
Citation: You, Z.; Shen, K.; Huang, T.;

Liu, Y.; Zhang, X. Application of A*

Algorithm Based on Extended

Neighborhood Priority Search in

Multi-Scenario Maps. Electronics 2023,

12, 1004. https://doi.org/10.3390/

electronics12041004

Academic Editors: Ionica Oncioiu,

Stelian Brad and Fuji Ren

Received: 31 January 2023

Revised: 14 February 2023

Accepted: 15 February 2023

Published: 17 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Application of A* Algorithm Based on Extended Neighborhood
Priority Search in Multi-Scenario Maps
Zhiyu You *,† , Keyu Shen †, Tao Huang, Yongxin Liu and Xiaofeng Zhang

Key Laboratory of Electronic Information of State Ethnic Affairs Commission, College of Electrical Engineering,
Southwest Minzu University, Chengdu 610041, China
* Correspondence: youzhiyu@swun.edu.cn
† These authors contributed equally to this work.

Abstract: The robustness of the traditional A* algorithm of path planning is poor due to its excessive
number of traversal nodes, slow search speed, and large turning angle. Aiming to solve the above
problems, a multi-scenario adaptive A* algorithm based on extended neighborhood priority search
is proposed. Firstly, this algorithm designs the heuristic function that can adapt to various scene
changes by quantifying the scene map information, and the search weight is adjusted adaptively
to enhance the robustness and adaptability of the algorithm. Secondly, the search strategy based
on extended neighborhood priority is adopted to improve the orientation of the algorithm, and the
redundant node removal strategy is used to smooth the path to reduce the number of traversed
nodes and the turning angle. Finally, simulation tests are conducted in several representative map
environments. The test results show that the proposed algorithm is superior to the traditional A*
algorithm due to its stronger robustness and significantly improved performance metrics, with an
84.95% reduction in the number of traversal nodes, an 83.84% reduction in the number of path nodes,
a 62.28% reduction in turning points on the path, a 77.38% reduction in the total turning angle, and a
58.47% reduction in the search time.

Keywords: A* algorithm; adaptive weights; heuristic function; path planning

1. Introduction

With the rapid development of artificial intelligence and robotics, driverless robots,
a hotspot in the academic field around the world, are widely used to replace manual opera-
tions in a wide range of areas, such as the service industry, urban safety, space exploration,
etc. In unmanned robot technology, path planning is one of the key technologies to achieve
driverless robots, which plans a collision-free path from the starting node to the target
node for unmanned robots in the working environment with obstacles and ensures the
planning path meets certain optimization principles (such as faster search speed, shorter
path distance, etc.) as the optimal path [1]. Therefore, quick and efficient planning of a
relatively optimal path that is safe and collision-free is of great significance for artificial
intelligence and robotics, as it can provide robots with intelligence and movement accuracy.
According to the degree of mastery of map scene information, driverless robots’ path
planning can be divided into local path planning and global path planning [2,3].

Local path planning requires better hardware devices with high computing and
information processing capabilities because of its real-time collection of surrounding map
scene information to correct the search orientation [4]. Therefore, the robot has good
obstacle avoidance ability, and at the same time, has high robustness to environmental
errors and noise. Due to the lack of global path information, local path planning cannot
guarantee that the planning path will be globally optimal, and it can even finally fail [5].
The accuracy of the planned path given by the global path planning, which is based on prior
global map information, depends on the accuracy of obtaining map scene information [6].

Electronics 2023, 12, 1004. https://doi.org/10.3390/electronics12041004 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12041004
https://doi.org/10.3390/electronics12041004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1052-812X
https://doi.org/10.3390/electronics12041004
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12041004?type=check_update&version=2


Electronics 2023, 12, 1004 2 of 18

If there is an error in the map environment information and too much noise, it will make it
less robust [7,8], and the globally optimal path cannot be obtained.

In global path planning algorithms, the A* algorithm [9,10] using the heuristic search
method is one of the most commonly used path planning algorithms, with its excellent
pathfinding completeness and path optimization. It is widely used for path planning in
the field of unmanned driving, for example, urban logistics [11–16], environmental per-
ception [17–20], underwater navigation [21–23], and robotic arm design [23]. Therefore,
the traditional A* algorithm has always been the focus of scholars’ research. In the litera-
ture [24], a new distance calculation method was designed to find the shortest path, but
the path-finding time increased. Previous research [25] set the safe distance to make the
path smoother and extended the search neighborhood to make the planned path distance
shorter, but the search was less efficient. In other research [26], the path-finding time and
the number of redundant nodes were reduced by changing the calculation method and
function weight, but the weight ratio needed to be redistributed according to the specific
map, which was less robust. The Chebyshev distance has been used as a heuristic function
weight in the literature [27], and the introduction of parent nodes strengthens its influence,
which greatly improves the search speed, but it easily falls into local optimization and the
global optimization of the path cannot be guaranteed. For mobile robots with special work
needs, for example, in reference [28], the energy loss factor was introduced to ensure that
the total energy consumption of the final robot is the lowest, but the algorithm has a large
amount of calculation and is not superior in path length. Previous authors [29–32] intro-
duced dynamic windows into traditional A* algorithms to enable better obstacle avoidance,
but the search speed was slower and required high device performance.

As can be seen from the above literature, the improved methods of the A* algorithm
primarily include the optimization of the distance calculation function, the expansion of
the neighborhood, path smoothing, and combination with other intelligent algorithms.
However, the performance robustness of these improved algorithms is weak and they
cannot guarantee good applications in various scene maps. Furthermore, some of the
improved algorithms have high requirements for the hardware and software performance
of mobile robots, as shown in Table 1. The improved A* algorithm in the existing literature
is optimized at the expense of other performance factors, so it will be superior to the
traditional A* algorithm in some performances, but it is not guaranteed to be applicable to
any map.

Table 1. Performance comparison of several improved A* algorithms in the literature.

