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Abstract: A biometric authentication system is more convenient and secure than graphical or textual
passwords when accessing information systems. Unfortunately, biometric authentication systems
have the disadvantage of being susceptible to spoofing attacks. Authentication schemes based
on biometrics, including face recognition, are susceptible to spoofing. This paper proposes an
image encryption scheme to counter spoofing attacks by integrating it into the pipeline of Linear
Discriminant Analysis (LDA) based face recognition. The encryption scheme uses XOR pixels
substitution and cellular automata for scrambling. A single key is used to encrypt the training and
testing datasets in LDA face recognition system. For added security, the encryption step requires
input images of faces to be encrypted with the correct key before the system can recognize the images.
An LDA face recognition scheme based on random forest classifiers has achieved 96.25% accuracy on
ORL dataset in classifying encrypted test face images. In a test where original test face images were
not encrypted with keys used for encrypted feature databases, the system achieved 8.75% accuracy
only showing it is capable of resisting spoofing attacks.

Keywords: face recognition; LDA; image encryption; cellular automata

1. Introduction

A Face Recognition algorithm uses machine learning techniques to detect and identify
human faces by analyzing visual patterns in visual data [1]. One of the key advantages of
facial recognition systems is that they allow users to be passively authenticated [2] that is,
they allow users to prove their authenticity simply by being in the room without having
to interact with the system at all. Video surveillance, access control, forensics, and social
media are some of the many applications in which facial recognition systems are used.

As explained by [3], facial recognition systems have six stages. Preprocessing is the
first stage. An area of interest is aligned when faces are detected in the visual input. Using
preprocessed input, face features are extracted at the second stage. During the final stage,
extracted face features are compared with features in the database for matching results.
An identification is based on facial features stored in memory, or a verification is based on
matching results.

The face recognition authentication system has a number of advantages and limitations,
as all biometric subsystems. It is more secure to use biometric authentication than to use
conventional password authentication [4]. As biometric traits cannot be forged, registration
is required, preventing false authentication [5], and each person’s data is unique [6]. An
important drawback of biometric authentication systems is that they are susceptible to
spoofing attacks, as well as attacks on deep learning and machine learning systems. In
spoofing attacks, attackers present false biometric information in order to gain credibility [7].
Synthesis is considered a spoofing attack by [8]. According to [9,10], reply attacks can
also be described as spoofing attacks. Machine learning and deep learning models can be
attacked in a variety of ways, including adversarial attacks [4] and poisoning attacks [11].
In this paper a method for preventing spoofing attacks on face recognition system is
proposed by integrating a model for image encryption on recognition process. Image
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encryption model is used to encrypt preprocessed face images that are used to train and
test a face recognition model based on Linear Discriminant Analysis (LDA) algorithm.
Extracted features enrolled on features database are encrypted, meaning that in order to
gain authenticity face image needs to be encrypted with correct image encryption key in
order for classifier to correctly identify or verify submitted input. With that effectiveness of
spoofing attacks are minimized; other than illegitimately obtaining copies of face images of
authenticated individuals and submit it to system, an attacker needs to encrypt face image
with correct key as well.

In order for image encryption models to provide this extra layer of security, they
must offer high encryption performance and be resistant to brute force attacks. The image
encryption model used in the recognition process is based on the XOR operation and a
special type of Cellular Automata called the Outer Totalistic Cellular Automata (OTCA).
XOR is applied to pixels bits for pixel substitution, while CA is used for image scrambling.
Pixel substitution involves changing the original values of pixels using mathematical
operations, and then applying the reverse operation to recover the original values [12].
By shuffling the original pixel locations on an image, image scrambling breaks the high
correlation between pixels that were originally adjacent [13]. In order to generate complex
structures from simple structures, CA can utilize simple structures [14], making it an
excellent choice for image scrambling applications [15]. Most of studies on facial recognition
systems focus on increasing recognition accuracy of model on various datasets however, not
enough work is presented in addressing weaknesses of such systems including spoofing
issues. This paper proposes a solution to spoofing issue on facial recognition through
addition of an image encryption step in recognition process. The main goal is to build a
facial recognition system that correctly classifies encrypted facial images for each subject in
a selected faces dataset. The face recognition model is based on LDA and is trained using
a training set formed of encrypted subjects’ face images. Testing the model is conducted
using two testing sets the first of which is formed of the remaining encrypted subjects’
face images whereas the other will consist of the same remaining images however, in this
case the images used are the original or decrypted images. Encryption of face images is
implemented with new method based on XOR pixels substitution and scrambling based on
CA. The contributions of this paper are as follows:

• The encryption of images consists of two main stages. Pixel substitution is the
first stage of the process, during which each pixel value is substituted by a new
value generated by performing an XOR operation on each pixel bit. A second stage
involves shuffled pixel positions into new positions using CA during the pixels
scrambling stage.

• A Linear Discriminant Analysis (LDA) is used to extract features from encrypted
images and a Random Forest classifier is used to classify them. LDA reduces the
dimensionality of the feature space to maximize the separation between classes by
transforming the feature space. Consequently, more discriminative features are gener-
ated, improving the performance of the classifier. Random Forest is a classification
method that uses multiple decision trees to classify data. The method has a high
degree of accuracy and is robust to overfitting. Combining LDA and Random Forest
classifiers makes for a powerful face recognition algorithm.

• The use of encrypted face images to train the model causes the model to recognize
test images encrypted with the same encryption key only with high accuracy. This
drastically reduces the effectiveness of spoofing attacks as an attacker would need
to encrypt images with the same key in addition to obtaining an artificial copy of an
authenticated individual face image.

The rest of this paper is organized as follows. On second section related work to image
scrambling and face recognition with LDA is presented; third section explains implemented
methodology; fourth section demonstrates results; last section concludes the study.
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2. Related Work

Using universal rules, CA cells can change their state every discrete time step in
response to their neighbors. According to [16], CA-based image encryption works directly
on pixels to encrypt images. Aside from its ease of use, CA image encryption provides
high security, parallel computing capabilities, and high performance [16]. In addition to
image encryption, CA is capable of encrypting other types of information as well. Using a
reversible CA based block cipher algorithm [17], proposed an algorithm that could handle
CPUs with different core counts and supported scalability beyond 128 bits. The security
framework offered by [18] is made up of three stages. The first is entity authentication
with a zero-knowledge protocol, while the second and third stages are encryption and
decryption with CAs. Several CA-based image scrambling techniques have been developed
for use in image encryption [15,19–24]. Those studies found CA scrambling to be effective
against a variety of attacks, breaking high rates of correspondence between adjacent pixels.
It has been found that a large number of CA-based image scrambling techniques have been
developed [14,18–23]. In those studies, CA scrambling performed well against different
types of attacks, breaking high correlation between adjacent pixels. The two-dimensional
CA was used by [15] for image scrambling. A number of different configurations, such
as evolved generations, neighborhood configurations, boundary conditions, and rules
with lambda values near critical values, were examined for their effect on GDD metric
scrambling performance. By using all lattices evolved from the initial lattice, the method
scrambles the image. An empty lattice is created, then on that lattice pixel locations that
correspond to live cells on first scrambling matrix take the pixel’s values of original subject
image starting from top-leftmost cell then proceeding in row major order. For the remaining
scrambling matrices, pixels at locations that have already been filled are skipped during
the process. Pixels are copied from the original image to dead cells in row major order on
the scrambling matrix. Based on the obtained results, higher generation scrambling results
had better Gray Difference Degree (GDD). Additionally, there was a higher GDD achieved
when Moore’s configuration with periodic boundary conditions was used. Among the
rules tested, lambda values ranged from 0.20703 to 0.41406. The highest GDD value on
tested images was achieved by Rule 224—Game of Life.

