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Abstract: Exposing counterfeit perfume products is significant for protecting the legal profit of
genuine perfume manufacturers and the health of perfume consumers. As a holistic solution to
the problem of perfume identification (PI) using an electronic nose (EN), the methods based on
convolutional neural network (CNN) simplifies the inconvenient selection of methods and parameter
values, which has traditionally complicated existing combinatory methods. However, existing CNN
methods that can be used for EN-based PI were designed on the premise that the CNN model can be
trained with plenty of computational resources in divide-body ENs. Aiming at PI with an integrated
handheld EN, a novel light-weight CNN method, namely LwCNN, is presented for being entirely
conducted on a resource-constrained NVDIA Jetson nano module. LwCNN utilizes a sequenced stack
of two feature flattening layers, two one-dimensional (1D) convolutional layers, a 1D max-pooling
layer, a feature dropout layer, and a fully connected layer. Extensive real experiments were conducted
on an integrated handheld EN to the performance of LwCNN with those of four existing benchmark
methods. Experimental results show that LwCNN obtained an average identification accuracy of
98.35% with model training time of about 26 s.

Keywords: electronic nose; perfume identification; convolutional neural network

1. Introduction

Nowadays, the consumption of perfume products is getting more and more popular,
which has promoted the development of the perfume industry. Genuine perfume products
of famous brands are commonly produced using confidential professional techniques with
selected ingredients. The high profits brought by genuine perfume products stimulated
unscrupulous businessmen to counterfeit them with cheap and even noxious ingredients [1].
The existence of counterfeit perfume products not only affected the legal income of genuine
perfume manufacturers, but also harmed the health of perfume consumers. However,
since the scents in perfume products interact naturally by synergism, compensation, and
masking [2], it is hard to expose counterfeit perfume by solely using the human nose. To
reliably identify the accurate perfume type, it is necessary to consult specifically designed
electronic techniques. Moreover, portable and integrated PI solutions, which bring about
high efficiency and great convenience, are significant for real applications.

Existing electronic techniques that can be used for PI mainly include EN [3,4], fluctuation-
enhanced sensing (FES) [5,6], gas chromatography (GC) [7], and GC with mass spectrometry
(GC-MS) [8,9]. Typical ENs are mainly composed of the measurement acquisition hardware
and data processing software. The measurement acquisition hardware comprises the gas
route and electronic components. Commonly, the gaseous perfume samples are guided
towards the mounted gas sensors. Then, the sensing data of the gas sensors is denoised and
stored. Based on the denoised sensing measurements, the perfume type is identified by the
data processing software [3]. In contrary to ENs, FES exploits the information contained
in the low measurement noises [5] or micro-fluctuations of measurements [5,6]. Typically,
the low measurement noises are successively processed with a band-pass filter and an
amplifier. Based on the processed data, FES signature spectrums can be calculated by
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multiplying the normalized power spectral density and the frequency. In the FES mode,
multiple different gases can be identified based on the measurements of only one sensor [5].
However, compared with the acquisition of denoised measurements in EN systems, the
extraction of low measurement noises in FES methods is more difficult and cost-consuming.
GC and GC-MS utilize the standard carrier gas stored in large gas cylinders to drive the gas
sample through the chromatographic column. Apart from identifying the perfume type, GC
and GC-MS can also separate the different perfume ingredients. Nevertheless, the high cost
and large volume of GC and GC-MS stagnate their portable on-site usage. In comparison,
EN is relatively more cost-effective and portable. Although existing EN solutions have
rarely been reported separating the gaseous ingredients, the gas identification capability
of ENs can help in exposing counterfeit perfume products. For example, the integrated
handheld EN designed in the author’s laboratory, namely SMUENOSEv2, which utilizes
an embedded NVIDIA Jetson nano module as the computation kernel, is suitable for quick
on-site PI applications [3].

