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Abstract: Although language modeling has been trending upwards steadily, models available for
low-resourced languages are limited to large multilingual models such as mBERT and XLM-RoBERTa,
which come with significant overheads for deployment vis-à-vis their model size, inference speeds,
etc. We attempt to tackle this problem by proposing a novel methodology to apply knowledge
distillation techniques to filter language-specific information from a large multilingual model into
a small, fast monolingual model that can often outperform the teacher model. We demonstrate the
viability of this methodology on two downstream tasks each for six languages. We further dive
into the possible modifications to the basic setup for low-resourced languages by exploring ideas
to tune the final vocabulary of the distilled models. Lastly, we perform a detailed ablation study to
understand the different components of the setup better and find out what works best for the two
under-resourced languages, Swahili and Slovene.

Keywords: knowledge distillation; low-resource NLP; sustainable NLP; language modeling

1. Introduction

The advent of extremely large language models (LLMs) in the past decade has pushed
Natural Language Processing (NLP) for under-resourced languages beyond all foreseen
expectations, while the building and training of these LLMs has been an impetus for low-
resource NLP, the deployability and sustainability of these technologies for real-world
use cases is an often ignored secondary aspect. Even though multilingual models such
as mBERT [1] and XLM-R [2] excel at low-resource and multilingual NLP, they often fail
when it comes to this second aspect because they are extremely large language models with
vocabularies of hundreds of languages, which may not be necessary for the deployment
of a model for a single low-resourced language. Unlike for high-resourced languages,
under-resourced languages often lack the availability of a single monolingual language
model, such as CamemBERT [3] for French or RobBERT [4] for Dutch, thus making large
jointly trained multilingual models a necessary evil; while one can argue that mBERT
and XLM are still deployment-friendly in some ways, the trends toward an exponential
rise in parameters will soon make it impossible to deploy research-grade released models.
For example, this occurs in the mT5-XXL (13 billion parameters) [5] and the Turing ULR
(4.6 billion parameters) [6] series of models, which are currently state of the art on the
XTREME [7] data set—a comprehensive benchmark for cross-lingual transfer learning for a
large variety of NLP tasks and languages.

While there have been significant strides forward in reducing model footprints, in-
ference, and training times with methodologies such as Distillation, Quantization, and
Pruning, these methodologies are often tested in a general direction, i.e., reducing a multilin-
gual model as a whole, or in a task-specific setting, i.e., creating a smaller model specialized
for a particular task. In this work, we attempt to explore the consequences of using the
ideas behind knowledge distillation and applying these to large pre-trained multilingual
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models, to filter knowledge specific to a target language into a new, smaller, and faster
student language model which performs identically to or even outperforms the teacher in
some cases. The main contribution of this paper is to dive deep into standard knowledge
distillation practices and explore optimal strategies to distill individual target languages
from a large multilingual model.

The first objective of the proposed research is to explore the standard knowledge dis-
tillation setup designed for generic full-model distillation for two widely used multilingual
models, i.e., multilingual-BERT (mBERT) and XLM-RoBERTa (XLM-R). Important to note
is that we attempt to only keep information for a single target language for the student.
We build upon the pilot experiments for Eliquare, first proposed in Singh and Lefever [8],
and perform all experiments on a set of six carefully selected languages accounting for as
much variation as possible with regard to their typologies, language families, and available
resources. We consider Dutch and French to be representative of high-resourced languages,
Hindi and Hebrew are considered moderately resourced languages, and Swahili and
Slovene are representatives of low-resourced languages. For each language, we evaluate
the obtained distilled students on a set of two downstream tasks: one being a syntactic
word-level task such as Part-of-Speech Tagging and the other a semantic sentence-level
task such as Sentiment Analysis.

A second, and perhaps more vital objective of this research is to propose ideas that
specifically benefit the construction of students for low-resourced languages, i.e., Swahili
and Slovene in our case. We attempt to do this in two stages. Firstly, we explore the
principles behind altering the vocabularies of the final student to better suit the low-
resource setting. While joint models have large combined vocabularies which assist in
multilingual aspects, for a distilled student model only the vocabulary of a single target
language is required. While the high-resourced languages used in our work (Dutch and
French) have enough sub-words in the multilingual vocabulary to adequately represent
the language space, the middle- and under-resourced languages have an extremely poor
representation. In mBERT, for example, a medium-resourced language such as Hebrew
has around 2483 sub-words in the vocabulary accounting for approximately 2% of the
whole vocabulary, while Thai only has 370 sub-words, amounting to around 0.3% of the
vocabulary. We, therefore, explore techniques to reduce the vocabulary sizes both pre- and
post-distillation while keeping the performance consistent across all benchmarks. Secondly,
we perform a detailed ablation study to explore what components and hyper-parameters
specifically impact the performance of the distilled student in the low-resource setting. We
specifically dive deeper into the two most vital components of the distillation framework:
the loss and softmax temperature.

The remainder of this paper is structured as follows. In Section 2, we first describe
relevant related research on knowledge distillation and shortcomings of large multilingual
language models for low-resourced settings, and Section 3 discusses the fundamental prin-
ciples of classic knowledge distillation and builds from the DistilBERT [9] setup towards a
language-specific distillation setting. Section 4 discusses the experimental setup and results
of the basic setups and demonstrates the viability of the proposed Eliquare methodology.
Sections 5 and 6 further venture into advanced modifications possible to the distillation
setup, to suit a low-resource language setting, while Section 5 discusses the concept of
altering the vocabularies of the multilingual models, to only accommodate a low-resourced
language, while also speeding up the distillation process further. Section 6 discusses the
impact of some of the key hyper-parameters and their impact on the student models for
Slovene and Swahili. Section 7 concludes this paper by summarizing our findings and
suggesting ideas for future research.