It was investigated by [20] whether other 2D-OTCA rules could be applied to scramble
images besides Game of Life. Instead of using Moore’s rule, the authors use von Neumann
neighborhood configuration. Different OCTA rules are experimented on and GDD is used
for evaluating scrambling performance. Boundary conditions and generation selection are
also taken into consideration. An initially generated lattice is evolved k times based on
a randomly generated initial lattice. An image of the subject is scrambled using the final
evolved lattice. On an empty lattice, pixel values of the original subject image are taken
from the top-leftmost cell and proceed in row major order until every cell on the lattice
corresponds to an alive cell on the scrambling matrix. By copying pixels from the original
image to dead cells on the scrambling matrix, each pixel will correspond to a cell on the
matrix in row major order. According to rule 171, this technique showed the highest GDD
results of all the proposed techniques. As compared to other techniques, this technique took
significantly less time to compute. Gray image encryption algorithm developed by [23]
uses 2D CA to scramble the image at the bit level. Binary images representing bits are
generated from an image by converting it into 8 binary images. An initial configuration
lattice of 8 binary images is created and evolved using a B3/S1234 CA rule. As a result, 8
binary images of the original image are scrambled independently using evolved 8 binary
lattices in the same way, thereby changing their positions and values simultaneously.

A modification to the 2D CA image scrambling technique proposed by [15] was
implemented by [21], which resulted in better GDD scrambling. In the same way, all
evolved lattices are used to scramble data. Using row major order, pixels on the original
image that correspond to live cells on the scrambling matrix are copied to an empty lattice.
On the remaining locations on row major order, the remaining pixels are copied as well.
For the remaining scrambling matrices, repeat the same procedure. A scrambling lattice is
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evolved according to Game of Life 224 rules. Based on the results, the best GDD is achieved
when periodic boundary conditions, Moore’s neighborhood, and more generations are
included up to eight. Based on periodic boundary conditions, Moore’s neighborhood, and
Moore’s neighbors, the highest GDD for eight generations was 0.9551.

In [19], CA was proposed for scrambling and watermarking images. Chaos can
be detected in fractal CA rules by analyzing fractal box dimensions. After creating an
initial lattice, a lattice is evolved based on a selected CA to scramble the image. This
process scrambles the image as an initial step in watermarking. Furthermore, watermarked
images produced using this scheme are less susceptible to noise attacks, cropping, and
JPEG compression.

The author of [22] proposed using OTCA for encrypting images at the bit level. In
rule 534 and rule 816, the bit values and locations of the original images are simultaneously
changed with high computational efficiency at the bit level. An analysis of histograms
and entropies indicates that the encryption method is robust. Furthermore, the key space
is highly sensitive in addition to being large. It was found that each test image had an
NPCR of nearly 100%, an Entropy of over 7.2, and a correlation almost equal to zero in each
direction. Based on histogram analysis, encrypted images cannot be distinguished from
their originals.

A method for scrambling images that uses ECA was proposed by [24]. ECA rules
were used to test scrambling performance in classes 3 and 4. The scrambling method
converts original images into 1D vectors. After k generations of evolution, a random 1D
lattice is scrambled. Pixels are copied from the original image onto the empty 1D lattice
and positioned where the live cells are on the scrambling lattice corresponding to pixels
in the original image. Similarly, scrambling matrices with pixels already filled will skip
matrices with unfilled pixels. As pixels are copied onto dead cells in the scrambling matrix,
they correspond to the pixels that are still in the original image. An output 2D matrix
is generated after converting a 1D vector to a 2D matrix. Using ECA for scrambling did
not result in any difference in performance between GDD and 2D CA, and in some cases,
performance was even better. A high GDD was obtained with Rule 22 when boundary
conditions were combined with ten generation numbers. In class 3 rules tested (22, 30, 126,
150, 182), the GDDs were higher than in class 4 rules (rule 110).

As real-time processors become more common, research on automatic recognition
of faces has become quite active, aiming to facilitate commercial applications by taking
advantage of the human ability to recognize faces as special objects. The analysis of human
facial images has been the subject of numerous studies. There are several ways in which
facial features can be used to discriminate between people based on their gender, race, and
age. In studies that used subjective psychovisual experiments, these features have been
analyzed for their significance. Linear discriminant analysis (LDA) can be used to recognize
faces by maximizing within-class scatter and minimizing between-class scatter through the
combination of within- and between-class scatter. With LDA, different features of the face
are objectively evaluated for their significance in identifying the human face. Using LDA
for recognition can also yield a few features. LDA overcomes the limitations of Principle
Component Analysis by using a linear discriminant criterion. By using this criterion, the
projected samples’ between-class scatter matrix is compared with their within-class scatter
matrix in order to maximize that ratio. A linear discriminant used to classify images results
in the separation of images into different categories.

A variety of methods for analyzing the features of the face are described in the litera-
ture based on local linear discriminants. Through the use of nonparametric discriminant
analysis (NDA) and multiclassifier integration, Ref [25] developed a new framework for
face recognition. The principal space and null space of the intra-class scatter matrix are
being used to improve two multi-class NDA algorithms (NSA and NFA). The NFA uses
classification boundary information more effectively than the NSA. Ref [26] also proposes
enhancing order-based coding capabilities to increase intrinsic structure detection in fa-
cial images in addition to enhancing local textures. By selecting the most discriminatory
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subspace, multimodal features can be automatically merged. In order to produce robust
similarity measurements and discriminant analyses, adaptive interaction functions are used
to suppress outliers in each dimension. In order to address the classification issue raised
by a compact feature representation, the sparsity-driven regression model is modified.
“Exponential LDE” (ELDE) is a new discriminant technique introduced by [27]. ELDE
can be viewed as a compromise between the two-dimensional extension of LDE and the
local discriminant embedding (LDE). Using the proposed framework, the SSS problem is
overcome by eliminating the null space associated with locality-preserving scatter matrices.
Distance diffusion mapping transforms original data into a new space and then applies
LDE to the new space, similar to kernel-based nonlinear mapping. Increased margins
between samples of different classes improve classification accuracy. The [28] method
uses the local geometry structure of the data while applying a globally discriminatory
structure from linear discriminant analysis, which maximizes between-class scatter while
minimising within-class scatter. In kernel feature spaces, nonlinear features can also be
produced through the optimization of an objective function.

A new ensemble approach for discovering discriminative patterns has been developed
by [29]: the many-kernel random discriminant analysis (MK-RDA). In the proposed ensem-
ble method, the authors incorporate a salience-aware strategy whereby random features are
chosen on the semantic components of the scrambled domain using salience modeling. By
optimizing binary template discriminability, Ref [30] proposes a new binarization scheme,
using a novel binary discriminant analysis, a real-valued template can be transformed
into a binary template. Because binary space is hard to differentiate, direct optimization
is challenging. In order to solve this problem, a binary template discriminability function
was developed using the perceptron.

3. Methodology

This section details procedures involved in integration of image encryption technique
into pipeline of LDA based face recognition system. Firstly, phases related to processing
images to obtain their encrypted versions are elaborated, following that LDA algorithm
steps are explained, and modified face recognition scheme pipeline is expounded with
LDA and encrypted features database.