To improve the PI performance, it is important to design accurate and time-efficient
EN-based PI methods. Conventional combinatory EN-based PI methods [4,10–13] involve
the combination of multiple successive steps. The raw measurements are first preprocessed
to remove the baseline value and noises. Based on the preprocessed measurements, a set of
features are generated by normalization, differentiation, and/or integral operations. The
dimension of generated features is then reduced by using the feature extraction methods,
such as, principal component analysis (PCA) [14], local linear embedding [15], maximally
collapsing metric learning [16], and so on. Finally, the features with reduced dimension
are classified using machine learning methods, such as support vector machine [17], back-
propagation neural network (BPNN) [18], extreme gradient boosting (XGBoost) [19], light
gradient boosting machine (LightGBM) [20], and so on. The perfume type can be identified
according to the feature classification result. For each of the above-mentioned steps, there
are multiple candidate methods can be selected. Different combinations of selected methods
can cause significantly different PI results. The complicated selection process of constituent
methods and parameter values influences the time-efficiency and reliability of conventional
combinatory methods.

During the past decades, the investigation on deep learning for image classification has
aroused worldwide interest [21], which also induced the implementation of deep learning
for EN-based PI applications. Unlike conventional combinatory methods, deep learning
methods incorporate the processes of feature generation, extraction, and classification. In
the deep learning research field, one of the representative methods is the CNN method.
LeCun et al. proposed the LeNet for document recognition [22], which can be considered
as the seminal work of CNN. Afterwards, multiple of improved CNN methods, such
as, AlexNet [23], VGGNet [24], GoogleNet [25], ResNet [26], and so on, were presented
for image classification. Inspired by these works, a few CNN models were proposed for
solving the EN-based PI problem. To realize gas classification, Peng et al. proposed a very
deep CNN with 38 constituent layers, namely GasNet [27], which mainly comprises six
convolution blocks of multiple layers, a global average pooling layer, and a fully connected
layer. Syuan et al. [28] proposed to transfer the gas measurements to feature map images,
which are then processed using a deep CNN with seven convolution blocks of three layers,
a global averaging pooling layer, and a fully connected layer. Wang et al. [29] presented a
dense CNN, which comprises multiple alternating pairs of dense and transition blocks, to
process the EN’s data for identifying the age of mature vinegar. Each of the employed dense
and transition blocks are composed of multiple layers. In these works, the computation
kernels used for training the CNN models were not detailed. Although all these works
utilized deep CNN models, whether a shallow or not very deep CNN model can obtain
satisfactory EN-based PI performance needs further investigation. Moreover, with the
integrated handheld SMUENOSEv2, the CNN model should be trained on the resource-
limited NVIDIA Jetson nano module. For quick on-site EN-based PI, it is necessary to
restrict the number of layers in the CNN model.
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In this paper, a light-weight CNN model, namely LwCNN, is presented for solving the
PI problem based on the SMUENOSEv2 platform. Considering the limited computational
resource, LwCNN only utilizes two 1D convolutional layers with activation, two feature
flattening layers, a 1D max-pooling layer, and a fully connected layer with activation.
Among the constituent layers of LwCNN, only the convolutional layers and the fully
connected layer contain several trainable weights. Moreover, LwCNN incorporates the
sub-processes of feature generation, extraction, and classification, which means the compli-
cated selection of methods and parameter values for these sub-processes are simplified. To
comprehensively evaluate the performance of LwCNN, four benchmark methods, those
are, XGBoost, LightGBM, BPNN, and GasNet, were compared with LwCNN in extensive
real experiments. The novelties of this paper mainly comprise three parts. First, LwCNN
employs a feature flattening layer as its first layer, which concatenates the preprocessed
measurements of different sensors into a 1D vector. The 1D vector incorporates the infor-
mation within the junction sections of data sensed by different sensors, which inspired the
utilization of 1D convolutional and max-pooling layers. Second, the disposition scheme of
the selected constituent layers in LwCNN is novel. The performance of a CNN model is
dominated by the selection and disposition of its constituent layer. Third, the experimental
PI results of LwCNN obtained on an integrated handheld EN platform are novel. Especially,
the evaluated influence of CNN parameters, such as convolution kernel number and length,
the dropout proportion, on the PI performance has rarely been studied.

The rest of this paper is organized as follows. In Section 2, the conventional process of
EN-based PI is introduced. Section 3 details the operations in LwCNN. Section 4 introduces
the experimental setup. The experimental results are detailed and discussed in Section 5.
Section 6 concludes the whole paper.

