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Abstract: Unsupervised image-to-image translation techniques have been used in many applications,
including visible-to-Long-Wave Infrared (visible-to-LWIR) image translation, but very few papers
have explored visible-to-Mid-Wave Infrared (visible-to-MWIR) image translation. In this paper, we
investigated unsupervised visible-to-MWIR image translation using generative adversarial networks
(GANs). We proposed a new model named MWIRGAN for visible-to-MWIR image translation in
a fully unsupervised manner. We utilized a perceptual loss to leverage shape identification and
location changes of the objects in the translation. The experimental results showed that MWIRGAN
was capable of visible-to-MWIR image translation while preserving the object’s shape with proper
enhancement in the translated images and outperformed several competing state-of-the-art models.
In addition, we customized the proposed model to convert game-engine-generated (a commercial
software) images to MWIR images. The quantitative results showed that our proposed method could
effectively generate MWIR images from game-engine-generated images, greatly benefiting MWIR
data augmentation.

Keywords: deep learning; mid-wave infrared (MWIR) videos; image translation; game engine;
generative adversarial network

1. Introduction

Unsupervised image-to-image translation involves translating an image from one
domain to another without labels or image pairs. Infrared (IR) images are very useful in
the research areas of defense, but very little research has been conducted in this domain. In
addition, there is a scarcity of data challenge in this domain which has a negative effect
on the research related to the IR domain. Therefore, there is a need to explore visible/IR
image translation to benefit these applications.

There are some research papers in the literature on visible-to-LWIR (Long-Wave In-
frared) image conversion [1,2], but much fewer efforts were focused on visible-to-MWIR
(Mid-Wave Infrared) image translation. LWIR is less effective for long-range target identifi-
cation, and it is more prone to be influenced by humidity than MWIR. In addition, MWIR
has better thermal contrast than LWIR, and MWIR images are preferred for long-distance
applications, including coastal surveillance. MWIR is very effective for the detection of
airplanes or missiles. In this paper, we focus on visible-to-MWIR image translation with
the generative adversarial network (GAN) to advance research in this domain. Our main
contributions are summarized as follows:

• We proposed a GAN-based model named MWIRGAN to perform visible-to-MWIR
image translation, which utilizes perceptual loss to guide the translation. The learning
is achieved in a fully unsupervised manner.

• We proposed a novel technique to generate MWIR images from game-engine-generated
images, which can greatly benefit data augmentation for MWIR image applications.
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2. Related Work
2.1. Image-to-Image Translation

GAN models are highly effective for image-to-image translation and have been used
for generating synthetic images in various applications [3–8]. Image-to-image translation
has many practical applications, such as domain adaption [9], colorization [10], and super-
resolution [11]. Pix2Pix GAN [3,12] showed that it is possible to perform an image-to-image
translation between two complex domains, but the main drawback is that it needs the
paired images from both domains for training. Later on, several GAN-based models
were proposed to perform image-to-image translation with unpaired images, such as
CycleGAN [4] and DCLGAN [13]. In the early years, most of the image-to-image translation
work involved two visible image domains, and very little research was on visible-to-IR
image conversion. In recent years, researchers have worked on NIR (near-infrared)-to-
visible image translation [14–18], MWIR to grayscale translation [19], and LWIR-to-RGB
conversion [12,20] with some success in a supervised manner.

Unsupervised image conversion has also been explored in the recent literature. The
authors in [1] modified CycleGAN architecture in an unsupervised manner for image
translation between RGB and LWIR. They utilized the faster RCNN network to generate
bounding boxes of detected objects to calculate an object-specific loss. The main drawback
of their method is that they still needed labeled images to train the faster RCNN network.
In addition, the accuracy of the detector influenced the performance of the model. In our
proposed model, it neither needs any detector in the model nor paired images for training.
Moreover, we focused on long-range targets at 1000–2000 m distance in MWIR images,
while their work was on short-range targets at 0–50 m in LWIR images. Our proposed
model was built upon the CycleGAN architecture, and we made several modifications to
overcome the drawbacks of CycleGAN during visible-to-MWIR image translation.