2. Related Work

This work takes inspiration from two research strands: the methodology of language-
specific distillation stems from research into sustainability and efficiency in NLP, while
the application for low-resourced settings stems from work about the deficiencies of large
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multilingual models. Therefore, the related work is divided into two sections. Section 2.1
covers the sustainability for large language models research strand and more specifically
zooms in on different methodologies that have been employed for knowledge distillation
through the last decade, as well as their evolution. Section 2.2 covers work delving into
the analysis of multilingual LLMs to decipher our understanding of the inner workings of
multilingual representations, and to some extent, the failures of models such as mBERT
and XLM-R.

2.1. Knowledge Distillation

Research into the reduction in deep learning model sizes, inference speeds, training
times, and therefore, distillation, is almost as old as deep learning itself. The term distillation
is also used in the context of data distillation [10], which is an entirely independent strand
of research that focuses on generating high-fidelity data summaries for large datasets. In
this work, however, we focus solely on model distillation, more commonly referred to as
knowledge distillation. While knowledge distillation as we know it today was initially
popularized by Hinton et al. [11], the initial concepts of the distillation methodology were
formalized by Bucilua et al. [12] for distilling the prediction power of an ensemble of teacher
models into a single student. The basic fundamentals behind distillation as defined by
Bucilua et al. have remained consistent over the years. Given a teacher function f (t), learn
a student function f (s) such that f (s) is an approximation of f (t); while this earlier work
explored generating new pseudo-training samples from the approximate distribution of
the training data to learn f (s), Hinton et al. introduced the more reliable methodology of
imitating the prediction by f (t) directly penalizing the distance in logits between f (s) and
f (t). They demonstrated the viability of this approach in various settings, for example, in
Image Recognition and Automatic Speech Recognition.

Initial work in knowledge distillation (KD) primarily focused on ensemble models
and applications such as Automatic Speech Recognition [13] and Autonomous Driving [14].
In NLP, work has been performed with KD for specific task-based settings such as Question
Answering [15], Machine Translation [16], Intent Classification for Voice Assistants [17],
and Text Generation [18]. One of the seminal works, by Tang et al. [19], attempted to distill
task-specific knowledge for sentence-pair tasks such as Natural Language Inferencing (NLI)
and Paraphrasing into a pair of Siamese single-layer BiLSTMs and showed comparable
performance to BERT with only one-hundredth of the parameters. They also opted to
use Mean-Squared Error to align the student and the teacher and found it to work better
in this setting than the standard cross-entropy with soft targets that was proposed by
Hinton et al. [11].

With the construction of Large Language Models (LLMs) such as BERT [1] and XLM-
RoBERTa [2] and their wide adaptation for a wide range of NLP tasks by fine-tuning
them, there has emerged a need for general model reduction strategies to be able to
have miniaturized transformers that could be deployed in practice on, for example, mobile
devices and other low-compute settings. A number of distillation setups for BERT have been
proposed, such as DistilBERT [9], BERT-PKD [20], TinyBERT [21], and MobileBERT [20].
In what follows, we will outline the differences between these distillation methods and
compare their performance on the well-known GLUE (General Language Understanding
Evaluation) benchmark [22]. GLUE is a set of nine carefully selected and varied tasks that
cover a variety of text domains, difficulty, and dataset sizes in the English language and is
often used as a staple benchmark to evaluate language understanding of large models in
English. A summary of the discussed distillation methodologies that we will build upon is
provided in Table 1.
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Table 1. An overview of key distillation strategies. Column 2 describes the student model, column
3 the distillation loss, columns 4, 5, and 6 the inference speed, model size, and performance on
benchmarks relative to the teacher (BERT-base-uncased), respectively. Wherever possible, the speeds,
sizes, and performances refer to the 6-layer variant to allow comparison with other methodologies.

Methodology Student Objective Speed Size Performance

DistilBERT 6-layer KD Loss + 2.0× 1.6× 0.966×768 hidden size Cosine

BERT-PKD 6,4-layer Layer-wise 2.0× 1.6× 0.975×768 hidden size Minimization

TinyBERT
6,4-layer Layer-wise +

2.0× 1.6× 0.998×768 hidden size Attention-heads
Minimization

MobileBERT
12-layer KD Loss +

5.5× 4.3× 0.992×128 hidden size Feature Map +
Attention Loss

DistilBERT, the seminal work by Sanh et al. [9], largely builds on the basic distillation
setup from Hinton et al. [11] by distilling a six-layer BERT student from BERT-base, with a
triplet loss consisting of cross-entropy and Cosine Embedding between the student and
teacher soft targets and the standard Masked Language Model (MLM) Loss. The resulting
student, while having 40% lesser parameters and 60% faster inference speed compared to
the teacher, retains 97% of the performance of BERT-base on the GLUE benchmark dataset.