2. Conventional Process of EN-Based PI

To make the EN-based PI methods more understandable, the employed EN platform is
briefly sketched first. Figure 1 shows the architecture of the employed integrated handheld
EN, namely SMUENOSEv2, which comprises two main types of components: the gas route
and electronic components.
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Figure 1. Architecture of the SMUENOSEv2 [3]. The components outside and inside the dashed
round rectangle are gas route and electronic components, respectively. The red bold numbers 1 and 2
stand for two sub-routes at the downflow side of the three-way valve.
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At the beginning of each sampling cycle, the perfume samples were dripped into
the volatilization pot. Fast airflow was generated by the air pump, and then, guided to
accelerate the volatilization of the perfume samples. Then, the volatilized gaseous perfume
was carried towards the three-way valve. By controlling the three-way valve, the gas route
at the downflow side of the volatilization pot can be switched between the sub-routes 1 and
2, which are timely switched to activate the sampling and washing modes. Once the gas
route 1 was switched on, the gaseous perfume was carried towards the gas chamber, which
means the gas sensors were exposed in the gaseous perfume. Thus, the three-way valve
can be timely switched to control the exposure time of the gas sensors. During the exposure
time, the sensing voltages were sampled using AD7606 and STM32. The sampling data
was then transmitted from the STM32 to the NVIDIA Jetson Nano module, on which the PI
methods were conducted to complete the EN-based PI task.

Conventional combinatory EN-based PI methods comprise multiple successive steps:
data preprocessing, feature generation, feature dimension reduction, and feature classifi-
cation. For each step, there are multiple candidate methods can be selected to complete
the corresponding task. For each candidate method, multiple hyperparameters should be
tuned to improve the PI performance. Different combinations of methods and parameter
values can severely influence the final PI performance [4,30].

Data preprocessing aims to reduce the influence of measurement noises and gas
residuals within the EN’s gas route. For filtering the measurement noises, the wavelet
denoising method was employed. In the author’s previous work, it has been proven that
the wavelet denoising method are capable of filtering out most spiky noises. Subsequently,
a baseline subtraction operation was conducted to inhibit the influence of gas residuals
within the EN. The term ‘baseline’ means the sensing voltages measured before the gas
sensors were exposed in the gaseous perfume. The baseline voltages were mainly caused
by the gas residuals left over during the former inexhaustive washing cycle, since the
working mode of SMUENOSEv2 can be consecutively switched between the sampling and
washing modes.

After data preprocessing, the data dimension was still retained at a high value. Due to
the curse of dimensionality, directly conducting feature classification with the preprocessed
data is time consuming. To generate the features for further classification, multiple statistics
were calculated, including normalized peak of the sensing value, normalized time when the
voltage peak appeared, final falling proportion, falling proportion at 10 s after the maximum
sensing value, and normalized time when the first-order derivative reached the maximum
value. Due to the metal oxide semiconductor sensors used in our EN, the sampled sensing
voltages demonstrate a fast rising and relatively slow recovery dynamics. It is expected
that the generated features are capable of characterizing the dynamics of the sampling
data, and thus, contain distinctive information that can be used for further classification.
Typically, further feature extraction or dimension reduction was also required. PCA can be
used to extract the principal components with lower dimensions as the final features.

Finally, the generated features with reduced dimension were classified to complete
the PI task. As three conventional EN-based PI methods, BPNN, XGBoost, and LightGBM
methods were separately used as the benchmark methods for feature classification. BPNN
is the canonical form of neural network. XGBoost and LightGBM are two improved im-
plementation forms of the gradient-boosting decision tree method, in which the results of
multiple decision trees are ensembled to form a better result. According to the author’s
previous works [4], XGBoost outperformed other tested methods in terms of mean identifi-
cation accuracies, while LightGBM obtained similar identification accuracies with relatively
higher time-efficiencies.

3. Light-Weight CNN for EN-Based PI

Figure 2 shows the architecture of LwCNN. The main operations of LwCNN comprise
a sequence of operation layers. Due to the different gas residuals left over in the EN’s
inner space, a baseline subtraction was employed to preprocess the raw measurements.



Electronics 2023, 12, 1041 5 of 14

The preprocessed measurements were used as the input of LwCNN. Then, the output of
each individual layer is considered as the input of its below layer. Unlike the multiple
separated algorithms successively employed in conventional combinatory methods, the
operation layers in LwCNN are connected with each other to construct a single network-
shaped algorithm.
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Figure 2. Flow-chart of the LwCNN operation architecture in a single training epoch.

The operations in the layers of LwCNN are detailed as follows.