3.1. Image Encryption Scheme

Image encryption technique is implemented with two phases. In the first phase pixels’
values are substituted using XOR operation. On second phase pixels’ positions are shuffled
based on 2D lattice combined from different generations of lattices evolved from same
initial lattice using CA. Initial lattice is randomly generated grid of cells confined within
defined space. Using appropriate CA rules initial lattice is evolved yielding new lattices
with each generation.

3.1.1. XOR Pixels Substitution

Digital images are composed of pixels usually with different intensities that are rep-
resented in numerical range depending on image’ bit depth. For example, if an image bit
depth is 8 bits then pixels are represented with 8 bits then their numerical values range
from 0 to 255. Note that longer bit depth as in case for RGB images describe bit depth for
three channels with each channel can be uniquely represented with third of bit depth length.
Then pixels can be represented as binary strings. Pixels substitution on proposed method is
obtained by applying logical XOR operation between adjacent binary bits. If binary string
length is n then applying operation as explained would generate n− 1 string, however the
left most bit is kept the same as original binary string therefore generated binary string
will have length of n. The conversion of any binary string with XOR is demonstrated with
algorithm below.
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As such generally for any binary string b with length n, the XOR representation X for
b can be obtained as follows:

b = b0b1b2 . . . bn−1 (1)

X = b0(b0 ⊕ b1)(b1 ⊕ b2)(b2 ⊕ b3) . . . (bn−2 ⊕ bn−1) (2)

In Equation (1), a binary string b consists of n bits, and the position of each bit is
indicated by a subscript. For instance, the first bit in binary string b is b0, the second bit is b1,
and so on. A binary string b can be converted to an XOR representation X using Equation
(2). Since the first bit of X is the same as b, which is shown in step 1 of Algorithm 1, the first
bit of X is b0. A second bit is determined by XOR operations between b0 and b1, a third bit
by XOR operations between b1 and b2, and so forth.

Algorithm 1: Processing binary string with XOR to obtain new XORed string

Input: b [n bits binary string]
Output: X [XOR on bits of b ]
1 Set n = Length(b) [n value is number of bits in b]
2 Set X = b[0] [leftmost bit of X is same as b]
3 Set i = 0

4
while(i < n− 1){X = X + b[i]

⊕
b[i + 1] i = i + 1}

[XOR is applied between adjacent bits and appended to X]
5 Return X

As pixels values for any digital image are binary strings with length n, the same
process can be applied to digital images converting an image to its XOR version. Whether
the image consists of single channel (e.g., grayscale image) or multiple channels (e.g.,
RGB image) the process can be applied to each channel separately and channels can be
recombined yielding XOR image. That is for any pixel at position (i, j) in an image I, its
value in XOR image I′ version of I can be expressed by:

I′(i, j) = XOR(I(i, j)) (3)

Given any X string its corresponding original binary string can be regenerated using
XOR operation as well however it’s applied with slight differences. Since the leftmost bit in
X is the same as in original b then b0 = X0. The next bit b1 is b0 ⊕ X1, similarly b2 is b1 ⊕ X2
and the same process is repeated for n− 1 times. The steps for converting XOR string to
original binary string are shown below:

Algorithm 2: Obtaining original binary string from its XORed version

Input: X [XOR string with length n]
Output: b [Original binary string]
1 Set n = Length(X) [n value is number of bits inX]

2
Set b = X[0] [leftmost bit of b is same
as X]

3 Set i = 0

4

while(i < n− 1){
b = b + b[i]

⊕
X[i + 1]

i = i + 1}
[XOR is applied between adjacent bits and
appended to b]

5 Return b

As such generally for any XOR string X with length n, the original binary string b
corresponding to b can be obtained as follows:

X = X0X1X2 . . . Xn−1 (4)
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b = X0 ⇒ b0 ⇒ b0(b0 ⊕ X1)⇒ b0b1(b1 ⊕ X2)⇒ . . .⇒ b0b1 . . . (bn−2 ⊕ Xn−1) (5)

Equation (4) represents XOR string X that needs to be converted back to original
binary string b. X0 is the first bit of X, X1 is the second bit of X and so on until last nth bit
which is Xn−1. Equation (5) shows how the binary string is obtained back in series of steps
where the arrow indicates the next step. Initially binary string value contains X0 which is
the same as the original binary string as such the first bit becomes b0. The next step shows
how to obtain the second bit b1 which is an XOR operation between b0 and the second bit
of X. This series of steps continue until the last bit is calculated.

Now that the conversion from XOR string to binary string is shown, the process can
be applied to pixels of XOR image I′ to obtain original image I. That is for any pixel at (i, j)
in I′ the original pixel value can returned by:

I(i, j) = UnXOR
(

I′(i, j)
)

(6)

3.1.2. Image Scrambling with CA

After altering pixels’ values with XOR pixels substitution in first phase, the resulting
image is scrambled based on 2D lattice combined from two other lattices evolved from
same initial lattice using 2D-OTCA (Two Dimensional Cellular Automata) rules. OTCA
are variation of CA rules introduced by [13] where a cell in a 2D lattice transit between
predetermined set of states (e.g., alive or dead) based on the state of the cells in its neigh-
borhood and the current state of that cell. OTCA rule can be reapplied to resulting lattice
again to obtain new lattice and process can be repeated k times to obtain kth generation
lattice. The transition function for any pixel at coordinates (i.j) in lattice L in next iteration
can be expressed with function v as shown next:

It+1(i, j) = v
(

It(i, j), ∑i′ j′ It(i′, j′
))

(7)

where It(i′, j′) are cells in It(i, j) neighborhood.

Neighborhood Configuration

As described in (7) transition function requires states of neighboring cells for de-
termination of state of subject cell in subsequent generation of lattice. Most common
neighborhood configurations are Von Neumann and Moore neighborhood schemes [31].
In Von Neumann Neighborhood scheme (denoted as NvN) neighboring cells are adjacent
cells in four cardinal directions (Figure 1). Given a radius r neighborhood range can be
extended, with that a cell at coordinate (i′, j′) neighbors a cell at coordinate (i, j) in Von
Neumann configuration if it satisfies the following rule:(

i′, j′
)
∈ NvN(i, j, r) i f

∣∣i′ − i
∣∣+ ∣∣j′ − j

∣∣ ≤ r (8)

Moore’s Neighborhood scheme (denoted as NM) differs from NvN , it includes diagonally
adjacent cells to subject cell as part of the neighborhood. Similarly given a radius r neigh-
borhood range can be extended, with that a cell at coordinate (i′, j′) neighbors a cell at
coordinate (i, j) in Moore’s configuration if it satisfies the following rule:(

i′, j′
)
∈ NM(i, j, r) i f

∣∣i′ − i
∣∣ ≤ r and

∣∣j′ − j
∣∣ ≤ r (9)
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Figure 1. Illustration of Moore’s and Von Neumann neighborhood schemes at radius 1.

Boundary Conditions

Cells within lattices are confined within 2D rectangle space. Determining neighboring
cells for border cells is resolved with two conditions; either Closed Boundary Condition
(CBC) or Periodic Boundary Condition (PBC) [32]. In CBC missing cells from neighborhood
are given naught state [33]. As for PBC cells at borders are adjacent to each other; that is for
instance cells at top are adjacent to bottom cells, leftmost cells are adjacent to rightmost
cells and corner cells are adjacent to each other.

Conway’s Game of Life

Conway’s Game of Life (CGL) credited to John Conway, is most universally known
automata [34]. CGL is an OTCA rule which determines cell’s next state based on current
cell’s state and neighboring cells in NM configuration at r = 1. As stated by [35] in CGL
or any similar variation neighboring cells are cells that are directly touching subject cell.
As such neighboring cells in CGL are cells that confirms to NM configuration at r = 1 of
subject cell.