BERT-PKD (Patient Knowledge Distillation) [20] first introduced the methodology
of using the middle layers in the teacher transformer as additional signals to assist the
student’s learning. They introduce additional loss components which assist each layer in
the student by learning from the output of an analogous layer in the teacher. This patient
layer-by-layer distillation is only performed for each training sample’s (CLS) token rather
than all the sub-words in a sample to speed up the learning process. The experiments
demonstrate that the patiently distilled students outperform basic distilled students with-
out the additional loss components. However, the resulting BERT-PKD with six layers
and identical parameter counts is not able to consistently outperform DistilBERT on the
GLUE benchmark, with BERT-PKD performing better on three out of six tasks tested and
DistilBERT performing better on the remaining three, despite the more fine-grained loss
components introduced in BERT-PKD. A potential explanation could be the better initial-
ization strategy opted for DistilBERT, i.e., using alternate layers in the teacher transformer
to directly initialize the hidden layers of the student.

TinyBERT [21] attempts to perform task-specific distillation in a two-step process, by
first distilling a smaller, four-layer masked language model from BERT-base, and second,
by fine-tuning for task-specific learning stages with augmented data from the original
task dataset. The MLM distillation goes beyond the standard KD setup and applies
a layer-by-layer distillation methodology, where the loss is defined differently for the
embedding layer, the hidden layers, and the prediction layer. This allows the loss of the
hidden layers to include additional attention components from each head aside from the
standard hidden-state components, allowing for significantly fine-grained distillation. This
advanced setup helps TinyBERT retain more than 96.8% of the teacher’s performance on the
GLUE benchmark. Further, the ablation studies clearly demonstrate that attention-specific
distillation losses have a big impact on the distillation performance, even more so than the
hidden state loss components.

MobileBERT [20] follows the completely novel direction of reducing the width (hidden
size) of a transformer instead of the depth (layers). Unlike the other described distillation
strategies, the teacher is retrained with inverted bottleneck layers which reduce the feature-
map sizes of the original BERT-large model. The work further introduces additional
strategies to improve the student, with loss components to transfer information from the



Electronics 2023, 12, 1022 5 of 17

feature maps and attention heads, replacing the layer normalization with a basic linear
transformation and factorizing the embedding layer using 1D convolutions. The student
model is just as big as a BERT-base model in terms of layers, but with a hidden size of
128 compared to BERT-base’s 768, it is 4.3 times smaller and 5.5 times faster for inference
than BERT-base, while being only 0.6% worse than BERT-base on the GLUE benchmark.
As such, it outperforms the previously described approaches. This approach, however,
has substantial computation requirements because it is required to retrain the teacher
BERT-Large.

2.2. Multilinguality in LLMs

Models such as mBERT and XLM introduced the idea of training large multilingual
models with multitudes of zero-shot cross-lingual transfer tasks such as unsupervised
NMT (Neural Machine Translation) [23] and word alignment without parallel data [24].
Conneau et al. [25] further demonstrated that cross-lingual transfer performs adequately
in highly unlikely scenarios, for example, when the training and test data are from two
different domains, or even when languages do not have any shared vocabulary. Despite the
many applications of multilingual modeling, there was until recently little understanding
of how the different representations for each language were structured inside a multilin-
gual LLM. Pires et al. [26] initially began exploring the limits of mBERT’s multilingual
representations with a set of probing experiments. They discovered that while mBERT does
seemingly learn multilingual representations with no cross-lingual signals during training,
these representations are highly limited. Moreover, they found that cross-lingual transfer
tends to work best with typologically similar languages with high lexical overlap. Further
probing also demonstrated mBERT’s surprising flexibility towards code-switching and
changes in scripts. Moreover, it was discovered that representations of the same sentence in
two different languages tend to be very similar, especially in the earlier layers. The authors
further hypothesize that mBERT and similar multilingual models’ ability to create a shared
space for multiple languages comes from being forced to align URLs and numbers, which
forces other word pieces to be aligned closely according to the distributional hypothesis,
which states that linguistic items having a similar distribution over a corpus are likely to
have similar meanings.

Wu and Dredze (2020) [27] performed a seminal study criticizing mBERT’s represen-
tation of low-resourced languages. They found that while mBERT performs well above
baseline scores for the high/medium-resourced languages based on Wikipedia sizes, the
performance for the bottom 30% languages (including languages such as Mongolian and
Yoruba with less than 1 million sentences on Wikipedia) is below baseline; the results
demonstrate that there is a direct correlation between the Wikipedia size of a language and
its resulting performance for downstream tasks in that same language, but this does not
seem to be the only factor. Other variables such as the size of the downstream task dataset
and representation in the multilingual vocabulary seem to be pivotal as well. The authors
also directly compared mBERT to monolingual models for low-resourced languages such
as Latvian, Yoruba, Mongolian, and Afrikaans and concluded that despite mBERT’s bias to
high-resourced languages, the multilingual objective still benefits low-resourced languages
as the multilingual model outperforms the monolingual models in these languages. This
finding once more emphasizes that multilingual models are not only useful for cross-lingual
transfer tasks but that their monolingual capabilities for low-resourced languages can have
a high impact.