1. Feature flattening

As shown in Figure 2, the input data was first processed with the feature flattening
operation, in which the preprocessed measurements of the eight different gas sensors were
concatenated with each other in a one-by-one manner. In consequence, a 1D vector data
was constructed based on the sampling data obtained with an individual perfume sample
in each sampling cycle. The 1D vector data inspired the usage of the 1D convolution kernel
in the subsequent layer.

2. 1D convolution

The defining characteristic of a 1D convolutional layer is that the dimension of the
utilized convolution kernel is one. As illustrated in Figure 3, the length of input vector, the
number of convolution kernels, and the length of each convolution kernel are denoted as
N, M, and n, respectively. In the 1D convolution operation, each convolution kernel is used
to generate a new intermediate vector, which is also called tensor. A total of M tensors or
vectors are generated with the M convolution kernels.



Electronics 2023, 12, 1041 6 of 14

Electronics 2023, 12, x FOR PEER REVIEW 6 of 14 
 

 

the number of convolution kernels, and the length of each convolution kernel are denoted 
as N, M, and n, respectively. In the 1D convolution operation, each convolution kernel is 
used to generate a new intermediate vector, which is also called tensor. A total of M ten-
sors or vectors are generated with the M convolution kernels.  

 
Figure 3. Illustration of the operations in different layers of the LwCNN. For clarification, duplicated 
layers and the activation layers are not included. 

Figure 3 illustrates the case that n equals 5. In specific, as indicated by the dashed 
rectangle in Figure 3, a set of five successive elements of the input data are selected as the 
factor. A point multiplication between the selected factor and the convolution kernel is 
conducted. The result of the point multiplication is recorded as one element of the newly 
generated tensor. As the dashed rectangle moves from the left beginning to right end of 
the input vector, multiple factors are selected to activate multiple times of point multipli-
cation with the convolution kernel, which result in multiple elements to form the new 
tensor. To generate a new tensor with the same length as the input vector, four random 
elements are padded at the end of the input vector. With the padding operation, a total of 
N factors are selected, and a tensor with the length of N is generated with each convolution 
kernel.  
3. Activation 

Each convolutional layer is followed with an activation operation. In the activation 
operation, all elements in the tensor are separately substituted into a transfer function. An 
individual result is generated by the transfer function with each element in the tensor. The 
results are combined to form a new tensor. Thus, the tensor length is kept invariant in the 
activation layer.  

.

.

.

1
2
.
.
.

M

.

.

.

.

.

.

. . .

Convolution layer

Max-pooling layer

Fully connection layer
with λ× 100% dropout

Feature flattening layer

Convolution
kernels

Output

The flattened 1D vector data

{Padding

.

.

.

1

2

M

.

.

.

1

2

M

n

Dropped-out features

N

N

Figure 3. Illustration of the operations in different layers of the LwCNN. For clarification, duplicated
layers and the activation layers are not included.

Figure 3 illustrates the case that n equals 5. In specific, as indicated by the dashed
rectangle in Figure 3, a set of five successive elements of the input data are selected as the
factor. A point multiplication between the selected factor and the convolution kernel is
conducted. The result of the point multiplication is recorded as one element of the newly
generated tensor. As the dashed rectangle moves from the left beginning to right end of the
input vector, multiple factors are selected to activate multiple times of point multiplication
with the convolution kernel, which result in multiple elements to form the new tensor. To
generate a new tensor with the same length as the input vector, four random elements are
padded at the end of the input vector. With the padding operation, a total of N factors are
selected, and a tensor with the length of N is generated with each convolution kernel.

3. Activation

Each convolutional layer is followed with an activation operation. In the activation
operation, all elements in the tensor are separately substituted into a transfer function. An
individual result is generated by the transfer function with each element in the tensor. The
results are combined to form a new tensor. Thus, the tensor length is kept invariant in the
activation layer.

There are two different types of activation operations used in LwCNN. As shown in
Figure 2, the activation functions used after the convolutional layer and the fully connected
layer are the ReLU function and the Softmax function, respectively. The ReLU function
replaces the negative elements in the tensors with zero-value elements, which can be
represented as follows.

f (xi) = max(xi, 0) (1)
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The Softmax function, which maps the value of multiple elements into probability values
within the range (0, 1), can be represented as follows.

f (xi) =
exi

∑i exi
(2)

4. 1D max-pooling

In the 1D max-pooling layer, the elements of input tensor are categorized into suc-
cessive units. The maximum element in each unit is calculated. Then, all the resulting
maximum elements are used to construct a new tensor. Figure 3 illustrates the case that
the size of each unit is 2. Then, the tensor length is reduced to N/2 by the 1D max-pooling
layer. The max-pooling layer can help reducing the tensor length and complexity of the
LwCNN.