2.2. Visible-to-IR Image Translation

There are few researchers who have given attention to visible-to-IR image translation.
For example, ThermalGAN [2] was proposed to transform color images into LWIR images
using a temperature vector, where object temperature and background information were
contained in a temperature vector. A thermal segmentation generator and a relative
contrast generator were used when generating LWIR images. Pix2Pix GAN [3,12] was
proposed for RGB-to-TIR image generation. In [12], the authors showed that Pix2Pix GAN
achieved better performances than CycleGAN, but Pix2Pix GAN required paired dataset for
training. In [21], the authors also used Pix2Pix GAN to generate infrared images. The main
drawback of this method is that it was time-consuming, as some steps were performed
manually. Pix2Pix GAN was also modified to generate infrared textures from visible
images [22], and, subsequently, the infrared textures were combined with structure from
motion (SfM)-constructed 3D models to generate the infrared images. The authors in [23]
utilized conditional GAN to construct NIR spectral bands from RGB images with a paired
dataset for training. Cycle GAN [4,24] was also used for visible-to-IR image translation.

AttentionGAN was also proposed in [25] for visible-to-MWIR video conversion for
long distances where they used attention maps, generated by a modified resnet-18, to
focus on the regions of interest. However, the attention maps were generated from two
different domains, and domain mismatch might have existed, negatively affecting the
performance of the model. In our proposed model, we utilized the learned perceptual
image patch similarity (LPIPS) metric [26] from the same domain to calculate the perceptual
loss. Therefore, the domain mismatch is not an issue in our model. Our model can perform
visible-to-MWIR translation without the deformation of the objects in the images while
keeping fine details.
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3. Method
3.1. Architecture

We used a model based on the architecture of CycleGAN [4]. The proposed model can
perform unsupervised visible-to-MWIR image conversion using an unpaired dataset, as
shown in Figure 1, which consists of two generators (GX and GY) and two discriminators
(DX and DY). We used the ResNet [27] architecture for the generators proposed in Cycle-
GAN with some modifications mentioned in [28]. Each generator has 9 residual blocks
along with several convolution layers. The architecture of the generator is [c7s1-64, d128,
d256, R256, R256, R256, R256, R256, R256, R256, R256, R256, u128, u64, c7s1-3], where
c7s1-k represents a 7 × 7 Convolution-BatchNorm-ReLU layer having k filters with stride 1,
dk represents a 3 × 3 Convolution-BatchNorm-ReLU layer having k filters with stride 2,
Rk indicates a residual block containing two 3 × 3 convolutional layers with stride 1 and k
filters in both layers, and uk is a 3 × 3 fractional-strided-Convolution-BatchNorm-ReLU
layer having k filters with stride 1/2.
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Figure 1. Framework of the proposed model for converting visible images to MWIR images. Our
proposed model has two generators and two discriminators. We calculate the cycle-consistency
loss and the perceptual loss using the real images (x, y) and the reconstructed images (GX(GY(x)),
GY(GX(y))) along with the GAN loss during training our model. Arrows with different colors indicate
signal flows through the generators and discriminators.

We used the architecture of the patch-based structure [29] for our discriminators,
which achieved good performances in the previous work [3,8,28,29]. The architecture of our
discriminators is [C64, C128, C256, C512, C512], where Ck represents a 4 × 4 Convolution-
BatchNorm-LeakyReLU layer having k filters with stride 2. We used an adaptive average
pooling layer and a convolution layer after the last layer to obtain one-dimensional output
from the discriminators. A patch-based discriminator works with the image patches to
determine whether the patches are real or fake. These patch-based discriminators have
several advantages. They have fewer parameters than a global discriminator and can
work on any image size in a fully convolutional manner [3,8]. In addition, a patch-based
discriminator contributes to the fast convergence of the generator [8].

3.2. Loss Function

The overall loss function consists of three components: GAN loss, perceptual loss, and
cycle consistency loss. In our model, there are two generators, GY and GX. Given the two
domains, visible and MWIR, letting GY perform visible to MWIR mapping and GX MWIR
to visible mapping, x is an image in the visible domain and y in the MWIR domain, GY(x)
is then a generated MWIR image, and GX(y) is a generated visible image. During training,
the discriminator DY discriminates y from GY(x) and DX discriminates x from GX(y).
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The GAN loss component is defined as [5]

LGAN = LGAN(GY, DY, X, Y) + LGAN(GX , DX , Y, X) (1)

GAN loss alone cannot generate good-quality images [5]. Since there are no paired im-
ages in the two domains, we used the cycle-consistency loss [4,24] to measure the differences
between the original images (x, y) and the reconstructed images (GX(GY(x)),GY(GX(y))),
encouraging the model to learn mappings that are both plausible and consistent with the
input data:

Lcyc =
∣∣∣∣GX(GY(x))− x

∣∣∣∣1+∣∣∣∣GY(GX(y))− y
∣∣∣∣1 (2)