Algorithm

Robustness
Real-Time

Adaptability Search Efficiency Path
Optimization Path SmoothnessStability Performance

Robustness

Improved A* [24] moderate weak weak weak strong moderate
Improved A* [25] strong weak moderate weak strong strong
Improved A* [26] strong weak weak moderate weak moderate
Improved A* [27] weak weak weak weak weak weak
Improved A* [28] moderate moderate moderate weak weak weak

Improved A* [29–32] moderate moderate strong weak moderate strong

Based on the above literature and aimed at improving the current weaknesses of
the traditional A* algorithm, such as poor robustness, too many traversal nodes, and
the large path turning angle, a multi-scenario adaptive A* algorithm based on extended
neighborhood priority search (ENMSA-A* algorithm) is proposed in this paper. The
ENMSA-A* algorithm realizes search weight adaptive adjustment of the heuristic function
via the adaptive control strategy and introduces an extended neighborhood priority search
and redundant node deletion strategy to guide and smooth the path planning, which causes
the ENMSA-A* algorithm to traverse fewer nodes and a smoother path in path planning
and has stronger robustness and adaptability to multi-map scenes.

The main contributions and innovations of this paper are summarized as follows:



Electronics 2023, 12, 1004 3 of 18

(1) We designed an ENMSA-A* algorithm that adaptively adjusts the search weight of the
heuristic function based on the obstacle distribution of the scene map, which adopts
the fitting priority search strategy and can update the movement direction in real time
according to the search location, which is suitable for a variety of scene maps, and the
comprehensive performance is better than the traditional A* algorithm.

(2) We determined the distribution of obstacles in the scene map by segmentation and
then fusion and designed a more robust heuristic function on this basis.

(3) According to the relative position relationship between vectors, we designed a new dy-
namic programming matrix and assigned priority in the extended 16 neighborhoods,
so as to enhance the guidance and search speed of the ENMSA-A* algorithm.

(4) By judging the distance and connectivity between each four turning points, a better
route can be selected to obtain a relatively smooth path, which makes the ENMSA-A*
algorithm more suitable for the daily work of mobile robots.

The rest of this paper is organized as follows: Section 1 introduces the current research
status and related works. Section 2 describes the principle of the traditional A* algorithms.
Section 3 describes the specific process of the ENMSA-A* algorithm and designs the
algorithm performance robustness evaluation index. Section 4 analyzes the simulation
results of various algorithms under various scenario maps. Section 5 focuses on the
conclusions of this work.

2. Traditional A* Algorithm

The A* algorithm [7] was proposed by Peter Hart, Nils Nilsson, and Bertram Raphael,
and its core idea is to find the minimum distance of the movement path from the starting
position to the target position, which draws on the Dijkstra algorithm and the Best-First
Search algorithm, and its total movement path distance estimation function f (n) is:

f (n) = g(n) + h(n) (1)

where n represents the current position during path planning, g(n) represents the actual
distance of movement from the start position to the current location, h(n) represents the
estimated distance of movement from the current location to the target location (also known
as the heuristic function), and f (n) represents the total movement path estimate from the
starting position to the target location. The relationship between the current node n and
g(n) in the path planning process is shown in Figure 1.

Figure 1. Diagram of the relationship between nodes.

In Figure 1, S(n) represents the step-by-step distance from the parent node (n − 1) to
the current node n, S(n + 1) represents the step-by-step distance from the current node n
to the next node (n + 1), and g(n) is the actual distance traveled from the starting node
to the (n − 1) node, the value of which is the sum of g(n − 1) and S(n). Thus, the actual



Electronics 2023, 12, 1004 4 of 18

distance g(n) can be expressed as the sum of the planned path distances for each segment,
from which it can be deduced that the expression of the path planning total movement
path estimation function f (n) is:

f (n) =
n

∑
i=1

S(i) + h(n) (2)

According to the pathfinding principle of the A* algorithm and the expression of f (n), it
can be known that the A* algorithm needs to constantly judge and compare the surrounding
neighboring nodes in the process of planning the path. When a large number of nodes need
to be traversed, the corresponding node movement cost needs to be calculated, so the open
list and the closed list need to be established to store the relevant information of each node.
Note that it is necessary to establish the open list labeled as OpenList to store the nodes
that need to be visited and start up the closed list labeled as ClosedList to store the nodes
that have already been visited.

The A* algorithm path planning diagram based on the Manhattan distance is shown
in Figure 2, in which the lower-left corner of each square is the true moving cost generation
value g(n) from the starting node to the current node, the lower right corner represents the
estimated mobile generation value h(n) from the current node to the target node, and the
upper left corner represents the overall cost estimate f (n) from the starting node through
the current node to the destination node. The green and red grids are the starting and
target nodes, and the gray grids are the obstacles. According to the definition of OpenList
and ClosedList mentioned above, and in connection with the basic principles of the A*
algorithm, it can be seen that the light blue grids are the nodes recorded in ClosedList, and
light green grids are the nodes recorded in OpenList but rejected for inclusion by ClosedList.

Figure 2. Schematic diagram of A* algorithm path planning based on Euclidean Distance.

First, the A* algorithm path planning needs to iterate all the surrounding neighboring
nodes and calculate the corresponding movement distance value, then record the node
with the smallest f (n) into the ClosedList, continue to traverse and access other nodes in
the OpenList, continuously update the judgment of the ClosedList until the target location
is found, and then reverse the ClosedList output as the final path.

3. ENMSA-A* Algorithm

The traditional A* algorithm has poor robustness, and path planning will continue to
search back and forth; furthermore, too many unnecessary nodes were traversed. Therefore,
this results in a slow search speed and smooth path planning. To solve the above problems
of the traditional A* algorithm, this paper optimizes the A* algorithm from three aspects:
Adaptability, guiding direction, and path smoothing. It then forms an ENMSA-A* algorithm
with fewer nodes, a smaller turning angle, a smoother path, and stronger robustness in the
path planning process.