5. Feature dropout

In the feature dropout layer, a portion of randomly selected elements in the tensor are
deactivated or dropped out in the current epoch. The proportion of deactivated elements
is denoted as λ. The feature dropout layer directly cut down the number of weights in
the LwCNN model. Note that, on top of the feature dropout layer in Figure 2, a feature
flattening layer is employed to flatten the M tensors into a new 1D tensor.

6. Fully connected

In the fully connected layer, each input element is connected with each of its output
element. Since LwCNN was designed for feature classification in EN-based PI applications,
the number of output elements of the fully connected layer in LwCNN equals the number
of perfume types. Figure 3 illustrates the case that the number of perfume types is 6.
Supposing the number of elements output by the above feature flattening layer is N′, the
fully connected operation in Figure 3 can be represented as follows.

a1 = w11x1 + w12x2 + . . . + w1N′xN′ + b1
a2 = w21x1 + w22x2 + . . . + w2N′xN′ + b2

...
a6 = w61x1 + w62x2 + . . . + w6N′xN′ + b6

(3)

where ai, i = 1, 2, . . . , 6, are the outputs, wij, i = 1, 2, . . . , 6, j = 1, 2, . . . , N′, and
bi, i = 1, 2, . . . , 6 are trainable weights. The values of outputs ai, i = 1, 2, . . . , 6 are then
substituted into the Softmax function shown in Equation (2) to calculate the corresponding
probabilities, which can be directly used for feature classification.

Last, but not the least, in order to improve the classification accuracy, the operations
shown in Figure 1 can be repeated for multiple epochs. In multiple training epochs, the
preprocessed measurement data was repeatedly used as the input of LwCNN. The weights
of the LwCNN model were incrementally updated for multiple times.

4. Experimental Setup

Six perfume products of the same brand “Scent library” were used as the perfume
samples in our experiments. The model names of these perfume products are Golden
Osmanthus, Misty Rainbow, L.B.K. Water, Rose Rose I Love You, Tao Hua Yun, and White
Rabbit, which are abbreviated as GO, MR, LBK, RR, THY, and WR, respectively. According
to the ingredients, the main common constituents of these perfume products are denatured
ethanol, essence, propylene glycol, and so on. Moreover, perfume products with different
model names have some specific constituents, such as, GO contains tridecanol polyether-9,
RR contains oaklirin, WR contains tertiary butanol, and so on. Commonly, the combinations
of constituent content are different for perfume products with different model names. To
obtain experimental sampling data, each perfume product was sampled for 50 times. Thus,
a set of 300 samples were obtained in our experiments.
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In each sampling cycle, 1 uL of perfume product was dripped into the volatilization
pot of SMUENOSEv2. Fast airflow generated by the air bump was guided to accelerate
the volatilization of the perfume sample, and to carry the volatilized perfume towards the
surroundings of the eight gas sensors. In the meantime, the sensing voltages of these sensors
are simultaneously sampled. To reduce the computational burden, a down-sampling
technique was utilized in SMUENOSEv2 to cut down the sampling frequency from 150 Hz
to 7.5 Hz. At the beginning of each sampling cycle, the sampling mode was activated by
switching on the gas route 1 shown in Figure 1. The first 500 voltage measurements of
each sensor were used in our experiments. By feature flattening, the eight measurement
sequences with the length of 500 were then concatenated into a single 1D input vector.
Therefore, the length of the 1D vector used for the first convolutional layer of LwCNN is
N = 500 × 8 = 4000.