In CGL cells can transition between states—alive (1) or dead (0)—in subsequent evolu-
tions. Transition of cell state between alive or dead is determined from the following rules:

• For a cell at coordinates (i, j) such that It(i, j) = 0 if ∑i′ ,j′ It(i′, j′) = 3 for (i′, j′) ∈ NM(i, j, r)
then It+1(i, j) = 1 otherwise It+1(i, j) = 0

• For a cell at coordinates (i, j) such that It(i, j) = 1 if 2 ≤ ∑i′ ,j′ It(i′, j′) ≤ 3 for (i′, j′) ∈
NM(i, j, r) then It+1(i, j) = 1 otherwise It+1(i, j) = 0

Figure 2 shows an example of lattice evolved with CGL rules. Alive cells are illustrated
in white and dead cells are in black. The boundary condition in the illustration is set as
PBC and neighborhood scheme is Moore’s scheme.

Scrambling Algorithm

Image scrambling process starts by generating lattices required for shuffling image
pixels into new positions. Initially a lattice with random cells’ states and dimensions equal
to original image dimensions is generated. Next the lattice is evolved with (7) such that
neighborhood is NM, boundary condition is PBC and CGL defines new state of subject cell
on next evolution. That is transition function becomes:

It+1(i, j) = vCGL

(
It(i, j), ∑i′ j′ It(i′, j′

) ∣∣∣ It(i′, j′
)
∈ NM(i, j, r)

)
PBC

(10)
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dead). PBC and NM are applied.

Lattice is evolved to kth generation, then kth generation lattice is combined with
one of previous generation which is named nth generation. This new combined lattice is
scrambling lattice that is used to scramble image pixels. The steps for scrambling algorithm
are elaborated in Algorithm 3 and an abstractive illustration of the proposed scheme in
on Figure 3.

Algorithm 3: Encryption algorithm

Input: I [Original image]
Output: E [Image after scrambling]
1 Convert pixels in I to its corresponding XOR string

equivalent in I′. That is value of pixel at coordinates
(i, j) in I′ is obtained by I′(i, j) = XOR(I(i, j))

2 Generate random lattice L0 with exactly the same width
and height as I. Values of lattice pixels can either be 1
(alive) or 0 (dead).

3 Apply CGL OTCA transition function υCGL on onL0
with NM and PBC for k generations yielding Lk.

4 Combine Lk and Ln (0 < n < k) on an initially empty
lattice R such that R(i, even(j)) = Lk(i, j) and
R(i, odd(j)) = Ln(i, j).

5 Transform I′ into a stack such that elements in stack
from top to bottom are values of pixels in I′ in row
major order.

6 Scramble I′ such that: search R in column major order
and if R(i, j) = 1 pop an element from top of stack(I′)
into initially empty scrambled image E at same
coordinates (i, j). After search is complete search R
again in row major order this time and if R(i, j) = 0 pop
an element from top of stack(I′) into scrambled image E
at same coordinates (i, j).
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Now that Algorithm 3 is elaborated encryption key used to obtain encrypted version
of original image can be expressed. The encryption key consists of five main elements:

• Randomly generated lattice L0. This lattice is created with same width and height of
image that require encryption. Pixels in L0 can assume two states only either alive
(white) or dead (black).

• The CA rule used to evolve L0. In proposed image encryption scheme the CA rule used
is CGL rule however, different rules can be utilized to evolve L0 to desired number of
generations. Neighborhood structure can be changed as well for example using NvN
or extending radius of neighborhood. In this work the neighborhood structure is NM
with radius 1 due to requirements of CGL.

• Boundary condition used to handle cells at borders for L0 or any subsequent evolved
lattices. In proposed technique PBC was selected however, CBC can be selected
as well.

• The number of generations n selected to evolve L0 to obtain Ln. The value of n is
bounded to be more than 0 and less than another value k i.e., that 0 < n < k.

• The number of generations k selected to evolve L0 to obtain Lk. Now that since
0 < n < k then Lk is rather obtained by evolving Ln for (k− n) times.

In order to show that encryption keys are robust, their ability to resist brute force
attacks must be analyzed. When using brute force attack to decrypt an encrypted image, it
is necessary to recreate the randomly generated lattice L0 to precisely match the initial cell
states, since slight differences in initial states would influence neighboring cells’ states in
subsequent evolutions L1, and those neighboring cells will influence the evolution of their
own neighboring cells, and the effect continues with each evolution. Also recreation of L0
to exact initial cells states becomes more difficult with increasing size of L0 as more initial
cells states are accounted for. Initial states of cells are one of two—either alive or dead—and
number of cells is determined from size of lattice

(
widthL0 × heightL0

)
then brute forcing

L0 recreation could require 2size(L0) recreation tries. The number of generations n and k
are selected to evolve L0 to Ln and Lk then the resulting evolutions are combined into
scrambling lattice R. To break encryption key with brute force attack given that L0 is
available, L0 is evolved k times then its combined with each Ln where 0 < n < k. The
process continue until the correct value of k is encountered and right combination with Ln is
found to produce R. Given that repetitions of Ln and Lk combinations are eliminated during
the search for k then number of actual unique combinations tried equals size of unique pairs
of n and k set at correct value of k. The size of such set (denoted as u) is k(k− 1)/2. Then
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for an attacker to break encryption key with brute force attack the descrambling algorithm
needs to run up to u× 2size(L0) times.

The encryption algorithm utilizes CGL with NM at radius 1 and PBC for evolving L0.
However, those configurations can be changed and their inclusion in main components
of encryption key indicates the possibility. There are many rules for OTCA and rules
classified as Class 3 and 4 generate different and complex patterns in each evolution [31].
Also neighborhood structure can be extended or changed and with different structures
comes different patterns in next evolutions. Boundary condition selection as PBC or CBC
affect generated patterns in subsequent generations of initial lattice L0 as well. If such
configurations are allowed to be changed then breaking encryption key with brute force
attack would require significantly more than u × 2size(L0) times. Since the encryption
algorithm is demonstrated with CGL, NM at radius 1 and PBC then in this regard the key
space is u× 2size(L0).

With five elements composing the encryption key are explained, then generation of
encrypted image E can be expressed as function e in Equation (11) that takes XOR image I′

and key configurations required for encryption as its parameters.

E = e
(

I′, L0, vCGL, PBC, k, n
)

(11)

Descrambling Process

Descrambling requires regeneration of scrambling lattice R. Given scrambling key, R is
recreated which is then used to reorder shuffled pixel positions of R back to I′. Then XORed
pixels values can be ‘UnXORed’ to retrieve original pixels’ values. Steps for descrambling
E are shown in Algorithm 4:

Algorithm 4: Descrambling algorithm

Input: E Scrambled image
Output: I′

1 Generate R from provided keys where
R = f (Lk, Ln).

2 Search R in column major order if R(i, j) = 1
then E(i, j) is added to stack(E).

3 Search R in row major order if R(i, j) = 0 then
E(i, j) is added to stack(E).

4 Reverse stack(E) then pop elements from stack
in an initially empty lattice generating I ′′ .

Descrambling can also be expressed as a function d in Equation (12), where E is the
parameter, and encryption key configurations are the input parameters. To retrieve original
pixel values, the UnXOR function detailed in Algorithm 2 is used to process the output of
function d.

I′ = d(E, L0, vCGL, PBC, k, n) (12)

3.2. LDA Algorithm

Linear Discriminant Analysis (LDA) proposed by R. Fisher is one of fundamental
data analysis methods [36]. LDA is deployed for features extraction and dimensionality
reduction [37] in applications such as face recognition [38], retrieval of images [39], and
microarray classification of data [40].

