multi-loss function
is introduced in Section 3.5.

3.1. Network Architecture

Figure 2 shows the overall architecture of our end-to-end network for microorganism
segmentation. The proposed network is formed as an encoder–decoder structure that includes
two stages. In the first stage, we used the U-Net-like structure to make a rough prediction from
the input. Before the next stage, the uncertainty feedback module was employed to extract
feedback from the decoders to calculate the estimated error rate in the rough prediction result.
In the second stage of inference, although the same structure was applied, the uncertainty
feedback was considered. To combine the encoded data and uncertainty feedback, and
to enhance the performance of the segmentation result, we used an attention module to
emphasize regions of interest and attach data from feedback to encoders. In addition, during
the two stages of inference, mid-pred modules directly generated low-resolution outputs from
the decoder blocks, which also affects the network optimization.
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3.2. Uncertainty Revising Network

We improved the residual feedback network (RF-Net) proposed by Wang et al. [3],
which is called the uncertainty revising network (UR-Net). The overall architecture of
the network is shown in Figure 2, and the detailed parameters of each encoder, decoder,
and other module within the network are presented in Table 1. It is an encoder–decoder
structure that has several differences from U-Net. First, for the encoders, a structure such as
ResNet-50 is applied as the encoder rather than a double (3 × 3 Conv + Batchnorm + ReLU)
to enhance the accuracy, together with fewer channels to ease the training and predic-
tion process. Each encoder block contains xi encoder units (where xi ∈ {3, 4, 6, 3} and
i ∈ {2, 3, 4, 5}), and each encoder unit is combined with two 3 × 3 convolutional layers. In
encoder1, the encoder unit only contains a 7 × 7 convolutional layer. After each convo-
lution, batch normalization and ReLU activation are performed. The other encoders (2,
3, 4, 5) had similar structures to the ResNet-50 but different channel numbers of outputs;
more details can be found in Table 1. We also transformed the skip connection method
from concatenation to element-wise addition. Each decoder block contains a 1 × 1 con-
volution to reduce the number of channels, an up-sampling layer to match the resolution,
a 3 × 3 convolution to decode, and a 1 × 1 convolution to expand the channel size. The
uncertainty feedback module primarily uses the information learned from the encoder to
measure the probability of the prediction error or confusion rate of a particular area. It
outputs uncertainty feedback that predicts the difference between the first inference result
and the reality. As shown in Figure 3, the heatmap illustrates the possibility of a prediction
failure for each pixel. It also shows the extent to which a position should be emphasized
during the second stage of inference. This output participates in the next prediction step
using the original image and this input data. Data from each decoder were applied with
3 × 3 convolution to be set to 64 channels and a bilinear up-sampling layer to ensure
the cohesive scale and then concatenated together. Subsequently, two 3 × 3 convolutions
reduce the concatenation result from 256 channels to 64 channels to one channel, and
the result is activated with a sigmoid function. To illustrate the difference between the
proposed UR-Net and RF-Net, two points were marked. First, the UR-Net integrated the
attention module and mid-pred module within the network, and the proposed attention
module was formed as an adapter to dynamic weighting rather than normal element-wise
multiplication and addition.

Table 1. Detailed parameters of each module within the network. P: pooling; U: upsample; S: sigmoid.

Module Architecture

P Convolutions U S Notes

Initial encoder
√

(7 × 7, 64, stride = 2)