Based on the sampling data, three groups of experiments were conducted. First, the
optimal value of maximum training epochs was determined for LwCNN by statistical
comparison. Empirically, the number of training epochs can seriously influence the spent
training time, which is one of main concerns about using the integrated handheld EN
in this paper. Then, a set of orthogonal experiments [31] were conducted to determine
the optimal values of the three hyperparameters in LwCNN, which are the convolution
kernel number M, the convolution kernel length n, and the dropout proportion λ. Finally,
the four benchmark methods, those are, XGBoost, LightGBM, BPNN, and GasNet, were
evaluated in 10-fold cross-validation experiments. Based on the experimental results, the
performance of LwCNN was compared with the four benchmark methods. As tested in the
author’s previous works [3,4], the hyperparameters of XGBoost, LightGBM, BPNN were
automatically tunned using the hyperopt Python module [32], which models the parameter
tuning process as solving a multi-variant function optimization problem. The time spent for
automatic parameter tuning was included in the model training time, since the parameter
values are also part of the trained model. For GasNet, the parameter values were fixed as
those used in [27].

5. Results and Discussion
5.1. The Measurement Data

As mentioned in Section 4, with respect to each gas sensor, 500 sensing voltage values
were sampled in each sampling cycle. The eight sequences of sensing voltage values were
concatenated to a 1D vector in the first feature flattening layer of LwCNN. Figure 4 shows
the concatenation of the eight sensors’ sensing voltages obtained in a typical sampling
cycle. The model names of the eight sensors are TGS2600, TGS2602, TGS2611, TGS2620,
MiCS5524, MiCS5914, MiCS6814, and TGS8100.
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With respect to each individual gas sensor, each unit of 500 sensing voltages demon-
strates a fast rising and relatively slow falling shape. These curve modalities coincide
with the characteristics of the used metal oxide semiconductor gas sensors. In Figure 4,
different gas sensors obtained different peak values and different rising/falling speeds,
while the starting values of different sensors are all equal to zero. Although the absolute
gas concentrations in the surrounding space of the eight sensors were the same, differ-
ent characteristics of the eight sensors caused the different output sensing voltages. The
same zero starting values was caused by the baseline subtraction in the preprocessing
operation. Because the baseline voltages were subtracted from all the sensing values, the
negative impact of the gas residuals on the model training was alleviated for the tested
benchmark methods.

5.2. Parameter Tuning

As mentioned in Section 4, the influence of the maximum training epochs on the PI
performance of LwCNN was first studied. To focus on the influence of training epochs, the
values of M, n, and λ were fixed as 32, 5, and 0.5, respectively. Empirically, it was found
that the influence of training epochs on the PI performance did not rely on the values of
M, n, and λ. Moreover, the time spent to predict the perfume type with previously trained
models are similarly short for all the tested methods. Thus, only the time spent for model
training was recorded and compared in this paper. By conducting LwCNN for different
epochs, the resulting identification accuracies and training time are shown as error bars in
Figure 5a,b, respectively.
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Figure 5. The error bars of the results obtained by training the LwCNN model for different numbers
of epochs: (a) Error bars of the identification accuracies; (b) Error bars of the time spent for training a
single LwCNN model.

As shown in Figure 5a, the identification accuracies generally increased as the upper
limit of epochs was changed from 50 to 100. However, when the upper limit of epochs
exceeded 100, the identification accuracies did not demonstrate an obvious increasing
trend when the upper limit of epochs was increased. This is probably because LwCNN
has extracted the utmost information with the current setup of M, n, and λ in about
100 training epochs. According to Figure 5b, the training time demonstrates a positive
quasi-linear relationship to the upper limit of epochs. The time spent for training the
LwCNN model increased if the model was trained for more epochs, which coincides with
the theoretical basis of LwCNN. Thus, the optimal value of training epochs was set as 100
in the following experiments.
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To further investigate the influence of M, n, and λ on the PI performance, a set of
orthogonal experiments were designed and conducted. In the orthogonal experiments, M,
n, and λ were taken as the orthogonal experimental factors. For each experimental factor,
four levels were assigned: M, n, and λ were selected from the sets {20, 30, 40, 50}, {3, 5, 7, 9},
and {0.4, 0.5, 0.6, 0.7}, respectively. According to the L16(43) orthogonal experimental design,
16 value combinations of M, n, and λ were tested. For each of the value combinations, a set
of 10-fold cross-validation experiments were conducted.

Table 1 lists the means and standard deviations of the corresponding experimental
results. For all tested value combinations of M, n, and λ, the mean identification accuracies
obtained by LwCNN are higher than 97%. These considerably high identification accuracies
verify the feasibility of using LwCNN for solving the EN-based PI problem. The standard
deviations of identification accuracies are more or less the same for all the tested value
combinations. By setting the value combination of (M, n, λ) as (40, 3, 0.6), LwCNN obtained
the highest mean identification accuracy in Table 1. The corresponding median training
time, that is, 26.28 s, is acceptable for real EN-based PI applications. Table 2 lists the vector
dimensions and trainable parameter numbers in the case that the value of (M, n, λ) equals
(40, 3, 0.6). The light-weight architecture of CNN accounts for its high time-efficiency in the
EN-based PI experiments.