In this work, we attempt to connect these two research directions, viz. multilingualism
and knowledge distillation, to solve a fundamental obstruction in the global adaptation of
large multilingual models. We apply the techniques discussed in Section 2.1 to construct
student models that are able to replicate the monolingual performance of the teacher with
a significant size reduction and inference speed increase.
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3. Language Distillation Setup

We begin the system description by explaining the fundamental principles behind a
distillation setup in more detail. While there has been work that is an exception that forgoes
the standard logit setup and uses ideas such as mutual information [28] and graph-based
methods [29], most distillation methodologies work with a few common principles at the
core. Distillation, as previously described, can be simply thought of as the task of finding
the approximation

fs(x) ≈ ft(x) (1)

where fs(x) is the student model’s final output for the training data x, and ft(x) is a teacher
model’s final output on the same data. There can be three broad variables in a distillation
setup. Firstly, the data used for distillation, which determines the type of knowledge being
distilled. For instance, to distill a specialized model for Natural Language Inference (NLI)
(NLI is a sentence-pair task that given a premise, evaluates if a hypothesis is an entailment,
a contradiction, or unrelated to the premise), only information vital for NLI needs to be
filtered from the teacher, and this can be conducted by imitating the teacher’s knowledge
for an NLI dataset, therefore implying that any stored information not relevant to NLI can
be forgotten. A few approaches experiment with augmenting data to boost the learning
towards a target task, but this is usually useful in task-specific settings where labeled
data is a requirement for distillation. The second variable can be the loss function. The
loss function essentially determines how we choose to compare the student to the teacher
during the learning stage. Given a loss metric L(x,y) and a teacher and student prediction
on a sample i represented by ft(i) and fs(i), a minimization objective over a dataset of size
N can be defined as

min.
N

∑
i=0

L( fs(i), ft(i)) (2)

The third and final variable can be how the student model is set up, primarily, the
architecture and the initialization. While most approaches work with an architecture
identical to the teacher but with a smaller number of layers, there has been work that
adopts simpler architectures for the student than for the teacher. A number of initialization
strategies have also been explored since a better initialization can heavily impact the
distillation outcome, as shown by Turc et al. [30].

Regarding the first variable, i.e., the distillation data, our goal is to distill knowledge
relevant to a single target language which is why we use the entire latest Wikipedia dump
for the target language. The minimization objective for that given target language t can
then be simply modified as

min.
N

∑
i:i∈Nt

L( fs(i), ft(i)) (3)

For the second variable, i.e., the distillation objective, Hinton et al. [11] introduced two
vital contributions, which have become fundamental building blocks of most distillation
setups since. Firstly, the error function L(x,y) is defined as the cross-entropy between the
student and teacher logits:

LCE( fs(i), ft(i)) = ft(i)× log( fs(i)) (4)

Secondly, Hinton et al. also introduced the concept of softmax temperature. Instead
of using logits from the teacher directly in the error function LCE, they propose using soft
targets instead, determined by a preset temperature value. Given a temperature value τ and
f (x)k representing the kth output logit given K classes, the soft targets can be generated with

g(x) =
K

∑
k=0

exp( f (x)k)/τ
∑j exp( f (x)k)/τ

(5)
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Thus, softening the probability distribution of the logits if τ > 1 or hardening the
distribution if τ < 1. Softening the targets can produce stable training that reduces the
impact of noisy labels from the teacher model, while hardening can be more useful for
faster convergence when distillation data is hard to come by. Sanh et al’s [9] setup inherits
from the temperature-based soft targets and uses cross-entropy between the soft targets as
the error function L(x,y). Additional loss functions Lcosine and a standard Lmlm for Masked
Language Modeling defined below, are used in addition to LCE

Lcosine( fs(i), ft(i)) = ∑
iεL

1− cos( ft(i), fs(i)) (6)

Lmlm( fs(i), y(i)) = y(i) ∗ log( fs(i)) (7)

While Lcosine is expected to minimize the cosine distance between the soft targets and
the student logits, Lmlm adds an additional component that learns directly from the data
y(i) instead of the teacher outputs. This can serve as a self-correction for those examples
where the teacher is not always reliable, while also speeding up training by adding an
additional learning signal directly from the ground truth. The three losses are combined
with a preset weighted sum,

L = αCELCE + αcosineLcosine + αmlmLmlm (8)

While for the initial setups, we inherit the preset weights (αCE = 5, αcosine = 1,
αmlm = 2) and softmax temperature (τ = 2.0) from Sanh et al. [9], we discuss the impact of
these components further in Section 6.

For the third and final variable, i.e., the student model’s setup, we use an architecture
identical to the teacher, but with 6 encoder layers, in contrast to the 12 teacher layers. We
attempt two alternate setups by changing the vocabulary of the teacher pre-distillation or
of the student directly through post-distillation. This is further covered in Section 5, as the
initial experiments did not involve any changes to the vocabulary. Another important part
of this variable is the initialization of the student. We follow the general approach [9] where
the student is initialized from the teacher’s layers. The authors explore the initialization of
the student with the first 6 layers, or the final 6 layers of the teacher model, but concluded
that using alternating layers of the teacher offers the best initialization, i.e., layer n of
the student is initialized from layer 2n − 1 of the teacher and we, therefore, adopt an
identical initialization.

4. Experiments

For the experiments we build upon the pilot experiments discussed in Singh and
Lefever [8] using mBERT [1], as well as experiment with another state-of-the-art multi-
lingual teacher, i.e., XLM-RoBERTa [31]. We name our approach Eliquare which is the
Latin word for ‘distillation, filtering or refining’. For both setups, the student (Eliquare) is
initialized from the given teacher (mBERT or XML-RoBERTa) using the 2n− 1 approach
described in Section 3.