Similar to
ResNet-50Encoder

1
√

((1 × 1, 64) -> (3 × 3, 64) -> (1 × 1, 128)) × 3

2
√

((1 × 1, 128) -> (3 × 3, 128) -> (1 × 1, 256)) × 4

3
√

((1 × 1, 256) -> (3 × 3, 256) -> (1 × 1, 512)) × 6

4
√

((1 × 1, 512) -> (3 × 3, 512) -> (1 × 1, 1024)) × 3

Decoder

4 (1 × 1, 128) -> (3 × 3, 128) -> (1 × 1, 512)
√

Pooling: (3 × 3), stride = 2
Upsample: scale factor = 2
×n: repeat for n times

3 (1 × 1, 64) -> (3 × 3, 64) -> (1 × 1, 256)
√

2 (1 × 1, 32) -> (3 × 3, 32) -> (1 × 1, 128)
√

1 (1 × 1, 16) -> (3 × 3, 16) -> (1 × 1, 64)
√

Final process (3 × 3, 64) × 2 -> (3 × 3, 1)
√ √

Uncertainty feedback (3 × 3, 64) -> (3 × 3, 1)
√

UpConv (3 × 3, 64)
√

Resample to (128, 128)

Mid-pred Mentioned belowAttention
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3.3. Attention Module

Owing to the complicated structure and low contrast of the boundaries of environ-
mental microorganisms, we designed an attention module at each scale of the encoder to
enhance the segmentation results without too many parameters. The attention module
is shown in Figure 4. First, we used global average pooling to encode the horizontal and
vertical information from the entire picture. Hence, the output of the channel at height H
and width W can be formulated as (C × H × 1) and (C × 1 ×W), respectively.
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The two channels of information are then concatenated as a (C × (H + W) × 1) vector.
The feature map was then sent to a multilayer perception function to extract the importance
of each row and column, which affected a single pixel when considered together. This
function generates another vector, (C × (H + W) × 1). The vector is sent in two directions:
it is applied with average pooling, forming a C × 1 × 1 vector y1 that indicates how the
residual mask should be emphasized on the channel. It is also split into a C × H × 1 vector
y2 and a C × 1 × 2 vector y3, which shows the positional interest of each pixel.

Processed by the attention module, the feature map x is rebalanced with weight F(x) ,
as follows:

F(x) = x× (1 + y2× y3 + y1× residual_mask) (1)

Note that even if no residual mask is produced by the uncertainty feedback module in the
first inference of the encoder–decoder, the proposed attention module can still be treated
as a normal attention mechanism without failure. In the second inference stage of the
encoder–decoder, the proposed attention mechanism can dynamically assign additional
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weights to each channel according to the data of the uncertainty feedback module, and
then more accurate segmentation results can be obtained.

3.4. Mid-Pred Module

To train deeper networks more efficiently, we designed a mid-pred module in our
networks after each decoder, inspired by previous studies. Wang et al. [38] adopted an
additional supervision loss branch from the main network as an additional strategy. With
this strategy, predictions are directly achieved from the middle layers of the networks and
are optimized by loss functions [39]. They also utilized a similar strategy and achieved
higher Dice scores in their networks for multiple segmentation datasets.

Therefore, according to the aforementioned compelling strategy, we developed a mid-
pred module for our UR-Net. Each mid-pred module on a certain level uses the output of
the decoder on the same level and generates a rough prediction with a lower resolution
of the image (mid-prediction). The ground truth is resampled to the same resolution for
calculating loss. While optimizing the model, the mid-pred module can shorten the path
from the ground truth to each module. This can reduce the problem of gradient vanishing
and improve the segmentation result.

More specifically, the architecture of the mid-pred module is as follows: the first two
3 × 3 convolution layers in each mid-pred module were reduced to half of the channels and
then to only one channel because the channels of each decoded output were not the same.
The results were then activated using a sigmoid function. Simultaneously, the mid-pred
modules were also optimized using a loss function. In summary, the mid-pred module for
the network is formed as follows:

F (x) = Sigmoid
(

f 3(x)
)

(2)

where f 3 denotes convolutions that reduce the number of channels and extract features.

3.5. Loss Function

The proposed UR-Net has different auxiliary predictions from the decoder and the
uncertainty adjustment module and more discriminating features can be obtained. To
further capture this advantage and optimize the learning effect, we propose a multi-loss
function that contains three sub-loss parts between the prediction and ground truth.