Electronics 2023, 12, 1004 5 of 18

3.1. Adaptive Weight Strategy

In order to obtain the optimal path, the value of f (n) needs to be calculated in real-
time to obtain the next planning path. If h(n) is much less than g(n), then f (n) can be
approximately equal to g(n); at this time, the A* algorithm is approximated to the Dijkstra
algorithm, the traversal nodes will increase, and the search efficiency will be greatly
reduced; if h(n) is much larger than g(n), then the A* algorithm gradually evolves into the
Best-First-Search algorithm, which will speed up the path planning speed, but it is easy to
obtain a locally optimal solution. Therefore, choosing the appropriate heuristic function
h(n) will affect the performance of the A* algorithm.

At present, there are three common forms of heuristic function h(n): Euclidean Dis-
tance, Manhattan Distance, and Diagonal Distance. We use the starting point coordinate
(s1, s2) and the end coordinate (g1, g2), and the three distances calculation formulas in the
cartesian coordinate system of the map are shown in Equation (3), where Diagonal = min
(|s1 − g1| + |s2 − g2|), Straight = |s1 − g1| + |s2 − g2|.

Euclidean Dis tan ce =
√
(g1 − s1)

2 + (g2 − s2)
2

Manhat tan Dis tan ce = |g1 − s1|+ |g2 − s2|
Diagonal Dis tan ce = 1.4× Diagonal + (Straight− 2× Diagonal)

(3)

Among the three distance calculation formulas, the Euclidean distance has the highest
calculation accuracy, so this paper chooses to use the Euclidean distance as the heuristic
function h(n). On this basis, an adaptive weight factor is added to improve its adaptability
in multi-scene maps. Since the weighted heuristic function h′(n) will affect the performance
of the A* algorithm, it will even directly lead to an algorithmic imbalance and tilt towards
other algorithms. Therefore, in order to solve the problem of an algorithm imbalance and
realize the adaptability of h(n) to multi-map scenes, this paper enhances the real-time and
robustness of h′(n) by introducing the adaptive weight function W(Obs_P) of the obstacle
distribution rate Obs_P. As the search progresses, the distribution of obstacles in the map
scene changes, and h′(n) can adapt to the Obs_P change and adjust its search step size to
avoid an algorithm imbalance.

h′(n) = W(Obs_P)× h(n)× K (4)

where K is the ratio of the actual map to the simulated raster map. The obstacle distribution
rate Obs_P will affect the heuristic function h′(n), and the results of the path planning will
also change. Therefore, it is necessary to combine the obstacle distribution information
in the map and the changing map area to be searched to select the appropriate obstacle
distribution rate Obs_P.

This paper will first divide and then fuse the concept, dividing the map into three
parts: The Global map, the Real-time map, and the Rear map, as shown in Figure 3. In this
figure, the blue square is the current node, the solid yellow circle is the starting node, the
red five-pointed star is the target node, the black square is the obstacle, and the black arrow
indicates the search direction. The blue area enclosed by the starting node and the target
node is the Global map, the red area around the current node during the search process
is the Real-time map, and the yellow area surrounded by the current node and the target
node is the Rear map. Among them, both the Real-time map and the Rear map will change
with the search node. Then, the distribution of the three map obstacles is comprehensively
analyzed to obtain the final Obs_P, so as to ensure the real-time adaptability of W(Obs_P).

Note (s1, s2), (g1, g2), and (n1, n2) are the coordinates of the starting node, the target
node, and the current node, respectively. The number of obstacles in the Global map is
recorded as x1 and the obstacle distribution rate is recorded as p1, the number of obstacles
in the Real-time map is recorded as x2 and the obstacle distribution rate is recorded as p2,
and the number of obstacles in the Rear map is recorded as x3 and the obstacle distribution
rate is recorded as p3. The formula for calculating the distribution rate of obstacles in



Electronics 2023, 12, 1004 6 of 18

the three maps is shown in Equation (5), where a, b, c, and d are constants, indicating the
current node’s distance to the surrounding area.

p1 = x1/(|s1 − g1| × |s2 − g2| − 2)
p2 = x2/(|(n1 − a)− (n1 + b)| × |(n2 − c)− (n2 + d)|)
p3 = x3/(|(n1 − g1)| × |(n2 − g2)| − 2)

(5)

According to the distribution information of the three obstacles in Figure 3, the Obs_P is
obtained by Equation (6), where A, B, and C are constant coefficients and A + B + C = 3. The
proportional relationship of the three constant coefficients indicates the extent to which the
distribution of obstacles in the three maps affects pathfinding.

Obs_P = (A× p1 + B× p2 + C× p3)/3 (6)

In order to improve the robustness of the A* algorithm, the influence of Real-time map
coefficient B and Rear map coefficient C should be appropriately enhanced to determine
the final obstacle distribution rate Obs_P.

Figure 3. How the map is selected during pathfinding.

From Equation (6), it can be seen that the definition field of Obs_P is [1]. When Obs_P
is large, there will be more obstacles on the map and the scene environment will be more
complex. At this time, the weight of h(n) needs to be reduced, so that the A* algorithm is
close to the Dijkstra algorithm to ensure that the planned path is relatively better. Similarly,
if Obs_P is small, there will be few obstacles on the map, the scene environment will be
simpler, and the weight of h(n) can be appropriately increased so that the algorithm can
approach the Best-First-Search algorithm to improve the search speed.

Through analysis, it can be seen that Obs_P and W should be inversely proportional to
each other, and the function is designed from this aspect. Four adaptive weight functions
W(Obs_P) based on Obs_P in the map scene were designed and are shown in Figure 4.

If the adaptive weight W(Obs_P) <= 1, the value of h′(n) may be less than or equal
to the actual distance from the current node to the target node, which can ensure that the
optimal path is planned, but the number of nodes to be traversed is large, and the search
efficiency will be reduced; if the adaptive weight W(Obs_P) is too large, the value of h′(n)
will be far more than the actual distance from the current node to the target node, which
will easily lead the pathfinding to a locally optimal solution. In this case, the pathfinding
optimality cannot be guaranteed. To enhance the real-time and search efficiency of the
algorithm and ensure the final planning path is relatively short, the curve function W3
shown in Figure 4 is finally selected as the adaptive weight factor W(Obs_P) of the heuristic
function in this paper, and the total movement path distance estimation function f (n) shown
in Formula (7) is obtained.

f (n) =
n

∑
i=1

S(i) + h′(n) =
n

∑
i=1

S(i) + (−Obs_P× (1− ln(Obs_P)) + 2)× h(n)× K (7)



Electronics 2023, 12, 1004 7 of 18

To verify the impact of the adaptive weight strategy on path planning, the traditional
A* algorithm and the adaptive weight strategy algorithm are simulated in the same map
scene, and the test results are shown in Figure 5. Suppose that when the raster map size is
30 × 30, the value of K is 1 in Formula (5) of the test, a = b = c = d = 3 in Equation (6), and A,
B, and C are calculated in the ratio of 1:3:2 for the Obs_P of the obstacle distribution rate.