LDA is largely adopted for problems than involves dimensionality reduction [41].
LDA is a suitable machine learning algorithm for reducing dimensionality in classification
problems that involve more than two classes. LDA is efficient for multi-class classification as
it can be used for data pre-computation to reduce the number of features, thereby reducing
computational costs. LDA is preferred over other approaches. In LDA, the variance
of projections within a class has the lowest variance, and the variance of projections
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outside the class has the highest variance. In PCA, all data are treated equally, resulting
in very representative projected data, but it may sometimes obfuscate discrimination
between classes.

Here LDA is used for features extraction of encrypted face images. Extracted features
are compared with features database to classify input encrypted face images into appro-
priate classes. Input face image is encrypted with the same key used for encryption of
features database. The steps of LDA implementation in context of proposed pipeline are
shown below:

1. Preprocessing faces image dataset with face detection and alignment. Encrypt dataset
and scale it then split dataset into training set and testing set.

2. Convert 2D encrypted face images training dataset into 1D vectors
{

F1
1 , F1

2 , . . . , Fc
n, . . .

}
where n is nth image of class c. Each face image 1D vector is image’s width× height
long.

3. Find mean vector for each class k by uk =
Fc

1+Fc
2+···+Fc

n
n . Then the set of all mean

vectors is {u1, u2, . . . , uk, . . .}. The length of this set is equal to number of classes.
4. Calculate overall mean vector for all classes u = u1+u2+···+un

n .
5. Find between class scatter matrix Sb = ∑c

k=1 nk(uk − u)(uk − u)T where nk is number
of samples per class and c is number of classes.

6. Determine within class scatter matrix Sw = ∑c
k=1 ∑Fc

i

(
Fc

i − uk
)(

Fc
i − uk

)T .
7. Obtain linear discriminants by solving for Eigen values and vectors for matrix Sw

−1Sb
with single value decomposition.

3.3. Encrypted Face Recognition with LDA

After presentation of image encryption process and LDA algorithm a complete pipeline
for the proposed encrypted face recognition can be illustrated as shown in Figure 4. The
process starts by preprocessing face images into correct alignment and size. However, this
step is not mandatory for datasets with prepared alignment and face detection such as
ORL dataset. Next entire face images database is encrypted with single key and divided
into training set and testing set. Training set features are extracted with LDA and stored in
features database then they are used for classification of test set of encrypted face images
with random forest classifier.
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Random forest classifier, introduced in 2001 by Leo Breiman [42] consists of indepen-
dent set of decision trees that collectively classify input data based on majority votes [43]. In
random forest classification random samples are selected from training set and an indepen-
dent decision tree is generated for each sample. Each decision tree outputs its prediction
and based on majority votes for predications a classification output is given.



Electronics 2023, 12, 774 13 of 26

4. Results and Discussion

Experimentations on XOR-OTCA CGL image encryption method and recognition of
encrypted face images with LDA were conducted on standard laptop with 8 GB RAM,
Intel(R) Core(TM) i5-3230M CPU @ 2.60 GHz and Microsoft Windows 10 Home 64 bits
using Python3. Firstly, the robustness of image encryption scheme is measured using
differential analysis with NPCR (Number of Pixels Change Rate) and statistical analysis
with histogram, correlation and key sensitivity. GDD (Gray Difference Degree) is also
measured for comparison with other proposed methods in literature.

After demonstration of robustness of image encryption scheme, ORL face dataset is
utilized for measurement of LDA with random forest classifier accuracy in classification
of encrypted face image. Since ORL dataset is preprocessed with face detection and
alignment, the entire dataset is directly encrypted with same key and inserted into pipeline
of encrypted face recognition with LDA post preprocessing stage.

4.1. Analysis of Image Encryption Scheme
4.1.1. Illustration of Gray Code OTCA CGL Encryption and Decryption on Sample Image

In this subsection, a sample grayscale image is encrypted using arbitrary selected key
configurations to demonstrate the processes applied by the proposed scheme to generate
the encrypted image. Figures 5 and 6 show encryption and decryption process implemented
on sample image. As shown in Figure 5 sample image is firstly processed with XOR pixels
substitution converting it to its XORed version. Initial scrambling lattice with dimension
identical to sample image is generated with random cells states and evolved with CGL rules
to nth and kth generation. Then R is generated as described in encryption algorithm and
used for scrambling XORed sample image. In decryption process illustrated on Figure 6 the
encryption key is used for descrambling encrypted image yielding XORed sample image
and finally XORed sample image is UnXORed to obtain original sample image.
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scrambled image with configurations R = e(I′, L0, vCGL, PBC, 12, 7).

4.1.2. Differential Analysis
Number of Pixels Change Rate

Number of Pixels Change Rate (NPCR) measures image encryption technique resis-
tance to differential attacks [32]. The closer percentage of NPRC of encrypted images to
100% the more robust the encryption technique is. Given original image and encrypted
version of image NPCR can be determined as follows:

NPCR(I, E) =
∑width(I)−1

i=0 ∑
height(I)−1
j=0 x(i, j)

resolution(I)
i f I(i, j) = E(i, j) → x(i, j) = 0 i f I(i, j) 6= E(i, j) → x(i, j) = 1 (13)
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Figure 6. Decryption of Mandrill image. From left scrambled image, descrambled XORed image with
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NPCR was computed for selected group images by comparing original images and
their encrypted versions. The same key configurations were used for encrypting images;
that is the same initial lattice L0 was evolved for nth and kth generation with CGL and R
was created by combining Ln and Lk. Table 1 shows that NPCR for encrypted group of
images was more than 99% in all cases which shows the robustness of the technique.

Table 1. NPCR and UACI between Original Test Images and their Scrambled Versions. For any
encrypted image Eim = e

(
I′im, L0, vCGL, PBC, 10, 8

)
.

Test Image NPCR UACI

Lena 99.597% 28.07%

Cameraman 99.467% 37.075%

Barbara 99.908% 32.736%

Mandrill 99.688% 29.284%

Peppers 99.489% 31.934%

Airplane 99.596% 19.904%

Gold hill 99.426% 24.525%

To demonstrate the proposed method effectiveness in producing large NPCR values,
the experiment was repeated on entire Yale dataset. Yale dataset consists of 15 subjects with
11 images per subject, totaling 165 images. Obtained values for NPCR were all above 99%,
Table 2 shows some of NPCR results obtained for different subject’s images. Appendix A,
Table A1, contains the full results.

Table 2. Sample of NPCR and UACI between Original Test Images and their encrypted versions in
Yale dataset. For any encrypted image Eim = e

(
I′im, L0, vCGL, PBC, 14, 10

)
.

Test Image NPCR UACI

Subject 1–7 99.561% 21.891%

Subject 3–4 99.344% 36.389%

Subject 7–6 99.777% 43.831%

Subject 2–8 99.752% 39.081%

Subject 12–3 99.645% 36.404%

Subject 9–10 99.808% 41.877%

Subject 5–11 99.796% 38.430%
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Universal Average Changing Intensity

Universal Average Change Intensity (UACI) is utilized here to find average intensity
difference between original image and its encrypted version. Ideal value of UACI is 33% [44]
and it’s determined here with:

UACI =
∑

width(I)−1
i=0 ∑

height(I)−1
j=0 |I(i, j)− EI(i, j)|

255× resolution(I)
× 100 (14)

Similar to NPCR, UACI was computed for the same group of images using original
images and same encrypted images used in NPCR test. Table 1 shows obtained UACI for
encrypted group of images. UACI values for most images were around 33% whereas Air-
plane and Gold hill were notably lower. Again the UACI test was conducted for Yale faces
dataset showing the results obtained in Table 2 and full results can be found on Table A1.