There are three types of sub-loss that correlate three parts of the prediction results from
the two stages of the network. First, in each inference stage of the encoder–decoder, the
segmentation result from the network is presented as Pi. We applied a weighted-balanced
loss function, Lwbl [40], which penalizes pixels in both the background and EM areas.
Owing to the inconsistency in the size and shape of different images, the weight-balanced
parameter can adjust the class imbalance. The loss function is expressed as follows:

Lwbl = 1− w ∑N1

n=1 pnyn

∑N1
n=1(pn + yn)

− (1− w)
∑N0

n=1(1− pn)(1− yn)

∑N0
n=1(2− pn − yn)

(3)

where N0, N1 denotes the pixels where yn = 0,1, and w = N0/(N0+N1) is the weight-
balancing parameter calculated beyond. pn is the probability of pixels by prediction. Each
prediction result is adjusted using a loss function.

Second, our uncertainty feedback module extracts the prediction failure rate from
the decoder, which is denoted as U. To describe the actual failure rate, we used U′ as the
difference between the first stage of the prediction result P1 and the ground truth. To sum
up, the U′ is formulated as follows:

U′ =
∣∣∣P1 − GT

∣∣∣ (4)

The uncertainty feedback was adjusted using a binary cross-entropy function, Lbce.
The loss function can be calculated as shown below:

Lbce = −[yn · log xn + (1− yn) · log(1− xn)] (5)



Electronics 2023, 12, 763 9 of 17

where xn denotes the prediction result and yn denotes the reality.
Finally, for the mid-pred part, we applied PolyLoss [41]. The PolyLoss provides a

unified view of the multiple common loss functions. The loss is designed based on the
Talor expansion of the CE and the focal losses. The poly-1 loss is a simplification of the
loss function, which depends on only one hyperparameter to be fine-tuned on different
datasets to achieve better performance. The equation is shown below:

LPoly−l = LCE + ε1(1− Pt), Pt = |yt− pt| (6)

Generally, the final loss is combined with the aforementioned sub-losses, which are
calculated as follows:

L = Lbce
{

U, U′
}

+
2

∑
i=1

(2× Lwbl

{
Pi, GT

}
+

3

∑
j=1

Lpoly

{
Mi

j, GT
}
) (7)

where Lx is the x-type loss function; U is the uncertainty of prediction and U′ is the actual
possibility of prediction failure; Pi and Mi

j indicate each stage and level of prediction
(prediction and mid-prediction), respectively; and GT shows the ground truth.

4. Experiments and Analysis
4.1. Experimental Datasets and Preprocessing

The EMDS-6 [37] dataset was used for the comparison. It consisted of EM images
captured using a microscope. In the dataset, EMs were divided into 21 types, each of which
included 40 pairs of original and ground truth images. Of the samples, 70% were randomly
selected from each category for training, 10% for validation, and 20% for testing. For each
sample, we resized it to a resolution of 256 × 256 and applied multiple augmentations of a
random flip of 0.5 possibilities for each horizontal and vertical, rotation from −10 to 10,
scale from 0.8 to 1.2, and translation of (0, 0.1) to improve the generalization of our model.

4.2. Experimental Setup and Evaluation

For the experimental environment, we used the open-source PyTorch toolkit and the
MMSegmentation toolkit for comparison and ablation studies. We adopted the adaptive
moment estimation of Kingma et al. [42] with beta1 = 0.9, beta2 = 0.999, and epsilon = 10−8

to optimize our networks. We trained the networks on NVIDIA TITAN Xp with a minibatch
of 16. The initial learning rate was 5× 10−5, multiplied by 0.99 for each epoch, and the
networks were trained for a total of 120 epochs. We initialized the parameters as the Kaiming
normal [43] to avoid gradient vanishing or explosion. Finally, we used the open-source
sklearn and medpy toolkits to evaluate the results using the metrics provided in the toolkits.