Figure 4. Four adaptive weight function curves based on barrier distribution rate.

Figure 5. Two algorithmic tests: (a) Traditional A* algorithm; (b) adaptive weight strategy algorithm.

In Figure 5, the solid yellow circle is the starting node, the blue solid five-pointed
star is the target node, the black node is the obstacle, the red node is the traversed and
recorded node, and the green node is the discarded node. From Figure 5, it can be seen that
the number of nodes traversed by the traditional A* algorithm is much greater than the
number of nodes traversed by the adaptive weight strategy algorithm, and its performance
indicators are shown in Table 2.

Table 2. Comparison between the traditional A* algorithm and the adaptive weight strategy algorithm.

Algorithm Number of Nodes Path Nodes Number of Turns Turn Angles (◦) Path Time (s) Path Length (m)

Traditional A* 280 32 9 405 0.702 36.7990

Adaptive weight
strategy 87 34 12 540 0.241 37.9706

The data in Table 2 show that the adaptive weight strategy causes the number of
nodes traversed and the pathfinding time to be less than the traditional A* algorithm. The
efficiency of the algorithm traversing nodes after taking the adaptive scene weight is higher



Electronics 2023, 12, 1004 8 of 18

than the traditional A* algorithm. The variation curve of Obs_P and W(Obs_P) for some
obstacles implemented by the adaptive weight strategy in Figure 5b is shown in Figure 6.

Figure 6. Function variation plot.

In Figure 6, the left vertical axis is the obstacle distribution rate and the right vertical
axis is the corresponding adaptive weight size. From Figures 5b and 6 and Table 2, it can
be seen that the adaptive weight strategy can effectively judge the surrounding obstacles
in real-time when planning the road and adjust the adaptive weights according to the
distribution rate of obstacles, thereby reducing the number of traversal nodes and the
pathfinding time and improving the efficiency of traversal nodes.

In order to verify the robustness of the algorithm and ensure that the algorithm can
adapt to the scene map change and regenerate a new route, the traditional A* algorithm
and adaptive weight algorithm are tested by randomly generating obstacles in the map
of Figure 5, and the planning results are shown in Figure 7, and the specific values of the
corresponding performance parameters are shown in Table 3. In Figure 7, the solid blue line
represents the adaptive weighting strategy algorithm, and the solid black line represents
the traditional A* algorithm.

Figure 7. Algorithm robustness verification: (a) Randomly generate 120 obstacles; (b) randomly
generate 150 obstacles; (c) randomly generate 180 obstacles.

In Figure 7, although the traditional A* algorithm and the adaptive weight strategy
algorithm differ in the selection of some nodes, they can both find a safe and collision-free
path. Therefore, both algorithms are acceptable in terms of stability, and the adaptive weight
strategy algorithm can adapt itself according to the map obstacle distribution. The search
step size can be adjusted in real time, and the pathfinding completeness of the algorithm
can also be ensured. In addition, according to the data in Table 3, the adaptive weight



Electronics 2023, 12, 1004 9 of 18

strategy algorithm is excellent in traversing node efficiency and search speed compared to
the traditional A* algorithm. In order to ensure that the final comprehensive performance
robustness of the algorithm proposed in this paper is better, the adaptive weight strategy
algorithm will continue to be designed. In this way, the algorithm can be tilted towards a
better search direction, so as to ensure its robustness and real-time adaptability.

Table 3. Comparison of the planning results of the two algorithms on a map with randomly generated
obstacles.

Maps Algorithm Number of
Nodes Path Nodes Number of

Turns
Turn Angles

(◦) Path Time (s) Path Length
(m)

(a) Traditional A* 242 32 12 540 0.673 37.5563
Adaptive weight strategy 93 34 10 450 0.255 37.5563

(b) Traditional A* 230 33 12 540 0.614 36.9706
Adaptive weight strategy 78 33 10 450 0.231 36.9706

(c) Traditional A* 163 32 12 540 0.412 36.3848
Adaptive weight strategy 60 32 10 450 0.189 36.3848

3.2. Extend the Neighborhood Priority Search Strategy

The traditional A* algorithm searches for four neighborhoods or eight neighborhoods,
resulting in a limited search space and an optimal search path. So, it is necessary to
design and select the scope of the search neighborhoods for the specific situation. If the
neighborhood increases, the probability of finding the optimal path will increase, while
the search speed will become slower; if the neighborhood decreases, the search speed will
increase, but the optimal path will be not guaranteed, and pathfinding may even fail.

Considering the advantages and disadvantages of extending and reducing neigh-
borhoods, in this paper, an extended neighborhood strategy based on the vector location
relationship is designed to assign the search priority to neighbors and then search according
to priority. Given that the search speed is reduced by too many neighborhoods, the 24 neigh-
borhood directions that coincide with the traditional 8 neighborhoods are removed to form
16 neighborhood expansion directions, as shown in Figure 8.

Figure 8. Extended 16 neighborhoods.

Note that (dx, dy) is the change in the horizontal coordinate between the current node
and the adjacent node, and S(i) is the step-by-step distance from the current node to the
adjacent node. The dynamic programming matrix when searching using the traditional A*
algorithm is:

Motion = [dx, dy, S(i)] (8)

Based on the extended neighborhood, this paper assigns priority to the search neigh-
borhood to enhance the heuristics of g(n) so that it can improve the search speed while
ensuring the optimal fit of the pathfinding direction. The black dotted line in Figure 9
represents the search vector from the starting node (parent node) to the target node, the



Electronics 2023, 12, 1004 10 of 18

solid black line is the movement vector from the starting node to the child node, and the
angle between the vectors is denoted as θ.