We experiment with six target languages for distillation: French, Dutch, Hindi, Hebrew,
Slovene, and Swahili. As can be derived from Table 2, these languages have been selected
because they are varied in terms of typology (they all belong to different language groups),
script, and resources available (expressed in the number of available Wikipedia pages;
for reference, English has 57.29 million Wikipedia pages). Based on this latter column,
we consider Dutch and French as representative of high-resourced languages, Hindi and
Hebrew as moderately-resourced languages and Swahili and Slovene as low-resourced in
our experiments and analyses.
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Table 2. An overview of the target languages used for distillation, their genus, scripts and available
Wikipedia pages (in millions).

Language Genus Script Wikipedia Pages (in Millions)

French Romance Latin 12.318 M

Dutch Germanic Latin 4.495 M

Hebrew Semitic Ktav Ashuri 1.380 M

Hindi Indic Devanagari 1.215 M

Slovene Slavic Latin 0.444 M

Swahili Bantu Latin 0.155 M

The same Wikipedia dumps of these target languages are used as distillation data in
order to construct the Eliquare student models with the basic distillation setup. For each
language, we obtain the latest Wikipedia XML dumps and pre-process them for MLM,
with a masking probability of 0.15 and word masking, word replacement, and unchanged
word proportions of 0.8, 0.1, and 0.1, respectively. We also employ the MLM smoothing
parameter (set to 0.7) to emphasize masking of less frequent words. Next, the pre-processed
data is split into two parts for training and validation with a 90:10 split. All students are
trained for 10 iterations over this processed data, using a starting learning rate of 5× 10−4.
As learning from larger batches works better for distillation, we opted for a batch size
of 32 (8 per device) and performed gradient accumulation for 50 steps (effective batch
size of 32 ∗ 50 = 1600). We use the Adam optimizer with an ε of 1× 10−6. The position
embeddings in XLM-RoBERTa are frozen to save some computing time. We store the
student model after every epoch and use the version with the best distillation loss on the
held-out validation set for the evaluation step.

For the evaluation step, a logical choice could be to look at perplexity and validation
loss. However, these are not the best metrics to assess the overall language understanding
of an LLM, since they focus on evaluating the Masked Language Modeling objective, rather
than general language understanding. Instead, we decided to assess the six monolingual
students by fine-tuning them for different language-specific downstream tasks. For each
target language, two downstream tasks have been selected, as summarized in Table 3. One
task each time requires higher-level (semantic) sentence understanding (such as Sentiment
Analysis or News Classification) while the other is highly syntax-dependent (such as Part-
of-Speech Tagging). Please note that for the two under-resourced target languages Slovene
and Swahili, it was not always possible to find available datasets for these tasks. In those
cases, we fell back to the task of named entity recognition or NER, which can be perceived
as a task requiring both semantic (which entities do these refer to in the real world) and
syntactic (often named entities consists of more than one token) understanding.

Table 3. An overview of the two downstream tasks that have been used to evaluate the language
understanding of the Eliquare student models for each target language.

Language Evaluation Task 1 Evaluation Task 2

French Sentiment Analysis UD POS

Dutch Sentiment Analysis UD POS

Hebrew Sentiment Analysis UD POS

Hindi News Genre Classification UD POS

Slovene NER UD POS

Swahili News Genre Classification NER

For Task 1 we employed Sentiment Analysis data from various sources for three
languages: Le et al. [32] for French, Van der Burgh and Verberne [33] for Dutch, and
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Amram et al. [34] for Hebrew. For Hindi and Swahili we relied on News Genre Classifica-
tion data from Hindi2Vec (https://github.com/NirantK/hindi2vec, accessed on 1 January
2023), comprising 14 news classes, and from SNCD (https://huggingface.co/datasets/
swahili_news, accessed on 1 January 2023) comprising 6 news classes in Swahili. Due to
the unavailability of a suitable semantic sentence-level task for Slovene, we used NER data
from Rahimi et al. [35] as an alternative. For Task 2 we relied on the Universal Dependen-
cies (https://universaldependencies.org, accessed on 1 January 2023) (UD) project, which
comprises treebanks with unified POS-tagged data for French (GSD), Dutch (Lassy-small),
Hebrew (HTB), Hindi (HDTB), and Slovene (SSJ). Since there is no UD (or other) treebank
publicly available for Swahili, we fell back to NER and used NER data from the Masakhane
initiative [36].

We train the student of the respective language individually for each downstream task
for 10 epochs with a starting learning rate of 5× 10−5 with a decay of 0.01 after 500 warmup
steps. We select the best validation model (train-validation-test splits are used as provided
by the datasets; however, when this is not provided, an 80-10-10 split is used). All tasks are
evaluated using F1-score, except task 1 for Dutch (DBRD) which is evaluated with accuracy
to allow comparisons with the upper bound.