For a quantitative comparison, we selected seven types of widely used evaluation
metrics, i.e., accuracy, Dice, Jaccard, recall, ASD, HD95, and precision. Specifically, the
accuracy measures the total number of correctly predicted pixels. The Dice score, which
is mathematically equal to the F1 score, indicates the similarity between the prediction
and ground truth. It is equal to twice the area of overlap divided by the total number of
positive pixels in both the images. Jaccard is another name for IoU (intersection over union),
which counts the overlap area in the union area. Precision shows the ratio of a true positive
result to the entire positive prediction result, whereas recall reveals the proportion of true
positive results in the positive part of the ground truth. ASD (average surface distance)
is the average of all distances from points on predicted edges to the ground truth. HD95
shows the Hausdorff distance between the boundaries of prediction and ground truth but
is more robust because it excludes extreme circumstances.

Note that, for accuracy, Dice, Jaccard, recall, and precision, a higher value indicates
better results, whereas for ASD and HD95, a lower value indicates better results. The
equations for these metrics are presented in Table 2.
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Table 2. Formulas for each evaluation metric.

Evaluation Indicators Formula Note

Accuracy Accuracy = TP+TN
TP+FP+TN+FN (8)

TP : True Positive
TN : True Negative
FP : False Positive

FN : False Negative
X : Prediction

Y : Ground Truth

Dice DSC = 2×|X∩Y|
|X|+|Y| (9)

Jaccard Jaccard = |X∩Y|
|X|+|Y|−|X∩Y| (10)

Recall Recall = TPR = TP
TP+FN (11)

Precision Precision = TP
TP+FP (12)

ASD ASD = ∑x∈X miny∈Yd(x, y)/ | X | (13)
HD95 HD95 = maxk95%[d(X, Y), d(Y, X)] (14)

4.3. Ablation Experiment

To examine the effectiveness of each module, we conducted four ablation experiments
to evaluate the contribution of each module. First, a residual feedback network was selected
as the baseline. Subsequently, mid-pred and attention modules were successively added to
the network. Finally, based on the same network, we added multiple losses to optimize the
performance, that is, the proposed UR-Net. The experimental results are listed in Table 3.
To provide a more intuitive visual comparison, a schematic of the segmentation is presented
in Figure 5.

Electronics 2023, 12, 763 11 of 20 
 

 

Table 3. Ablation experiment with the proposed method. MP: mid-pred module; A: attention mod-
ule; ML: multi-loss. 

Network Accuracy Dice Jaccard Recall ASD HD95 Precision 
Baseline 94.48% 87.57% 77.89% 94.64% 0.88 4.55 81.48% 

Baseline + MP 94.55% 87.81% 78.28% 95.53% 0.97 3.95 81.25% 
Baseline + MP + A 95.40% 89.27% 80.61% 93.13% 0.62 3.04 85.71% 

Baseline + MP + A + ML 95.63% 89.90% 81.65% 94.68% 0.59 2.24 85.58% 

(a) (b) (c) (d) (e) (f)
 

Figure 5. Visual comparison between baseline and improvement. (a) Original picture, (b) ground 
truth, (c) baseline, (d) baseline + MP, (e) baseline + MP + A, (f) baseline + MP + A + ML (our proposed 
model). 

Based on a comprehensive analysis of Figure 5 and Table 3, the following conclusions 
can be drawn. 

First, Table 3 shows a steady increase in all metrics, indicating that our proposed 
modules have a positive effect on the segmentation results. Compared with the baseline, 
our mid-pred module shows improvements in accuracy (0.07%), Dice (0.24%), Jaccard 
(0.39%), and especially recall (0.89%); the attention module caused an obvious increment 

Figure 5. Visual comparison between baseline and improvement. (a) Original picture, (b) ground truth,
(c) baseline, (d) baseline + MP, (e) baseline + MP + A, (f) baseline + MP + A + ML (our proposed model).



Electronics 2023, 12, 763 11 of 17

Table 3. Ablation experiment with the proposed method. MP: mid-pred module; A: attention module;
ML: multi-loss.