4.1.3. Statistical Analysis
Histogram

Histogram illustrates how pixels of different intensities are distributed in an image.
Due to altering pixels’ intensities in scrambled image, histogram of scrambled image is
different than original image. This is reducing the possibility of identifying a specific
encrypted image in set of encrypted images by matching histogram of original image to
images stored in database, given that database of encrypted images become available to
the attacker. Figure 7 shows histogram of Mandrill image and encrypted Mandrill image.
More histograms can be found in Figure A1.
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Correlation

Correlation indicates similarity between original image and its scrambled version.
Correlation value varies between −1 to 1 inclusive. Having correlation index closer to
1 indicates that there is strong positive correlation between datasets and opposite (closer
to −1) shows there is strong negative correlation. At 0 correlation, dissimilarity between
images is highest as 0 indicates no correlation at all. As such the closer the correlation
value to 0 is the more dissimilar the original image and its scrambled version are. Using
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Karl Person’s correlation formula correlation between several images and their scrambled
versions is calculated.

r = ∑ xy√
∑ x2

√
∑ y2

(15)

On proposed method same value of k and n were used to encrypt images for testing, however
initial L0 lattice was different for each tested image. That is Eim = e

(
I′im, Lim

0 , vCGL, PBC, 12, 6
)
.

Results on Table 3 show that there is approximately no correlation between test images
and their scrambled versions for cases of entire image or subsections taken horizontally,
vertically or diagonally.

Table 3. Correlation between Original Test Images and their Scrambled Versions.

Test Image
Correlation

Full Horizontal Vertical Diagonal

Lena 0.034 −0.041 −0.017 −0.031

Cameraman 0.108 0.032 0.127 −0.083

Barbara 0.030 0.021 0.006 0.102

Mandrill −0.017 −0.013 −0.029 0.025

Peppers −0.013 −0.027 −0.104 0.022

Airplane 0.031 0.032 0.023 0.023

Gold hill 0.010 −0.052 0.055 0.039

Key Space and Sensitivity Analysis

To test effectiveness of image encryption key space must be large enough to withstand
brute force attacks [21]. For proposed algorithm the key is composed of initial L0 lattice of
size width× height, number of generations k and value n such that 0 < n < k. Since n is
selected randomly based on k, and pixels on initial L0 lattice can assume one of two states
(alive or dead) then key space is u×

(
2res(L0)

)
, where u = k(k− 1)/2 is the size of unique

pairs of k and n set.
For instance if an image of size 256 pixels width and height requires encryption and

value of k was selected to be 6 then key space in this case is 15× 265536. This key space
is exceptionally wide and with larger images and k values (which in turn increases the
size of u) the key space increases exponentially. For small images greater value of k can be
selected to widen key space.

To test sensitivity of key, encrypted Mandrill image on Figure 3 is decrypted using Lk
and Ln only. Then keys with different values of k and n are tested to decrypt the image.
Results on Figure 8 show that decrypting image is only possible with correct key. Given
that L0 is available decrypting image with Lk or Ln only yields no useful information and
same can be concluded for different values of k and n.
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Figure 8. Decrypting Mandrill image with different values of k and n. From left encrypted image,
decryption with Lk only, decryption with Ln only, decryption with k = 12 n = 6 and decryption
with k = 12 n = 7.
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Information Entropy

Information entropy measures the average information conveyed by image pixels [13].
For encrypted images in ideal cases pixels have uniform distribution with equal probability
of occurrence [45]. Entropy is determined with

H(S) = −∑
s
((P(si)× log2 P(si))) (16)

Since experimentation is carried out on grayscale images with 8 bits’ depth (single
channel) then maximum and ideal entropy value is 8. As such the greater the information
entropy of ciphered image the more secure it is. Table 4 shows information entropy values
for same encrypted images utilized in correlation test.

Table 4. GDD between Original Test Images and their Scrambled Versions and information entropy
for encrypted images.

Test Image GDD Information Entropy

Lena 0.9650 6.8731

Cameraman 0.9793 6.0497

Barbara 0.8117 5.3528

Mandrill 0.8652 7.2789

Peppers 0.9686 7.5712

Airplane 0.9133 6.7024

Gold hill 0.9531 7.4778

Gray Difference Degree

GDD measures how well scrambled original image is after applying scrambling
techniques. GDD metric was introduced by [19] and determining its value involves several
steps. The first step is finding Gray difference GD for each pixel in both original image and
scrambled/encrypted image. GD is found for all input image pixels except for pixels at
edges. Also calculating GD requires neighboring pixels for subject cell in NvN neighborhood
structure at radius 1. Determining GD is done by Equation (17).

GD(i, j) =
1
4 ∑

i′ ,j′

[
P(i, j)− P

(
i′, j′

)]2 (17)

where (i, j) is not a coordinates at edge of input image and (i′, j′) ∈ NvN(i, j, 1) i f |i′ − i|+
|j′ − j| ≤ 1.

Next step is find Average GD for original image Avg(GD(i, j)) and scrambled/
encrypted image AvgE(GDE(i, j)). Using the GD values obtained from Equation (17)
enables calculating the value of Equations (18) and (19). Note that both equations are
essentially the same however, the difference is on the context in which both equations
values are found.

Avg(GD(i, j)) =
∑

wideth(I)−2
i=1 ∑

height(I)−2
j=1 GD(i, j)

(width(I)− 2)× (height(I)− 2)
(18)

AvgE(GDE(i, j)) =
∑

wideth(I)−2
i=1 ∑

height(I)−2
j=1 GDE(i, j)

(width(E)− 2)× (height(E)− 2)
(19)

where I is the original image and E is encrypted image.
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Now that Average GD is obtained for both original image and scrambled/encrypted
image. The value of Gray Difference Degree GDD can be determined. Using Equation (20)
GDD can be determined between original image and scrambled/encrypted image.

GDD =
AvgE(GDE(i, j))− Avg(GD(i, j))
AvgE(GDE(i, j)) + Avg(GD(i, j))

(20)

GDD values were computed for same set of encrypted image used to find correlations,
that is Eim = e

(
I′im, Lim

0 , vCGL, PBC, 12, 6
)
. GDD values in Table 4 demonstrate the technique

ability to well scramble images.

4.1.4. Comparisons

In this section a comparison is performed between the proposed XOR-CGL image
encryption scheme and other methods on the literature using the differential and statis-
tical metrics. Table 5 shows NPCR, UACI and information entropy comparison between
the proposed scheme and other methods on literature and Table 6 compares correlation.
Comparisons indicate that NPCR values were high and UACI were close to ideal 33%.
Information entropy varied and improvement is on order. As for correlation the scheme
produced required week correlation across different tested orientations.

Table 5. NPCR and UACI comparison between proposed scheme and other algorithms.

Author Year
NPCR% UACI% Info. Entropy

Lena Cameraman Peppers Lena Cameraman Peppers Lena Cameraman Peppers

[46] 2020 99.786 99.791 - 30.325 27.637 - 7.994 7.994 -

[47] 2021 99.62 99.63 - 33.50 33.56 - 7.996 - -

[48] 2021 99.624 - 99.603 33.422 - 33.427 - - 7.997

[49] 2022 99.646 99.588 99.65 33.439 33.505 33.455 7.997 7.997 7.997

Proposed 2023 99.597 99.467 99.489 28.07 37.075 31.934 6.873 6.049 7.571

Table 6. Correlation comparison between proposed scheme and other algorithms.