Figure 9. Vector angle representation.

Let
→
a = (ax, ay),

→
b = (bx, by), the cosine of the angle θ between the vectors is:

cosθ =

→
a ·
→
b∣∣∣→a ∣∣∣× ∣∣∣∣→b ∣∣∣∣ =

ax× bx + ay× by√
(ax)2 + (ay)2 ×

√
(bx)2 + (by)2

(9)

According to Equation (9), the smaller the angle between vectors θ, the more its di-
rection of movement fits the optimal search direction. Therefore, the function of cosθ is
designed as the weight of the step-by-step movement distance S(i) when searching for
neighborhoods, ensuring that the neighborhood suitable for the search vector is preferen-
tially selected during the pathfinding process, thereby enhancing the heuristic and guiding
of g(n) and improving the search speed. However, the value of this function should be
moderate, because if it is too large, it cannot be applied to complex map environments, and
if it is too small, the path optimization is not obvious enough. The improved S(i)′ is:

S(i)′ = [(1− cosθ)/N + 1]× S(i) = [(1− cosθ)/N + 1]×
√
(dx)2 + (dy)2 (10)

In order to enhance the heuristics of g′(n) and ensure the relative equilibrium between
g′(n) and h′(n), the value of function S(i)′ should be moderate, if it is too large, it cannot be
applied to complex map environments, and if it is too small, the path optimization is not
obvious enough. From the above analysis, it can be seen that the value of N will directly
affect the performance of the algorithm. In this paper, through the simulation results, the
variables are compared after control, and the following table is finally obtained.

As can be seen from Table 4, the smaller the N value, the larger the S(i)′, and the
algorithm performance is weaker than that of the traditional A* algorithm. The larger the
N, the smaller the S(i)′, and the algorithm traverses the number of nodes, and the search
speed is improved. Among them, N = 8 is the inflection point of the state transition, and
the algorithm gradually tends to be stable. However, in different application scenarios, the
value of N needs to be redetermined. In order for the algorithm proposed in this paper to
be able to adapt to various occasions, the state transition inflection point value of 8 in the
table is used as N.

At this point, the g′(n) dynamic programming matrix for extending neighborhoods
and assigning priorities is:

Motion = [dx, dy, S(i)′] (11)



Electronics 2023, 12, 1004 11 of 18

The pathfinding principle of algorithms (1), (7), and (10) and A* algorithms can be
fitted to the priority search f (n) as shown in equation (12).

f (n) =
n

∑
i=1

S(i)′ + h′(n) (12)

Table 4. The influence of the selection of N value on the performance of the path planning algorithm.

Number of
Nodes

Path
Nodes

Number of
Turns

Turn Angles
(◦) Path Time (s) Path Length

(m)

Traditional A*
algorithm

8 search
neighborhood 280 32 9 405 0.709 36.7990

16 search
neighborhood 35 17 15 321.0588 0.394 41.0197

Extend
Neighborhood
Priority Search

Strategy

N = 1 35 21 13 386.3406 0.355 41.4274

N = 4 35 22 15 480.3623 0.331 41.6055

N = 8 35 21 15 321.0588 0.302 41.0197

N = 12 35 21 15 321.0588 0.302 41.0197

N = 16 35 21 15 321.0588 0.302 41.0197

N = 20 35 21 15 321.0588 0.302 41.0197

3.3. Redundant Node Deletion Strategy

Aimed at the problem of too many summary storage traversal nodes and turning
angles in the process of mobile robot path planning, this paper designs a redundant node
deletion strategy based on the relationship between the location of the turning point and
the connection to smooth the initial path. The specific steps are as follows:

Step 1: Calculate the position relationship between the three nearby nodes in the initial
path, and judge and store the turning nodes. When the total number of turning nodes is
less than 4, the loop ends.

Step 2: Determine if the four adjacent turning nodes (Nodes 1, 2, 3, and 4) can be
connected directly without passing through obstacles.

Yes: Record the location of the endpoint in the shortest path and delete the other nodes.
No: Take node 4 as the starting point. Use Step 2 again to judge the three turning

nodes after that. When the number of nodes is judged to be less than 3, go to Step 4.
Step 3: Take the record node as the starting node. Go to Step 2.
Step 4: Connect the recorded turning nodes and update the path. Go to Step 1
After several judgments, the redundant nodes are removed, resulting in a smoother

path and fewer nodes to pass. The schematic diagram of the redundant node deletion
strategy is shown in Figure 9.

In Figure 10a, A->B->C->D is the planning path, the yellow squares A, B, C, and D are
the turning points, the red dotted lines indicate that the barriers between two points can
be directly connected, and the blue dotted lines indicate that there are obstacles between
two points that cannot be directly connected. Since both A->D and B->D in Figure 10a
pass through obstacles, the redundant node deletion strategy can be used to conclude that
A->C-> D is the optimal path. Assuming that the paths A->D, A->C, and B->D in Figure 10b
do not pass through obstacles, the redundant node deletion strategy directly determines
that A->D is the optimal path based on the principle of the shortest line segment between
two points. If B->D in Figure 10c also does not pass through obstacles, the redundant node
deletion strategy will compare the distance between A->C->D and A->B->D and then select
the path with the shortest distance as the optimal search path.

To test the effectiveness of the redundant node deletion strategy, the map in Figure 10d
was used for the path planning test, and the search path shown in Figure 10d was obtained.
The solid black line is the planned path for the undeleted redundant nodes, and the solid



Electronics 2023, 12, 1004 12 of 18

red line is the planning path for the deletion of the redundant node. The results in this
figure show that after deleting the redundant nodes, the number of traversal nodes that
need to be stored in the planned path is reduced and the path is smoother, which alleviates
the storage pressure of the mobile robot, reduces the probability of collision between the
mobile robot and obstacles, and also solves the problem of additional energy loss and
waiting time generated by the robot when turning.