Network Accuracy Dice Jaccard Recall ASD HD95 Precision

Baseline 94.48% 87.57% 77.89% 94.64% 0.88 4.55 81.48%
Baseline + MP 94.55% 87.81% 78.28% 95.53% 0.97 3.95 81.25%

Baseline + MP + A 95.40% 89.27% 80.61% 93.13% 0.62 3.04 85.71%
Baseline + MP + A + ML 95.63% 89.90% 81.65% 94.68% 0.59 2.24 85.58%

Based on a comprehensive analysis of Figure 5 and Table 3, the following conclusions
can be drawn.

First, Table 3 shows a steady increase in all metrics, indicating that our proposed
modules have a positive effect on the segmentation results. Compared with the baseline,
our mid-pred module shows improvements in accuracy (0.07%), Dice (0.24%), Jaccard
(0.39%), and especially recall (0.89%); the attention module caused an obvious increment in
accuracy (0.85%), Dice (1.46%), Jaccard (1.33%), and precision (4.46%) and a decline in ASD
(0.35) and HD95 (0.89) and a small drop in recall (−1.23%); multi-loss further improved the
accuracy (0.23%), Dice (0.63%), Jaccard (1.04%), ASD (0.03), and HD95 (0.80) and enhanced
the recall from the previous part (1.55%) with a small cost to precision (0.13%).

Second, as shown in Figure 5, the prediction affected by the mid-pred module had the
largest range of targets, and the recall value showed the same tendency. This is because the
mid-pred module has a coarse-grained prediction with a low resolution, which tends to
aggressively determine areas to be the foreground. This can better relate the transparent
areas of microorganisms to the opaque ones. This is reasonable because the module can
determine the rough area of the Ems. Although some Ems have transparent parts, the
mid-pred module can locate them to achieve an accurate segmentation.

Third, the attention module extracted the target area more precisely, and from visual
comparisons, we can see that the mispredicted areas were mostly removed. This is because
the attention module can easily determine the location of the EM and discard the irrelevant
parts. From the data, we can see a leap in most evaluation metrics, particularly in terms
of the surface distance indicators. The only drop in recall is also acceptable because the
positive area has been reduced significantly.

Finally, our multi-loss method fine-tuned the segmentation results and achieved the
best performance for most metrics. The proposed loss function can effectively accelerate the
training with higher accuracy. In the visual comparison, we can see that the segmentation
results are not only more precise but also often have sharp and smooth edges.

To further perform a computational complexity analysis, we used the FLOPs (floating
point operations per second) and parameter size as evaluation indicators for computational
consumption, and the results are reported in Table 4. The mid-pred module spent an addi-
tional 0.58 GFLOPs and 0.49 M param size; the attention module only costed approximately
0.02 GFLOPs and 0.27 M param size. Compared with significant improvements, these costs
are affordable.

Table 4. Computational complexity analysis for ablation study. 1G = 230; 1M = 220.

Network FLOPs Params

Baseline 16.38 G 22.01 M
Baseline + MP 16.96 G 22.50 M

Baseline + MP + A 16.98 G 22.77 M
Baseline + MP + A+ML 16.98 G 22.77 M

4.4. Comparison with the Latest Methods

For a complete comparison, we selected two commonly used networks (U-Net [14]
and Deeplabv3+ [44]) and the four latest semantic segmentation networks (BiSeNetv2 [45],
FastFCN [46], PointRend [47], and Segmenter [48]), all of which achieved the state of
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the art for semantic segmentation while publishing. For a fair comparison, we used the
open-source MMSegmentation toolkit for all models.

The experimental results for the compared methods are listed In Table 5, where the
values marked in bold indicate the best performance. For visual purposes, we provide a
comparison diagram for the actual segmentation effect of the different methods, as shown
in Figures 6 and 7.

Table 5. Evaluation results of the compared methods. Bold means the best value.