The results of these experiments are presented in Table 4. Each time we compare the
performance of our student models (Eliquare-mBERT and Eliquare-XLM) to a similarly sized
reference, namely distilmBERT which serves as our baseline. Moreover, a comparison is
made with the two teacher models and we also represent the upper bound (row in gray)
which is each time based on monolingual transformers of the same size as the standard,
BERT-base-uncased for English. These upper bounds, therefore, are of much larger sizes
and trained with multitudes more monolingual data for the target language, while also
having a significantly larger and specialized vocabulary for the script in question. The
best results per transformer algorithm (BERT/RoBERTa) for each language and task are
indicated in bold. From the table, we can observe that the Eliquare models often perform
similarly or in some cases even better than the respective teachers, i.e., mBERT and XLM,
which are much larger in size. The statistical significance of Eliquare-mBERT’s improvement
over the teacher mBERT was validated using the Wilcoxon Signed-Rank (Left-Tailed) Test
(p = 0.017) (Statistically significant if p < 0.05). Moreover, in a number of low-resourced
settings, specifically, for Hebrew (task 2), Slovene (task 1), and Hindi (tasks 1 and 2) the
students sometimes even outperform the upper bound. The monolingual performance
of the Eliquare student models further emphasizes the added value of language-specific
distillation since in low-resource settings (Slovene and Swahili) the much more efficient
and sustainable student models are able to compete in performance with their larger upper-
bounds trained on extensive amounts of monolingual data, making them a better choice
for deployment in practical scenarios. It is important to stress the advantages of Eliquare
students for sustainability and efficiency. The base Eliquare student after vocabulary reduction
(Section 5) has 66 million parameters, which is 2.5 times less than mBERT, and 2 times
less than distilmBERT, while also having a significantly faster inference speed of 0.066 s,
compared to mBERT’s 0.384 s (single V100 GPU with a batch size of 32).

Table 4. A summary of the results for the basic distillation setups for all six languages with mBERT
and XLM-RoBERTa as the teachers, respectively, for Eliquare-mBERT and Eliquare-XLM.

Task 1 Task 2 Task 1 Task 2 Task 1 Task 2

French Hebrew Slovene
Upper bound 0.9338 0.9818 0.8871 0.9620 0.9410 0.9902

mBERT 0.8923 0.9795 0.8512 0.9681 0.9326 0.9791
distilmBERT 0.8773 0.9790 0.8391 0.9597 0.9268 0.9790

Eliquare-mBERT 0.8952 0.9792 0.8567 0.9705 0.9365 0.9822

XLM-RoBERTa 0.9273 0.9827 0.8415 0.9711 0.9409 0.9865
Eliquare-XLM 0.8938 0.9809 0.8494 0.9665 0.9421 0.9865

https://github.com/NirantK/hindi2vec
https://huggingface.co/datasets/swahili_news
https://huggingface.co/datasets/swahili_news
https://universaldependencies.org
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Table 4. Cont.

Task 1 Task 2 Task 1 Task 2 Task 1 Task 2

Dutch Hindi Swahili
Upper bound 0.9300 0.9630 0.2553 0.9208 0.9090 0.8850

mBERT 0.9033 0.9623 0.4744 0.9666 0.8689 0.8490
distilmBERT 0.8812 0.9607 0.4555 0.9597 0.8666 0.8452

Eliquare-mBERT 0.8970 0.9625 0.5066 0.9683 0.8701 0.8632

XLM-RoBERTa 0.9240 0.9655 0.4242 0.9754 0.8816 0.8676
Eliquare-XLM 0.9060 0.9625 0.4264 0.9765 0.8777 0.8633

These results clearly demonstrate, that even with a vanilla distillation setup, it is pos-
sible to obtain better monolingual models for low-resourced languages from a multilingual
teacher. In the next sections, we further explore the changes that could be made to the
vanilla setup to make the language-specific application of distillation even more viable.

5. Vocabulary Manipulation for mBERT

While the Eliquare distilled student models achieve results on par with their respective
multilingual teacher models (see Table 4), there are still issues that need to be addressed
when using them in a monolingual setting. The most vital of these issues pertains to the
multilingual vocabulary of these huge multilingual LLMs.

As visualized in Figure 1, the vocabulary of multilingual models, in this case mBERT,
heavily favors Latin-based languages, while having only a meager few thousand sub-
words for large language groups such as Indic (6545 to be exact, which can be derived
from the circa 12 included languages in mBERT from the Indian sub-continent) and Cyrillic
(10 languages and 13,782 sub-words in mBERT). Having a smaller vocabulary in these
languages thus means less diverse sub-words which inevitably results in some semantically
meaningless alphabet-based tokens in the vocabulary, such as ##a, etc.

Figure 1. A summary of the distribution of vocabulary for 6 different scripts in mBERT (where CJK
stands for Chinese–Japanese–Korean).

As an example, Figure 2 represents the tokenization of long words in English, a
similar high-resourced language (Dutch), a medium-resourced language (Hindi), and a low-
resourced language (Farsi). We compare the tokenization by mBERT’s WordPiece tokenizer
to that of a monolingual model in the respective language. As illustrated in the figure the
tokenization is consistent between mBERT and the monolingual model for English, on
average having a size of around three characters per sub-word. However, this changes
as we go down the resource ladder. For Dutch, some sub-words are only two characters
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long, especially sub-words that do not have much semantic meaning attached to them.
However, the final two sub-words for Dutch still have 4–5 characters and allow them to
have some abstract sense associated with them. Finally, for the final two examples in Hindi
and Farsi, mBERT ends up breaking down the word into each individual character, whereas
the monolingual model considers the example as an independent whole sub-word.

Figure 2. Examples of tokenization for long words in English (EN), Dutch (NL), Hindi (HI), and
Urdu (UR), to show the contrast between the obtained sub-words from mBERT and a state-of-the-art
monolingual transformer for the respective language.