Author Year

Correlation

Lena Cameraman Peppers

Hor. Ver. Dia. Hor. Ver. Dia. Hor. Ver. Dia.

[48] 2021 0.0069 - - −0.0036 0.0048 0.0073 −0.017 −0.0334 −0.0073

[49] 2022 −0.0035 0.0076 −0.0026 −0.0252 −0.006 −0.0078 - - -

[50] 2021 - 0.0479 0.0075 - - - 0.0211 0.0129 0.0013

[51] 2021 0.0031 0.0005 0.0003 0.002 0.0016 0.0013 0.0015 0.0029 −0.0019

Proposed 2023 −0.041 −0.017 −0.031 0.032 0.127 −0.083 −0.027 −0.104 0.022

GDD metric was used to indicate the robustness and effectiveness of various image
scrambling techniques in related literature. With that GDD metric can be utilized for
comparing the proposed technique with other scrambling algorithms given that same test
images are used. Table 7 shows a comparison between GDD of proposed scheme and other
CA based scrambling techniques. Note some of test images were replaced to provide a
GDD comparison across more images as compared scrambling algorithms were evaluated
with different images by their authors. The results show that the proposed algorithm had
better GDD on most of test images.
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Table 7. Comparing different CA based scrambling techniques GDDs.

Author Method Lena Cameraman Barbara Gold Hill Man 5.1.12 7.1.04

[15] Game of
Life 0.9320 0.8971 0.8749 - - - -

[19] Elementary
CA 0.9311 0.8926 - - - - -

[24] Elementary
CA - 0.8780 0.8680 0.9000 0.8460 0.8980 0.8810

[52] Game of
Life 0.9200 0.8954 - - 0.9590 0.9317 0.9456

Proposed
Method XOR-CGL 0.9650 0.9793 0.8117 0.9531 0.9460 0.9234 0.9772

4.2. Encrypted Faces Recognition with LDA Classification

Based on the results of the previous subsection, it is clear that the encryption technique
is effective, entire ORL dataset is encrypted with single key Eim = e

(
I′im, L0, vCGL, PBC, 15, 9

)
.

Figure 9 shows samples of encrypted subjects’ images. In recognition pipeline 80% of en-
crypted subject’s images are reserved for training the model. Remaining 20% is used
for testing.
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Following encryption of ORL dataset, entire dataset is scaled with standard scaling
for elimination of any potential bias in data. Next after splitting of dataset, training set is
processed with LDA for extraction of features required for classification of test data. Note
that in ORL dataset there are 40 subjects and each subject has 10 samples, 8 of which are
used for training and 2 for testing resulting in 320 training sample and 80 testing samples.

Applying random forest classifier, the model was able to achieve 96.25% accuracy.
Metrics evaluated are precision, recall, F1-score and accuracy. Those metrics defined by [53]
are detailed in Table 8. True positive, true negative, false positive and false negative are
given symbols tp, tn, f p and f n respectively.

Table 8. Evaluation metrics in classification report.

Metric Formula

Precision precision =
tp

tp+ f p (21)

Recall recall = tp
tp+ f n (22)

F1-score F1 =
(
1 + β2)× precision×recall

β2×precision+recall (23)

Accuracy Accuracy =
tp+tn

tp+tn+ f p+ f n (24)

Other metrics in Table 9 are support, macro average and weighted average. Since
support value is the same for all classes as 2 test sample are provided per class the values
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for macro average and weighted average are the same as arithmetic mean and would have
no effect in computing corresponding metrics in classification report.

Table 9. Evaluation metrics report with random forest classifier. Highlighted in blue are results in
encrypted test set and orange represents results on original test set.

Precision Recall F1-Score Support
Enc. Test

Set
Ori. Test

Set
Enc. Test

Set
Ori. Test

Set
Enc. Test

Set
Ori. Test

Set
Enc. Test

Set
Ori. Test

Set
Accuracy 0.96 0.09 80 80

Macro
Average 0.97 0.02 0.96 0.09 0.96 0.04 80 80

Weighted
Average 0.97 0.02 0.96 0.09 0.96 0.04 80 80

To prove the proposed scheme capability of withstanding spoofing attacks, the same
classification test was run again however this time testing test was replaced with original
test images i.e., before encryption. This simulates the situation in which an attacker was
able to obtain an authenticated person’s face image only and didn’t encrypt the face
image. In this case classification accuracy of the system was low at 8.75% only. The low
classification accuracy indicates that the system is not able to classify unencrypted features
and authenticity can only be gained with correctly classified images. Evaluation metrics
results for original test image against encrypted features database are highlighted with
orange on Table 9.

5. Discussion

Using a model trained to recognize encrypted face images with high accuracy, this
paper proposes a solution to spoofing’s vulnerability in facial image recognition systems.
The implementation of such a model requires developing an image encryption algorithm
for encrypting face images used for training the recognition model. This image encryption
scheme is based on XOR pixel substitutions and CA pixel scrambling.

To evaluate the encryption performance of the image encryption algorithm, it is
necessary to analyze the encrypted images encoded with the encryption scheme. Statistical
analysis and differential analysis were used in the analysis. Based on the differential
analysis with NPCR test, the image encryption scheme produced a high percentage of
pixels’ difference between the original image and the encrypted image. A NPCR of 99%
or higher was achieved in all test images. UACI was used to perform another differential
analysis. On test images, the results on UACI fluctuated between 33 % and 15% within
the ideal range. A statistical analysis of the data was conducted using the following five
tests: histogram, correlation, key analysis, information entropy, and GDD. XOR operation
on pixels’ values changed the histogram in encrypted images, so histogram matching
could not identify encrypted images. A very weak correlation was observed between the
original and encrypted images for the entire image, as well as in the vertical, horizontal,
and diagonal directions, due to a very low similarity between the original and encrypted
images. Key analysis in done by firstly determining key space for encryption algorithm
which is u×

(
2size(L0)

)
where u is size of the set of unique paris of k and n values; then

testing sensitivity of algorithm by decrypting an encrypted image with slightly different key.
This method had excellent key sensitivity, since no visual information could be extracted
when decrypting the same image with slightly different keys. For encrypted grayscale
images, the information entropy produced different values. Some were extremely close to
8, while others were lower. Based on GDD values, the proposed image encryption scheme
produced exceptional results exceeding those obtained from other methods described in
related literature.

The following observations were made about the robustness and limitations of the
proposed image encryption scheme:
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• Image encryption algorithms produce very different images when they change the
values of pixels in encrypted images. A very weak correlation was observed in all
cases, and NPCR values exceeded 99% in every case.

• In this method, the key space is very large, and it grows as the size of the image to
be encrypted and the number of evolutions selected for configuring the encryption
key increases.

• According to the proposed scheme, GDD values were exceeding those found in some
related literature on image encryption methods based on CAs for the same images.

• A scheme for encrypting images changed the histogram to resist histogram matching
attacks, but changing the pixel values with XOR is not sufficiently secure, as an XORed
image would have a similar histogram to an encrypted image, hence a more robust
scheme to substitute pixels must be incorporated into the algorithm.

• Both UACI and information entropy values can be considered acceptable, but either
one can be enhanced with a better pixel’s substitution scheme.