Table 1. Orthogonal experimental results of utilizing different values for M, n, and λ in LwCNN.

No.
Experimental Factors Identification Accuracies Training Time (s)

M n λ Mean stdev Mean stdev

1 20 3 0.4 97.69% 2.20% 16.31 0.86
2 20 5 0.5 97.37% 2.98% 17.15 0.13
3 20 7 0.6 97.36% 2.06% 17.55 0.16
4 20 9 0.7 97.38% 2.06% 18.25 0.53
5 30 3 0.5 97.37% 2.06% 19.61 0.40
6 30 5 0.6 97.70% 2.20% 20.87 0.24
7 30 7 0.7 97.12% 2.63% 22.04 1.28
8 30 9 0.4 97.69% 2.20% 23.48 0.50
9 40 3 0.6 98.35% 2.31% 26.28 0.39
10 40 5 0.7 97.04% 2.83% 29.46 1.31
11 40 7 0.4 98.02% 2.28% 30.63 1.02
12 40 9 0.5 97.35% 2.59% 31.76 0.51
13 50 3 0.7 97.69% 2.20% 30.24 1.01
14 50 5 0.4 98.02% 2.28% 32.83 0.92
15 50 7 0.5 98.02% 2.28% 34.77 0.63
16 50 9 0.6 97.37% 2.06% 38.57 2.71

Table 2. The dimensions and trainable parameter numbers of LwCNN when M, n, and λ were set as
40, 3, and 0.6, respectively.

Functional Layers
LwCNN

Dimensions Parameters

Input (4000, 1) 0
Conv1D (4000, 40) 160

MaxPooling1D (2000, 40) 0
Conv1D (2000, 40) 4840

Flattening (80,000) 0
Fully connected (6) 480,006

485,006 (Tot.)

Moreover, the means of training time demonstrate an ascending trend when the
number of convolution kernels M increased from 20 to 50. With respect to the same value
of M, the mean training time increased when the convolution kernel length n was changed
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from 3 to 9. Nevertheless, there does not exist obvious relevance between the value of λ
and the mean training time can be found. These results can provide important guidance for
determining M, n, and λ with the requirement of identification accuracies and training time.

5.3. Comparison Results

To comprehensively evaluate the presented LwCNN method, XGBoost, LightGBM,
BPNN, and GasNet were used as the benchmark methods. Figure 6 shows the statisti-
cal identification accuracies and training time obtained by LwCNN and the four bench-
mark methods.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 14 
 

 

12 40 9 0.5 97.35% 2.59% 31.76 0.51 
13 50 3 0.7 97.69% 2.20% 30.24 1.01 
14 50 5 0.4 98.02% 2.28% 32.83 0.92 
15 50 7 0.5 98.02% 2.28% 34.77 0.63 
16 50 9 0.6 97.37% 2.06% 38.57 2.71 

Table 2. The dimensions and trainable parameter numbers of LwCNN when M, n, and λ were set 
as 40, 3, and 0.6, respectively. 

Functional Layers 
LwCNN 

Dimensions Parameters 
Input (4000, 1) 0 

Conv1D (4000, 40) 160 
MaxPooling1D (2000, 40) 0 

Conv1D (2000, 40) 4840 
Flattening (80,000) 0 

Fully connected (6) 480,006 
  485,006 (Tot.) 

Moreover, the means of training time demonstrate an ascending trend when the 
number of convolution kernels M increased from 20 to 50. With respect to the same value 
of M, the mean training time increased when the convolution kernel length n was changed 
from 3 to 9. Nevertheless, there does not exist obvious relevance between the value of λ 
and the mean training time can be found. These results can provide important guidance 
for determining M, n, and λ with the requirement of identification accuracies and training 
time. 

5.3. Comparison Results 
To comprehensively evaluate the presented LwCNN method, XGBoost, LightGBM, 

BPNN, and GasNet were used as the benchmark methods. Figure 6 shows the statistical 
identification accuracies and training time obtained by LwCNN and the four benchmark 
methods. 