Accuracy Dice Jaccard Recall ASD HD95 Precision

Proposed 95.63% 89.90% 81.65% 94.68% 0.59 2.24 85.58%
U-Net 92.59% 83.93% 72.31% 94.16% 1.58 6.15 75.70%

Deeplabv3+ 91.90% 82.80% 70.65% 94.92% 1.82 7.54 73.42%
BiSeNetv2 94.32% 87.03% 77.04% 92.68% 1.39 5.2 82.03%
FastFCN 94.29% 86.64% 76.44% 90.11% 1.35 5.17 83.44%

PointRend 94.26% 86.73% 76.58% 91.29% 1.51 6.23 82.62%
Segmenter 90.81% 78.87% 65.12% 83.54% 2.23 10.1 74.70%

RF-Net 94.48% 87.57% 77.89% 94.64% 0.88 4.55 81.48%

From the above results, the proposed network achieves the highest score in terms of
accuracy, Dice, Jaccard, and precision compared with other networks, which shows its out-
standing performance compared with other SOTAs (state-of-the-arts). For example, compared
with the recent work PointRend, we obtained an accuracy improvement of 1.37%, Dice score
of 3.17%, Jaccard score of 5.07%, recall rate of 3.39%, precision of 2.96%, ASD of 0.92%, and
HD95 of 3.74%. We also surpassed the classic model (such as U-Net and Deeplabv3+) and
recent popular methods (BiSeNet, PointRend, and Segmenter) for almost all metrics. In
particular, our results are significantly better for the ASD metric, which indicates competitive
performance in terms of robustness and higher boundary localizing ability.

Visual comparisons also proved that the proposed model generally achieves a sharp
and smooth segmentation result and that the segmented foreground and background
are closer to human vision than other models. It is worth mentioning that for EMs with
transparency, our proposed network is more capable of filling the entire part, whereas the
other networks commonly show hollows. Furthermore, when encountering a complex
background, other networks falsely emphasize useless regions. However, the proposed
network efficiently filters them out.

Another interesting phenomenon is that the newly proposed transformer-based model
Segmenter did not perform well on this dataset. In our opinion, although transformers
have a strong potential for semantic segmentation, in specific cases with less data, such as
microorganisms, a specially designed model is required.

To further compare the time complexity, we report the FLOPs and parameter memory
as the evaluation indicators for the comparison method in Table 6. To provide a more
intuitive and comprehensive comparison, we also draw a diagram of the performance
requirements versus segmentation capabilities in Figure 8.

Table 6. Computational complexities of different methods for comparative study.

Network FLOPs Params

Proposed 16.98 G 22.77 M
U-Net 59.64 G 29.06 M

Deeplabv3+ 44.05 G 43.58 M
BiSeNetv2 3.09 G 14.78 M
FastFCN 32.56 G 68.70 M

PointRend 14.61 G 28.73 M
Segmenter 4.40 G 25.68 M

RF-Net 16.38 G 22.01 M
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It is worth mentioning that the proposed method has moderate param size and
operation count. From Table 6, we can see that our proposed network has significantly
lower FLOPs and param sizes than classical networks, such as U-Net and Deeplabv3+.
Figure 8 shows a balanced tradeoff between the computing requirements and segmentation
performance. It is worth mentioning that the BiSeNetv2 has a decent segmentation result
with small sizes. From our analysis, it has a detail branch and a semantic branch to
individually handle fine-grained and coarse-grained features, which correlates our mid-
pred module. From the visual comparison, we can also see the fewer holes inside the EMs
predicted. However, compared with the newly proposed networks, our proposed method
has a moderate performance requirement in terms of hardware but better segmentation
results, in terms of both evaluation metrics and human observation.
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5. Conclusions

In this study, we proposed a U-Net-like network for environmental microorganism
image segmentation. First, we proposed an uncertainty revising network that adds a
mid-pred module to locate foreground areas. Subsequently, an attention module that can
extract precise localization information for positioning and range control was proposed.
Finally, multi-loss was used for optimization to enhance the robustness of the network.
The experimental results demonstrate that the proposed method compares favorably with
SOTAs and is outstanding in terms of segmentation quality and speed. Therefore, it satisfies
the requirements of stability and real-time automatic detection.
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