In our experiments, we noticed that GAN loss and cycle-consistency loss in CycleGAN
cannot perform well during the translation between the two different modalities, though
they worked great when two domains from the same modality were involved, which was
also mentioned by the authors in [1] when they tried to perform a translation between RGB
and LWIR. We also noticed that CycleGAN cannot translate the details of the objects from
visible to MWIR, and the shapes of objects were often distorted. To tackle this challenge,
we proposed to use the perceptual loss, LPIPS [26], by following the idea in [30]. Typically,
researchers use the LPIPS loss to evaluate the perceptual similarity between two images. To
calculate LPIPS, we need to collect the activations of two image patches from a pre-defined
network, and LPIPS is computed based on the activations. A larger LPIPS stands for
more differences that exist between the two images. Previous research shows that LPIPS
matches human perception better than other metrics [26]. In our experiments, we used
activations from the pre-trained AlexNet [31] model to calculate LPIPS. We calculated
LPIPS between an image and its recovered version through the two translations to model
geometric changes between the two images. Perceptual loss helps preserve the shape of the
objects between visible images and MWIR images:

Lperc = LPIPS(GX(GY(x)), x) + LPIPS(GY(GX(y)), y) (3)

In summary, the overall loss function of our model is

MWIRGANloss = LGAN + αLcyc + βLperc (4)

where α and β are two hyperparameters.

4. Experiment
4.1. Dataset

We used the ATR dataset [32], provided by the Defense Systems Information Analysis
Center (DSIAC), to validate our method for visible-to-MWIR image translation. In this
dataset, there are visible and MWIR videos of different vehicles taken at long distances. We
extracted frames from the visible and MWIR videos to train our model. During training,
3600 frames from each domain were used to train our model. We extracted 1875 frames
from the visible domain to test the trained model. The frame size of MWIR videos is
640 × 512, and the frame size of optical videos is 640 × 480. Figure 2 shows two training
samples from both domains.

This dataset is complex and challenging [25]. First, due to the very long distances, the
sizes of the targets in the images are very small. Second, the orientation of the targets in
the image changes drastically, and illuminations are different among the videos. Third,
the cameras are not fixed and move during video capturing, making the video not stable.
Finally, there are many differences between visible videos and MWIR videos including
(1) the wavelength range of MWIR imagers is between 3 and 5 microns, but the range is
between 0.4 and 0.8 microns for optical imagers; (2) MWIR cameras use heat radiation from
objects for imaging and do not need any external illumination, while optical cameras need
external illumination; and (3) MWIR images have many advantages including tolerance of
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smoke, dust, heat turbulence, and fog. Overall, MWIR is highly effective during the night
for surveillance purposes, while optical cameras are preferred in the daytime.
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Figure 2. Unpaired training samples from optical and MWIR image domains.

4.2. Training Parameters

We randomly cropped 256 × 256 patches from the training images of both domains
for training and used full images for testing. We noticed that using cropped patches for
training achieved better results than using full images for training. We set batch sizes as 1
and 50 for the number of image buffers as suggested in [4]. We chose the hyperparameters
as α = 6 and β = 1 in Equation (4) after trial and error. We used the Adam optimizer [33]
during training for optimization and trained our model for 30 epochs with a learning rate of
0.0001 which decayed to 0 after 8 epochs of training. The Pytorch framework was utilized
to develop our model, and the model was trained and tested on an NVIDIA GPU with 12G
memory.

5. Experiment Results
5.1. Qualitative Comparison

Figure 3 shows the MWIR images generated by the proposed model, CycleGAN [4] and
AttentionGAN [25]. We can see that the MWIR images generated by AttentionGAN contain
visible stripe artifacts. Overall, the quality of the images is not as good when compared to
the real MWIR images. Moreover, we noticed several drawbacks of the CycleGAN model.
MWIR images generated by CycleGAN lost the vehicle objects in the translated images,
and the fine details of the objects were not preserved during this translation. On the other
hand, our method performed better than the two competing models. The translated MWIR
images preserved fine details of the objects, and the engine parts of the vehicles were
appropriately highlighted due to high temperatures. Our proposed model resolved all the
issues related to the MWIR images generated by AttentionGAN and CycleGAN.
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Figure 3. MWIR images generated from visible images by different models. The proposed model
generated best-quality MWIR images. MWIR images generated by the AttentionGAN have visible
stripe artifacts. The vehicle objects are not visible in the MWIR images generated by the CycleGAN.
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5.2. Quantitative Comparison

We utilized Fréchet Inception Distance (FID) [34,35] and Kernel Inception Distance
(KID) [36] to quantitatively evaluate model performances in image translation. The FID
and KID scores have been widely used to assess the quality of the generated images with
respect to real images. For both FID and KID, smaller values denote a higher quality of
synthetic images with respect to real images. Table 1 shows the FID and KID scores for
the MWIR images generated by different models. It is observed that our proposed model
(FID: 1.72, KID: 22.82) achieved the best results as compared to the CycleGAN model (FID:
3.28, KID: 49.69) and the AttentionGAN model (FID: 2.46, KID: 36.59) for visible-to-MWIR
image translation, which is consistent with the qualitative observations in Figure 3. The
FID and KID scores of the proposed model are the lowest among all the models considered.