Figure 10. Redundant node removal principle and test: (a) No direct path; (b) three direct paths;
(c) no direct path; (d) redundant node deletion test.

3.4. ENMSA-A* Algorithmic Process

The adaptive weight strategy grants the algorithm adaptability to arbitrary maps and
improves the pathfinding speed, but the path is not smooth enough and the path length
cannot be guaranteed to be shorter. The extended neighborhood priority search strategy
uses 16 extended neighborhoods and assigns the priority search strategy to further reduce
the total number of traversal nodes, the number of path nodes, and the total turning angle
of the path, which can ensure that the path planned by the algorithm is relatively better and
can appropriately reduce the pathfinding time. The redundant node deletion strategy can
reduce the redundant nodes on the path, smooth the path processing, and reduce the node
storage pressure of the mobile robot. In order to ensure the A* algorithm can effectively
reduce the number of nodes traversed and the total turning angle, and improve the search
speed in any map path planning, in this paper, the adaptive weight adjustment strategy
was integrated with the extended neighborhood priority search strategy and the redundant
node deletion strategy, which combines the advantages of the three aspects to make up for
the shortcomings of a single aspect, finally forming the ENMSA-A* algorithm proposed in
this paper whose algorithm flow is shown in Figure 11.

In Figure 11, the blue box is an adjustment of the adaptive weight of the traditional A*
algorithm, the red box is the extended neighborhood priority search strategy introduced,
and the green box part is the redundancy node deletion strategy introduced. By introducing
a three-sided adjustment strategy, the robustness of ENMSA-A* proposed in this paper can
be improved, and it can be optimized in terms of the number of nodes traversed and the
smoothness of the path.



Electronics 2023, 12, 1004 13 of 18

Figure 11. ENMSA-A* algorithm flowchart.

3.5. Performance Robustness Evaluation Index Design of Algorithms

Because of the different emphases of the algorithm researchers on the improvement of
the traditional A* algorithm, it is difficult to compare the advantages and disadvantages of
various improved A* algorithms. In order to facilitate the comparison of the performance
robustness of different improved algorithms, this paper proposes the algorithm validity
V as the criterion for judgment. The number of nodes traversed during the pathfinding
process is recorded as S, the number of turning nodes is recorded as Wp, the final planned
path length is recorded as L, and the pathfinding time is recorded as T. By synthesizing
the five performance indicators, namely, the number of nodes, the turning point, the
total turning angle, the pathfinding time, and the path length, the algorithm validity V
evaluation index shown in Equation (13) is designed.

V = w× (1− Sn

S0
) + x× (1− W pn

W p0
) + y× (1− Ln

L0
) + z× (1− Tn

T0
) (13)

Among them, w, x, y, and z are custom constant coefficients, subscript 0 represents
the traditional A* algorithm indicator value, and subscript n represents an improved A*
algorithm indicator value. This paper is an improvement of the problem in which the
number of nodes and the total turning angle of the traditional A* algorithm are too large
when planning the path. To ensure that the final planned path can be relatively optimal,
w = x = y = 3 and z = 1. From Equation (13), it can be seen that the algorithm validity V of
the traditional A* algorithm is 0, and if the algorithm validity V of the improved algorithm
is greater, the comprehensive performance of the improved algorithm is better. Since the
algorithm validity V value depends on multiple performance indicators, even in the same



Electronics 2023, 12, 1004 14 of 18

map scenario, the location of the starting node and the target node will lead to changes in
the relevant performance indicators. Therefore, it is necessary to ensure that the algorithm
validity V calculation of various algorithms is based on the same scene map, the same
starting node and target node, and the same size raster map. The resulting V can be used as
a performance robustness evaluation index to evaluate the advantages and disadvantages
of each algorithm.

4. Comparative Analysis of ENMSA-A* Algorithm

In order to test the performance of the ENMSA-A* algorithm proposed in this paper,
MATLAB 2020b was used on the Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz computer
to simulate the traditional A* algorithm, the improved A* algorithm [25], the improved
A*algorithm [26], the improved A*algorithm [27], and the ENMSA-A* algorithm proposed
in this paper in six scenario maps.

The path planning simulation results are shown in Figure 12, and the related data are
plotted as a line chart in Figure 13.

Figure 12. Demonstration of improved algorithm path planning for different map environments:
(a) Simple Map 1; (b) Simple Map 2; (c) Complex map; (d) 30 × 30 random map; (e) 50 × 50
extended map; (f) 50 × 50 random map; (g) the shapes and various color curves in this figure refer to
the content.

Based on the above experimental and simulation data analysis, combined with the
algorithm validity value V, the traditional A* algorithm, other improved algorithms in the
literature, and the ENMSA-A* algorithm mentioned in this paper, the data comparison is
shown in Table 5.



Electronics 2023, 12, 1004 15 of 18

Figure 13. Comparison data of algorithm path planning simulation: (a) Number of nodes; (b) path
nodes; (c) number of turns; (d) turn angles (◦); (e) path time (s); (f) path length (m).

Table 5. Percentage of performance reduction for each improved A* algorithm in the literature
compared to the traditional A* algorithm.

Traditional A* Improved A* [25] Improved A* [26] Improved A* [27] ENMSA-A*

Number of nodes 1 19.67 0 83.54 84.95
Path nodes 1 39.74 38 74.24 83.84

Number of turns 1 5.56 15.28 34.72 65.28
Turns angles 1 47.78 38.16 55.54 77.38

Path time 1 −200.79 −1.1 85.85 58.47
Path length 1 8.92 2.28 −19.47 3.36

V 0 0.2827 1.2026 4.4438 5.5555

The data in Table 5 shows that the improved A* algorithm in the literature [25]
introduces a security factor and an extended 20-neighborhood search, so it is the shortest
in terms of the length of the planning path, but its pathfinding time increased by 200.79%
compared with the traditional algorithm, and the number of traversal nodes and the
total inflection angle were also weaker than the ENMSA-A* algorithm proposed in this
paper. The improved A* algorithm in the literature [26] is not robust due to the improved



Electronics 2023, 12, 1004 16 of 18

weighting ratio needing to be averaged by multiple artificial weighting adjustments based
on different scene maps, which are pre-planned and rely on scene environment information,
and the pathfinding time is 1.1% higher than the traditional A* algorithm. Although
the evaluation index of algorithm performance robustness is higher than the traditional
algorithm by 1.2026, the improvement in other aspects is not optimal. The improved A*
algorithm in the literature [27] introduces the parent node and enhances the Chebyshev
distance as the heuristic function weight, which reduces the total number of traversing
nodes by 83.54% compared with the traditional algorithm, and the pathfinding time is
also reduced by 85.85%, but at the cost of increasing the path length by 19.47%. There
are multiple locally optimal solutions in the path, which cannot guarantee global path
optimization, so the evaluation index of algorithm performance robustness V is 4.4438.