These tokenization issues, combined with the poor overall representation of low-
resourced languages in the vocabulary space are a motivation to investigate strategies
to alter multilingual vocabulary for use in a monolingual target language setting, while
XLM-RoBERTa suffers from many of the same issues, the Word-Piece Tokenizer of mBERT
allows some flexibility to alter the vocabulary even after pre-training, while the Byte-Pair
Encoding (BPE) Tokenizer of XLM-RoBERTa is more rigid and does not allow vocabulary
deletions/additions as easily. This is why for this and the next section we only experiment
with mBERT to alleviate this vocabulary issue. However, we do hope to transfer the
methodologies to XLM-RoBERTa in future work.

Hypothetically, two stages can be discerned when building a monolingual student
with the ideal low-resourced vocabulary. Firstly, mBERT can be purged of any additional
sub-words that may not be needed for a particular target language. We will call this the
VocabReduce step. Two alternate methodologies can be used for this step. On the one hand,
the distillation can work identically to the basic setup, and the vocabulary can be reduced
post-distillation directly from the student by removing unnecessary tokens (as proposed
by Abdaoui et al. [37]. On the other hand, vocabulary can be reduced pre-distillation,
i.e., directly from the teacher. By purging additional sub-tokens from the teacher, we ensure
that the student does not initialize the vocabulary for the additional sub-words. In this step
pre-distillation reduction has a significant advantage over post-distillation as the distillation
can go significantly faster. This is because the sizes of both the student and the teacher
are reduced significantly beforehand, thus reducing the number of parameters and by
extension the computing time for each iteration.

For the second stage additional richer sub-words could be input to the target language
to force the tokenization to not result in meaningless character-based sub-words VocabAmp.
The vocabulary setups for all the discussed methodologies are summarized in Figure 3. It
should be noted that the VocabAmp step is more complex as in order to learn additional
representations for non-existent sub-words one needs to rely exclusively on external data
since the teacher does not possess representations for these missing sub-words. Moreover,
given a mismatch between the logits of the teacher and the student, the standard distillation
loss cannot be computed since it relies on the divergence between the teacher and student
logits. Due to these additional challenges, we consider VocabAmp beyond the scope of this
work and focus on VocabReduce.
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Figure 3. A visual representation of the different vocabulary setups for basic distillation, post-
distillation VocabReduce, pre-distillation VocabReduce, and VocabAmp.

We perform experiments with pre- and post-distillation VocabReduce for all six lan-
guages with mBERT as the teacher. We initialize a list of sub-words for the target language
that we would like to retain, by tokenizing the respective Wikipedia dump and selecting
sub-words that exist in at least 0.05% of the sentences. We then proceed to reinitialize the
transformer’s embedding layer and tokenizer so only the selected sub-words are retained.
For pre-distillation we apply this technique directly to the teacher, while in post-distillation
we apply it to the student after the distillation process. Table 5 shows the result of the
experiments for the two tasks for each of the six target languages, while post-distillation
results in near-identical performance to the basic distillation setup due to the reduction
only taking place afterwards. Pre-distillation comes with minor variance, sometimes better
and sometimes worse compared to post-distillation; however, it is consistently faster to
train due to the significant reduction in the model’s embedding layer sizes. Since the
performance difference is barely noticeable, pre-distill VocabReduce should be the go-to
methodology due to the additional advantages it comes with.

Table 5. An overview of results for the more advanced post- and pre-distill VocabReduce techniques
for all six languages.

Task 1 Task 2 Task 1 Task 2 Task 1 Task 2

French Hebrew Slovene

Post-distill VocabReduce 0.8952 0.9788 0.8565 0.9705 0.9362 0.9819
Pre-distill VocabReduce 0.8881 0.9814 0.8523 0.9735 0.9495 0.9849

Dutch Hindi Swahili

Post-distill VocabReduce 0.8964 0.9622 0.5061 0.9682 0.8691 0.8629
Pre-distill VocabReduce 0.9042 0.9634 0.4979 0.9667 0.8788 0.8522
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6. Analysis for Low-Resourced Settings

While the basic distillation setups seem to be quite robust in obtaining comparable
performance to the multilingual counterparts and in some cases even comparable to the
respective upper-bounds, we look into further adaptations that can be made to make
distillation setups more suitable for the low-resourced setting. To this end, we perform an
ablation study with two vital parts of the distillation pipeline:

1. Loss Components: we attempt to find the most and least impactful components of
the three-fold loss function to better tune loss weights for low-resourced settings.

2. Softmax Temperature: while softening the distribution with a temperature of 2.0 is
standard practice in most distillation settings, we dig deeper and see if hardening or
further softening can have an impact in the low-resourced setting.

To study the impact of these two variables, we perform additional experiments for
the two low-resourced languages: Slovene and Swahili. For the baseline setup, we use the
distilled student from the previous section with pre-distillation vocabulary reduction using
mBERT as the teacher.

For the first ablation study we thus experiment with the three-fold loss function. The
results are presented in Table 6 where the baseline scores (row 1) represent the setup from
Section 4 with losses weighted with alpha values of 5.0, 1.0, and 2.0, respectively. The
second row gives a general indication of the performance when all losses are weighted
equally, while the next three rows show the impact of the individual loss components by
removing them from the setup. We notice a drop in performance. Figure 4 also provides a
visual intuition of the trends by visualizing this drop in performance in the even weights
setting (row 2). The figure demonstrates that each loss component is vital to the setup,
which is in line with the consistent drop in performance (rows 3–5) when removing any of
the losses. It is also possible to infer from the figure that Lmlm is the most pivotal component
of the loss function. This is quite an intuitive finding since the student models often perform
better than mBERT, their teacher. For these students to learn information missing from the
teacher, they would have to rely on knowledge that is not present in the teacher but comes
from external sources. In that respect Lmlm is the only component able to provide such an
external signal. This especially holds in a low-resourced setting, where mBERT’s signals
may not always be reliable.