Table 1. Quantitative comparison among different methods. Bold numbers indicate best-performing
methods.

Model FID Score KID Score

CycleGAN 3.28 49.69

AttentionGAN 2.46 36.59

MWIRGAN (proposed) 1.72 22.82

6. Ablation Study

We conducted an ablation study to investigate the contribution of each of the loss
function components in the proposed model. Figure 4 shows the results of the ablation
study. First, we removed the perceptual loss from the overall loss function and kept the
cycle-consistency loss and GAN loss. With this configuration, we noticed that the model
experienced mode collapsed due to the absence of perceptual loss and could not translate
objects in the visible domain to the MWIR domain. For visible images captured at the
1000 m distance, the model could not highlight vehicles properly (such as the engine part),
and for the 2000 m distance images, the model totally omitted vehicles that were missed
in the translated MWIR images. Second, we removed the cycle-consistency loss from the
total loss and performed image translation with the modified model. This configuration
achieved the worst result as it could not translate the visible image into the MWIR domain,
keeping all objects intact. Table 2 shows the quantitative results of the ablation study. We
can see that both loss function components are important, and the proposed model did not
function properly without either of them.
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Figure 4. Cont.
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Figure 4. Ablation study results. The results show that both perceptual loss and cycle-consistency
loss are essential for obtaining good-quality MWIR images.

Table 2. Qualitative comparison of our ablation study. Bold numbers indicate best-performing
methods.

Model FID Score KID Score

MWIRGAN (proposed) 1.72 22.82

MWIRGAN w/o Perceptual loss 2.23 32.68

MWIRGAN w/o cycle-consistency loss 4.08 64.73

7. Converting Game-Engine-Generated Images to MWIR Images

As a case study, we applied the proposed model to convert synthetic visible images from
Arma 3 [37], generated by the Real Virtuality 4 engine [37], to MWIR images. This was a two-step
process. First, we trained the proposed model to convert the game-engine-generated synthetic
visible images to real visible images. We utilized 3600 unpaired game-engine-generated images
and 3600 real visible images to train the model. Second, we applied our original trained model
to convert the converted real visible images to MWIR images. Figure 5 shows the diagram of
the two-step method for converting game-engine-generated images to MWIR images. Figure 6
shows the results of the proposed model. It is observed that our proposed technique could
generate MWIR images from Arma-3-generated images. In the generated MWIR images,
vehicles were correctly highlighted with engine parts being brighter than other objects. The
quantitative results of the generated MWIR images from the game engine images are listed
in Table 3. We also compared the generated MWIR images with those generated from real
visible images. According to the quantitative results, the quality of synthetic MWIR images
from Arma 3 (using our model) was better (FID: 2.72, KID: 41.84) than the MWIR image from
the real visible image (FID: 3.28, KID: 49.69) generated by CycleGAN. As expected, the quality
of the synthetic MWIR images from the Arma 3 images (FID: 2.72, KID: 41.84) was worse than
that of the synthetic MWIR images from the real visible images (FID: 1.72, KID: 22.82).
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Table 3. Quantitative evaluation of the translation from game-engine-generated images to MWIR images.

Model Task FID Score KID Score

Cycle GAN (real visible to MWIR) MWIR from real visible image 3.28 49.69

MWIRGAN (real visible to MWIR) MWIR from real visible image 1.72 22.82

MWIRGAN (arma3 to MWIR) MWIR from real game-engine-generated image 2.72 41.84

8. Conclusions

In this paper, we proposed the MWIRGAN model for visible-to-MWIR image transla-
tion. We generated MWIR images from visible images in an unsupervised manner without
using any paired datasets. Our proposed method was able to translate visible images into
MWIR images successfully by keeping fine details and overall structures in the image. The
proposed model outperformed several competing state-of-the-art methods. In addition,
we customized the proposed model to convert game-engine-generated images to MWIR
images in a two-step process. This work will mitigate the data scarcity challenge in the
MWIR domain and will advance the research in this area.
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