The ENMSA-A* algorithm proposed in this paper is optimal in four aspects: Traversal
nodes, path nodes, the path turning angle, and the total turning angle. Compared with
the traditional A* algorithm, the number of traversal nodes is reduced by 84.95%, the path
nodes are reduced by 83.84%, the turning angle on the path is reduced by 62.28%, the
total turning angle is reduced by 77.38%, the pathfinding time is reduced by 58.47%, and
the total distance of the planned path is reduced by 3.36%. In summary, the ENMSA-A*
algorithm proposed in this paper has good performance, and its performance robustness
evaluation index V is 5.555, which is the highest among the four improved algorithms,
indicating that the ENMSA-A* algorithm has excellent performance robustness.

Through the simulation test of Figure 12 and the comparative analysis of the data in
Figure 13 and Table 5, the robustness of the ENMSA-A* algorithm proposed in this paper
is further verified. Among them, stability is reflected in the ENMSA-A* algorithm, which
can be applied to a variety of map scenarios and can adjust the search weight adaptively.
Because the ENMSA-A* algorithm traverses fewer nodes and has faster speed, smoother
path planning, and optimal or relatively optimal total path length, the performance ro-
bustness of the ENMSA-A* algorithm is superior and more suitable for the daily work of
mobile robots.

5. Conclusions

Aimed at the shortcomings of the traditional A* algorithm, such as poor robustness, the
large number of nodes traversed, and the excessive total turning angle, this paper proposes
an ENMSA-A* algorithm based on the combination of the adaptive weight adjustment
heuristic function strategy, the extended domain priority search strategy, and the redundant
node deletion strategy.

Firstly, the heuristic function of the traditional A* algorithm is introduced to the
adaptive weight adjustment factor that can judge the distribution of obstacles in real time,
which enhances the robustness of the algorithm, reduces the number of traversal nodes, and
improves the search speed. Secondly, by extending the 16 neighborhoods, the algorithm
can find a better path and reduces the number of traversal nodes and the pathfinding time
by assigning a priority search strategy; then, by removing the redundant nodes between
turning angle, the planned path is further smoothed so that the total turning angle is
smaller and the number of traversal nodes is less.

In order to verify the EMSA-A* algorithm proposed in this paper, simulation tests
were performed in MATLAB. By controlling variables, several algorithms were tested on
path planning in the same scene map, and relevant data were recorded. We chose a different
scene map later to avoid accidents. Simulations and comparison experimental tests showed
that the robustness, real-time adaptability, search efficiency, path optimization, and path
smoothness of the proposed ENMSA-A* algorithm were significantly improved.

However, the ENMSA-A* algorithm proposed in this paper relies more on map
information, and if the map accuracy error is large, it will directly affect the final path
planning result. In future work, the ENMSA-A* algorithm will be integrated with the local
path planning algorithm and the trajectory tracking algorithm to reduce its dependence on



Electronics 2023, 12, 1004 17 of 18

the global map information, realize dynamic obstacle avoidance, and become more suitable
for the daily work of mobile robots.

Author Contributions: Conceptualization: Z.Y. and K.S.; resources: Z.Y. and K.S.; validation: K.S.,
Y.L., and X.Z.; writing—original draft: Z.Y., K.S., and T.H.; writing—review and editing: Z.Y. and K.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Fundamental Research Funds for the Central Universities
of Southwest Minzu University (No. 2021101) and the Science and Technology Project of Chengdu
Science and Technology Bureau (No. 2021-RK00-00079-ZF).

Acknowledgments: The authors would like to thank anonymous referees for their kind suggestions
and corrections that helped improve the original manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhu, D.Q.; Yan, M.Z. Survey on technology of mobile robot path planning. Control Decis. 2010, 25, 961–967.
2. Bao, Q.Y.; Li, S.M.; Shen, H.; Men, X.H. Survey of local path planning of autonomous mobile robot. Transducer Microsyst. Technol.

2009, 28, 1–4.
3. Lu, X.H.; Zhang, G.L. Summarization on indoor service robot navigation. Robot 2003, 25, 80–87.
4. Liang, J.; Han, D.; Pan, Z.; Chen, L.; Chen, F.; Du, W. Review on Critical Technologies of Robot-based Intelligent Garages. J. Mech.

Eng. 2022, 58, 1–20.
5. Hernández, B.; Giraldo, E. A Review of Path Planning and Control for Autonomous Robots. In Proceedings of the 2018 IEEE 2nd

Colombian Conference on Robotics and Automation (CCRA), Barranquilla, Colombia, 1–3 November 2018; pp. 1–6.
6. DíazBayona, J.L.; GonzálezPilonieta, J.D.; MolinaLache, R.M.; Prada, S.R. Development of a control system for path following

applications in an AGV using computer vision. In Proceedings of the 2020 IX International Congress of Mechatronics Engineering
and Automation (CIIMA), Cartagena, Colombia, 4–6 November 2020; pp. 1–6.

7. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci.
Cybern. 1968, 4, 100–107. [CrossRef]

8. Wang, Z.; Hu, X.; Li, X.X.; Du, Z.Q. Overview of Global Path Planning Algorithms for Mobile Robots. Comput. Sci. 2021, 48, 19–29.
9. Mac, T.T.; Copot, C.; Tran, D.T.; De Keyser, R. Heuristic approaches in robot path planning: A survey. Robot. Auton. Syst. 2016, 86,

13–28. [CrossRef]
10. Shen, K.; You, Z.; Liu, Y.; Huang, T. Mobile robot planning based on improved A* algorithm. Appl. Res. Comput. 2023, 40, 75–79.
11. Zhang, H.; Li, H.; Liu, H.; Xu, W.; Zou, Y. Path Planning for Logistics Unmanned Aerial Vehicle in Urban Area. J. Transp. Syst.

Eng. Inf. Technol. 2020, 20, 22–29.
12. Zhang, X.Y.; Zou, Y.S. Collision-free path planning for automated guided vehicles based on improved A* algorithm. Syst.

Eng.-Theory Pract. 2021, 41, 240–246.
13. Pang, L.; Cao, Z.; Yu, J. A pedestrian-aware collision-free following approach for mobile robots based on A* and TEB. Acta

Aeronaut. Astronaut. Sin. 2021, 42, 524909.
14. Qi, Z.G.; Huang, P.F.; Liu, Z.X.; Han, D. Research on Path Planning Method of Spatial Redundant Manipulator. Acta Autom. Sin.

2019, 45, 1103–1110.
15. Zhang, W.; Zhang, Y.; Zhang, H. Path planning of coal mine rescue robot based on inproved A* algorithm. Coal Geol. Explor. 2022,

50, 185–193.
16. Liu, G.; Ma, Y.; Qi, F.; Xu, Y. Flight path planning for urban logistics UAV based on improved A*-APF algorithm. Flight Dyn. 2022,

40, 16–23.
17. Lian, Y.; Xie, W. Improved A* path planning algorithm for vision-guided multi-AGV system. Control Decis. 2021, 3, 1881–1890.
18. Jiao, Q.; Chen, X.; Zheng, Z.; Bai, Y.; Liu, Y.; Zhang, Z.; Sun, L. Dynamic path planning of unmanned aerial vehicle based on

crowd density prediction. Prog. Geogr. 2021, 40, 1516–1527. [CrossRef]
19. Wang, H.; Yin, P.; Zheng, W.; Wang, H.; Zuo, J. Mobile Robot Path Planning Based on Improved A* Algorithm and Dynamic

Window Method. Robot 2020, 42, 346–353.
20. Yan, X.; Chang, T.; Guo, L. Research on path planning of unmanned vehicle in off-road battlefield environment. J. Ordnance Equip.

Eng. 2022, 43, 288–293.
21. Ouyang, M.; Ma, Y. Path planning for gravity aided navigation based on improved A* algorithm. Chin. J. Geophys. 2020, 63,

4361–4368.
22. Zhang, D.; Sun, X.; Fu, S.; Zheng, B. Cooperative path planning in multi robots for intelligent warehouse. Comput. Integr. Manuf.

Syst. 2018, 24, 410–418.
23. Zhao, C.; Jiang, H.; Xu, M.; Man, W.; Yang, W.; Chen, F. Application of improved A algorithm in unmanned ship path planning. J.

Zhejiang Univ. Technol. 2022, 50, 615–620.

http://doi.org/10.1109/TSSC.1968.300136
http://doi.org/10.1016/j.robot.2016.08.001
http://doi.org/10.18306/dlkxjz.2021.09.007


Electronics 2023, 12, 1004 18 of 18

24. Ju, C.; Luo, Q.; Yan, X. Path Planning Using an Improved A-star Algorithm. In Proceedings of the 2020 11th International
Conference on Prognostics and System Health Management (PHM-2020 Jinan), Jinan, China, 23–25 October 2020; pp. 23–26.

25. Junwei, Y.; Jing, H.; Guang, C. Improved Safety-First A-Star Algorithm for Autonomous Vehicles. In Proceedings of the 2020 5th
International Conference on Advanced Robotics and Mechatronics (ICARM), Shenzhen, China, 18–21 December 2020; pp. 706–710.

26. Wang, Z.; Zeng, G.; Huang, B.; Fang, Z. Global optimal path planning for robots with improved A* algorithm. J. Comput. Appl.
2019, 9, 2517–2522.

27. Liu, S.; Ma, Y.; Meng, S.; Sun, S. Improved A* algorithm for path planning of AGV. J. Comput. Appl. 2019, 39, 41–44.
28. Zhang, H.; Zhang, Y.; Liang, R.; Yang, T. Energy-efficient pathplanning method for robots based on improved A* algorithm. Syst.

Eng. Electron. 2023, 45, 513–520.
29. Li, X.; Hu, X.; Wang, Z.; Du, Z. Path Planning Based on Combinaion of Improved A-STAR Algorithm and DWA Algorithm. In

Proceedings of the 2020 2nd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM), Manchester,
UK, 15–17 October 2020; pp. 99–103.

30. Gao, H.; Ma, Z.; Zhao, Y. A Fusion Approach for Mobile Robot Path Planning Based on Improved A* Algorithm and Adaptive
Dynamic Window Approach. In Proceedings of the 2021 IEEE 4th International Conference on Electronics Technology (ICET),
Chengdu, China, 7–10 May 2021; pp. 882–886.

31. Yang, H.; Li, Y.; Sun, H.; Li, Z. Research on path planning of mobile robots with optimal path. J. Mach. Des. 2022, 39, 58–67.
32. Zhong, X.; Tian, J.; Hu, H.; Peng, X. Hybrid Path Planning Based on Safe A* Algorithm and Adaptive Window Approach for

Mobile Robot in Large-Scale Dynamic Environment. J. Intell. Robot. Syst. 2020, 99, 65–77. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s10846-019-01112-z

	Introduction 
	Traditional A* Algorithm 
	ENMSA-A* Algorithm 
	Adaptive Weight Strategy 
	Extend the Neighborhood Priority Search Strategy 
	Redundant Node Deletion Strategy 
	ENMSA-A* Algorithmic Process 
	Performance Robustness Evaluation Index Design of Algorithms 

	Comparative Analysis of ENMSA-A* Algorithm 
	Conclusions 
	References