By analyzing image encryption algorithms, the algorithm is implemented into the face
recognition model pipeline by encrypting the face images used to train the LDA-based
model. Several experiments were performed on the model using the ORL dataset. The
model’s accuracy and spoof-resistance were tested in two main experiments. For the first
experiment, the entire ORL dataset was encrypted with the same key, then it was split
into 80% for training and 20% for testing. In classifying encrypted face images, the system
achieved 96.25% accuracy using a random forest classifier. A second experiment used the
same encrypted training set but used original images for testing the model. Only 8.75%
of the results were accurate in the second experiment. Since both input face images must
be encrypted with the same key for a highly accurate recognition rate to be achieved, the
LDA-based recognition system is highly resilient to spoofing attacks.

In information systems containing secret or sensitive information, such a system can
be used to authenticate users. Authentication can then be obtained once the user adds the
required encryption key configurations as well as capturing the user’s face. Whenever a
system user face identity is revealed by spoofing, the attacker needs to have the correct
encryption key configuration otherwise authenticating the system is very difficult. Table 10
shows sensitivity of the model when the testing set was encrypted with slightly different
key Eim = e

(
I′im, L0, vCGL, PBC, 14, 9

)
from the one used in encrypted testing set in Table 9,

i.e., first experiment. Here the accuracy decreased significantly to 66.25%.

Table 10. Evaluation metrics report with random forest classifier for testing set encrypted with
slightly different key.

Precision Recall F1-score Support

Accuracy 0.66 80

Macro Average 0.67 0.66 0.62 80

Weighted
Average 0.67 0.66 0.62 80

As in the case of the image encryption scheme, the following points concerning the ef-
fectiveness and limitations of LDA based encrypted faces recognition model were observed:

• The proposed LDA based encrypted faces recognition model produced high accuracy
in classification of encrypted faces images with the same encryption key reaching an
accuracy of 96.25%.

• The model is highly sensitive to encrypted face images with slightly different key. The
model accuracy dropped to 66.25% when it was tested with testing set encrypted with
a slightly different key.

• The model is able to effectively resist spoofing attacks. Testing model with original
images testing set showed that the model achieved 8.75% accuracy only.
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• The model security is limited with robustness of image encryption scheme used. The
weakness of the image encryption scheme introduces vulnerabilities to encrypted
faces recognition model.

• The image encryption scheme needs to be robust enough to provide effective en-
cryption performance however; the image encryption scheme must retain enough
features in resulting encrypted images in order for the model to distinguish between
different classes.

6. Conclusions

In conclusion, biometric based recognition systems including face recognition are vul-
nerable to spoofing attacks in which an attacker could assume the identity of authenticated
individual by obtaining an artificial copy of that individual’s biometric. The solution pro-
posed in this paper is integration of image encryption scheme into face recognition pipeline.
This addition in recognition pipeline requires the attacker to submit an encrypted copy of
same individual face image with correct key used for encryption of features database in
order to gain false authentication.

Experimentation was performed for XOR-OTCA CGL image encryption scheme firstly
to prove its robustness. Differential and statistical analysis showed that all testing images
had more than 99% NPCR, correlation at almost 0, and high values for GDD metric. Key
space was u×

(
2res(L0)

)
and key is sensitive to slight changes as no useful information

can be extracted from images decrypted with slightly different keys. After proving the
robustness of image encryption scheme, experimentations were performed on LDA based
face recognition scheme with integrated image encryption scheme. Testing showed that
the proposed pipeline had an accuracy of 96.25% in classifying encrypted test face images
from encrypted features database on ORL dataset. The same test was conducted with ORL
original test face images against encrypted features database; this time the accuracy was
low at 8.75% which proves the proposed scheme capability to withstand spoofing attacks.
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Appendix A

Table A1. Recorded NPCR and UACI values on Yale dataset.

Subject 1
NPCR% 99.723 99.679 99.702 99.298 99.708 99.694 99.561 99.689 99.734 99.727 99.7
UACI% 38.129 37.682 38.222 30.642 38.454 38.073 21.891 38.198 37.928 38.266 37.867

Subject 2
NPCR% 99.734 99.762 99.696 99.623 99.727 99.727 99.668 99.752 99.716 99.739 99.752
UACI% 40.962 38.875 38.902 35.887 39.501 39.501 33.462 39.081 39.493 38.403 39.184
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Table A1. Cont.

Subject 3
NPCR% 99.763 99.769 99.792 99.344 99.817 99.817 99.438 99.79 99.781 99.808 99.784
UACI% 42.674 44.391 43.901 36.389 43.613 43.613 26.951 43.55 43.628 43.403 43.495

Subject 4
NPCR% 99.737 99.779 99.765 99.603 99.74 99.747 99.361 99.747 99.785 99.75 99.764
UACI% 41.591 40.895 41.163 34.745 41.251 41.097 24.89 41.097 40.955 40.947 41.289

Subject 5
NPCR% 99.65 99.738 99.739 99.542 99.771 99.76 99.552 99.767 99.747 99.801 99.796
UACI% 36.549 38.378 38.485 31.218 38.229 38.311 22.701 38.329 38.181 38.69 38.43

Subject 6
NPCR% 99.693 99.776 99.709 99.608 99.754 99.754 99.767 99.722 99.776 99.758 99.759
UACI% 41.645 39.221 38.18 32.146 38.26 38.26 43.915 38.666 38.855 39.134 38.865

Subject 7
NPCR% 99.748 99.776 99.769 99.235 99.777 99.777 99.439 99.781 99.755 99.756 99.8
UACI% 42.273 44.19 44.254 35.767 43.831 43.831 33.181 44.636 44.004 44.208 44.247

Subject 8
NPCR% 99.757 99.832 99.82 99.405 99.793 99.832 99.619 99.808 99.811 99.813 99.794
UACI% 42.001 43.325 41.585 33.345 42.078 43.325 34.071 40.547 41.728 41.708 41.193

Subject 9
NPCR% 99.742 99.803 99.769 99.595 99.768 99.768 99.641 99.805 99.785 99.808 99.803
UACI% 41.498 41.478 41.776 34.993 41.728 41.728 35.227 42.406 41.953 41.877 41.737

Subject 10
NPCR% 99.729 9.787 99.804 99.553 99.76 99.779 99.426 99.765 9.764 99.757 99.747
UACI% 42.121 43.653 43.969 34.986 43.578 43.731 39.447 43.724 43.844 42.946 43.403

Subject 11
NPCR% 99.634 99.706 99.732 99.733 99.757 99.742 99.421 99.657 99.731 99.706 99.706
UACI% 42.714 42.278 42.765 37.832 42.808 42.657 39.969 41.079 42.562 42.76 42.389

Subject 12
NPCR% 99.687 99.718 99.645 99.615 99.729 99.729 99.74 99.667 99.652 99.686 99.655
UACI% 37.653 37.55 36.404 34.901 38.363 38.363 40.079 36.028 35.311 36.109 36.036

Subject 13
NPCR% 99.837 99.824 99.819 99.684 99.837 99.801 99.564 99.829 99.84 99.85 99.841
UACI% 45.053 44.111 44.262 38.299 44.316 44.213 34.996 44.252 44.297 43.954 44.47

Subject 14
NPCR% 99.719 99.81 99.779 99.702 99.779 99.779 99.721 99.784 99.794 99.777 99.8
UACI% 42.373 43.286 43.574 33.404 43.198 43.198 36.772 43.779 43.192 43.556 43.274

Subject 15
NPCR% 99.761 99.745 99.793 99.218 99.8 99.777 99.6 99.789 99.779 99.774 99.784
UACI% 41.005 41.252 43.096 33.5 42.052 43.066 32.021 42.633 41.855 42.053 42.644
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