  
(a) (b) 

Figure 6. The statistical results obtained by XGBoost, LightGBM, BPNN, GasNet, and LwCNN with 
the same sampling dataset: (a) The mean and standard deviation of identification accuracies; (b) The 
mean and standard deviation of time spent for model training. 

XGBoost LightGBM BPNN GasNet LwCNN

86%

88%

90%

92%

94%

96%

98%

100%

102%

Id
en

tif
ic

at
io

n 
ac

cu
ra

cy

Methods

 Training     Validation

XGBoost LightGBM BPNN GasNet LwCNN
0

10

20

30

40

50

60

70

80

90

Tr
ai

ni
ng

 ti
m

e 
(s

)

Methods

Figure 6. The statistical results obtained by XGBoost, LightGBM, BPNN, GasNet, and LwCNN with
the same sampling dataset: (a) The mean and standard deviation of identification accuracies; (b) The
mean and standard deviation of time spent for model training.

As shown in Figure 6a, LwCNN obtained the highest mean identification accuracy.
Even in the case that the values of M, n, and λ were randomly selected from the candi-
dates in Table 1, the corresponding mean identification accuracies obtained by LwCNN
are still higher than those obtained by the three benchmark methods. The comparatively
higher mean identification accuracy of LwCNN demonstrates the significance of propos-
ing LwCNN for EN-based PI applications. Moreover, LwCNN obtained identical mean
identification accuracies for model training and validation. It reveals that LwCNN also can
overcome the model overfitting problem, which stagnates the BPNN method.

According to Figure 6b, compared with XGboost, BPNN, and GasNet, LightGBM
and LwCNN spent much shorter training time. This phenomenon shows that LwCNN
possesses the similar light-weight characteristic as LightGBM. Comparing with XGBoost,
the exclusive feature bundling and gradient-based one-side sampling in LightGBM induced
its higher time-efficiency. Compared with BPNN, the incorporated convolution, max-
pooling, and dropout operations helped LwCNN save a lot of training time and avoid the
model overfitting problem. It is noteworthy that LwCNN only spent about a quarter of
the time spent by GasNet, which further highlights the significance of presenting LwCNN
for quick integrated PI with the computationally constrained ENs. In comparison, the less
incorporated operation layers, the front-end feature flattening, and the disposition of 1D
convolutional layers in LwCNN mainly account for its obviously higher time-efficiency.

Figure 7 shows the variation of identification accuracies and loss values in a typical
trial of training and identification processes. The loss value was defined as the categorical
cross entropy, which assesses the distribution differences of identified and actual perfume
types. In the first ten epochs, the identification accuracy and loss values exhibited gener-
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ally fast ascending and descending trends, respectively. Afterwards, the fluctuations of
identification accuracy and loss values generally got mild. In both subfigures of Figure 7,
the training curve is interwoven with the corresponding validation curve. The similar
results obtained in training and validation processes further verify that LwCNN was not
influenced by the model overfitting problem.
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Figure 7. The identification accuracies and loss values at different epochs in a typical trial of training
and identification processes: (a) the variation of identification accuracy in a typical trial; (b) the
variation of loss value in a typical trial.

6. Conclusions

In this paper, a light-weight CNN, namely LwCNN, was presented for identifying
the previously unknown perfume type on a self-designed integrated handheld EN, which
employs the embedded NVIDIA Jetson nano module as the computing core. Due to the
limited computing resource on the EN, LwCNN only utilizes a well-sequenced stack of two
feature flattening layers, two 1D convolutional layers, a 1D max-pooling layer, a feature
dropout layer, and a fully connected layer. Unlike existing deep CNNs, LwCNN only
involves a set of relatively small number of trainable weights. Experimental results demon-
strate that LwCNN can significantly improve the time-efficiency of wholly conducting the
PI task on the resource-limited NVIDIA Jetson nano module.

A latent condition of the presented experimental results is that the measurement
dataset used for training the LwCNN model was successively collected in similar sur-
rounding temperatures and humidity values. If this condition is extremely unsatisfied, the
experimental results would deteriorate. Moreover, reducing the volume of training data
may also influence the PI performance of LwCNN. The acquisition of the current set of sens-
ing voltage samples were time consuming. Future research works would cover designing
more advanced CNN methods with higher robustness and data mining capability.
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