Figure 4. A representation of the results from Table 6 to visualize the drop in performance (in F1-score)
from the equal weights setup of LCE + Lcosine + Lmlm compared to the baseline.
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Table 6. Results for Slovene and Swahili for both tasks for the first ablation study. The first row refers
to the results of the baseline from Section 4. The second row represents losses with equal weights to
set up a comparison for each of the next three experiments where one of the losses is removed from
the setup one by one.

Setting Slovene Swahili

Task 1 Task 2 Task 1 Task 2

5LCE + 1Lcosine + 2Lmlm 0.9495 0.9849 0.8788 0.8522

LCE + Lcosine + Lmlm 0.9440 0.9846 0.8766 0.8558
LCE + Lcosine 0.9400 0.9837 0.8676 0.8492
Lcosine + Lmlm 0.9411 0.9841 0.8725 0.8520
LCE + Lmlm 0.9411 0.9843 0.8731 0.8532

For our second ablation study, we experiment with the softmax temperature (τ). The
results are presented in Table 7, while a τ of 2.0 was used in the baseline experiments in
Section 4, four additional experiments have been performed. For two the distribution was
further softened with a τ of 3.0 and 4.0, one uses the unchanged logits from the teacher
(τ = 1.0) and for another the distribution was hardened (τ = 0.5), while at first sight, the
other setups seem to be only marginally deficient, the baseline setup with a τ of 2.0 is
consistently better. This indicates that further softening or hardening the logits does not
benefit the student specifically in a low-resourced setting.

Table 7. Results for Slovene and Swahili for both tasks illustrating the impact of either softening or
hardening the softmax temperature (τ). τ = 2.0 refers to the baseline setup from Section 4.

Temperature (τ) Slovene Swahili

Task 1 Task 2 Task 1 Task 2

0.5 0.9398 0.9843 0.8740 0.8451
1.0 0.9421 0.9844 0.8736 0.8468

2.0 0.9495 0.9849 0.8788 0.8522

3.0 0.9431 0.9842 0.8753 0.8430
4.0 0.9427 0.9840 0.8737 0.8492

Figure 5 elaborates on this finding, as it shows the drop in performance from the
peak F1 score at 2.0. While there are some anomalies, it seems to be the case that the
further we move from the optimal τ of 2.0, the worse the performance becomes. It is also
important to note that tasks such as POS-tagging for Slovene, seem to be quite robust to
drops in performance with changes in τ. However, this might be only because the dataset
is comparatively easier and performance might already be quite saturated with extremely
high scores of the order of 0.984.
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Figure 5. A visualization of the results in Table 7 expressing the relative drops in F1-score from the
best value of softmax temperature, τ = 2.0.

7. Conclusions

In this work, we have further explored and improved upon the novel language dis-
tillation methodology first introduced in Singh and Lefever [8], where it was tested for
mBERT [1]. In this research, we have extended the approach to the more robust and
state-of-the-art XLM-RoBERTa [31] and demonstrated its efficacy. Similarly to the language-
distillation systems developed from mBERT, the Eliquare students of XLM-RoBERTa are able
to produce consistent student models for six languages. These languages were carefully
selected to account for as much variation as possible with regard to their typologies, lan-
guage families and available resources. We considered Dutch and French as representative
of high-resourced languages, Hindi and Hebrew as moderately resourced languages, and
Swahili and Slovene as low-resourced languages. The experimental results confirmed
that language-distillation is viable, especially in low-resourced settings, and the resulting
students were often able to outperform the teacher multilingual models while being up to
four times smaller and six times faster for inference than their respective teachers.

The objective of this research was to further progress research in low-resourced lan-
guages, in particular by creating systems for these languages building on existing large
multilingual models. This area of research was explored further by looking into the manip-
ulation of the vocabulary of the resulting student models. Two different strategies were
proposed to reduce a multilingual vocabulary into a monolingual one as part of the distilla-
tion process. We showed that pre-distillation VocabReduce is a consistently better strategy
since it performs just as well and saves computing time over the alternative, post-distillation
VocabReduce.

In addition, we also explored the impact of the different loss components on the
student of the two low-resourced languages. We discovered that Lmlm is the most impactful
component of the triplet loss. However, all losses contribute to the performance and the
ablation of any component results in a drop in performance.

Finally, we also investigated optimal softmax temperatures in the low-resourced
setting and concluded that the default values of τ = 2.0 are optimal, further softening or
hardening of the logits results in a drop in performance.

In future work, we would like to venture into more advanced distillation setups
described in Section 2, such as TinyBERT [21] and MobileBERT [38], with additional loss
components such as Feature Map Transfer and Attention Transfer. We also aim to explore
alternate teacher–student setups with multiple teachers, and the construction of bilingual
students for two typologically related languages. A logical next step then will be to research
strategies for VocabAmp, while also modifying the VocabReduce technique for application to
XLM-RoBERTa.
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