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Abstract: Recent developments in Computer-aided Diagnosis (CAD) systems as a countermeasure
to the increasing number of untreated cases of eye diseases related to visual impairment (such as
diabetic retinopathy or age-related macular degeneration) have the potential to yield in low-to-mid
income countries a comfortable and accessible alternative to obtaining a general ophthalmological
study necessary for follow-up medical attention. In this work, a multi-stage ensemble-based system
for the diagnosis of glaucomatous optic neuropathy (GON) is proposed. GON diagnosis is based on
a binary classification procedure working in conjunction with a multi-stage block based on image
preprocessing and feature extraction. Our preliminary data show similar results compared to current
studies considering metrics such as Accuracy, Sensitivity, Specificity, AUC (AUROC), F1 score, and
the use of Matthews Correlation Coefficient (MCC) as an additional performance metric is proposed.

Keywords: deep learning; computer-aided diagnosis; CNN; glaucoma

1. Introduction

The sense of vision is fundamental in every aspect of human development, being one
of the most dominant senses as an inseparable part of current social and interpersonal
interaction. In 2020, the World Health Organization (WHO) published the World Report on
Vision, in which it stated that at least 2.2 billion people around the globe suffer from some
kind of visual deficiency (or impairment), of which less than 1 billion could have been
prevented. These numbers tend to increase due to several factors related to population
aging, reduced medical attention, and lack of educational opportunities [1,2].

In general, eye pathologies (such as diabetic retinopathy, cataract, and glaucoma)
represent a major quality-of-life deterioration around the globe—especially for elderly
people—which is why a better understanding of said pathologies is needed to develop
better and more efficient methodologies for clinical environments [3]. For any ophthal-
mologist, an objective clinical measure is essential during an eye screening process. This
kind of measurement can be acquired through a variety of techniques that are related to
visual acuity, intraocular pressure, or fundus imaging [4]. In the latter—also known as
ophthalmoscopy—there is a specific set of landmarks (also called biomarkers) that represent
zones of interest for an ophthalmologist during the evaluation process of a Color Fundus
Photograph (CFP), such as the macula, fovea, optic disc (OD), optic cup (OC), and vascular
system (i.e., veins and arteries) [5,6]. Depending on the pathology, the type and number of
lesions found in a CFP vary and could play a critical role in the process of diagnosis.

In the specific case of glaucomatous optic neuropathy (GON), the pathology is character-
ized by a variety of eye disorders that can present a set of almost imperceptible symptoms
at early stages, all of which can lead to severe damage of the optic nerve and eventually, a
certain level of peripheral vision loss, or even complete blindness [5,7] if left untreated (as
seen in Figure 1). For these reasons, special attention to OD is required to perform an early
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diagnosis of GON and adequate disease management. In recent years, there have been
multiple approaches related to the diagnosis of retinal pathologies and secondary tasks
related to it (i.e., semantic segmentation—the process of classifying a certain class within an
image context and separating it from the rest of said image classes by overlaying it with a
segmentation mask— or localization of biomarkers for deeper analysis) based on Artificial
Intelligence (AI) and Machine Learning algorithms [8–14]. Most of these studies have
yielded good results, related to evaluation metrics such as Sensitivity (SN) and Specificity
(SP), compared with more classical approaches based on Digital Image Processing (DIP)
of CFPs.

Figure 1. Examples of human vision without (left side) and with GON (right side).

In this work, a method for the development of a Multi-stage Ensemble-based Computer-
aided Diagnosis (CAD) system for referable GON is proposed. It comprises a CNN-based
classification system in conjunction with a subsystem that performs a morphological
analysis of a set of particular fundus landmarks, in this case, OD and OC to imitate the
general procedure, in which a specialist in the field of ophthalmology would perform
an eye fundus examination. To further validate the proposed ensemble of classification
models, external data were used to create a baseline for the their ability to generalize over
unseen features. Moreover, a set of specific metrics have been proposed to compensate for
the class imbalance found in each dataset. In the following sections, a general description of
the current place of AI in the analysis of biomarkers and lesions related to guided diagnosis
of retinal pathologies is presented. In addition to this, a comparison between the most
recent DL-based systems performing GON diagnosis applying different methodologies
is drawn.

2. CAD for Eye-Related Pathologies
2.1. AI for Image Analysis

AI is a term employed for describing the development of a computer program that
models intelligent behavior with reduced human interaction [15]. As a ramification of this
discipline, Machine Learning Classifiers (MLC) were developed to learn patterns from a
dataset without input from a human through the implementation of a statistical model.
Classical MLC, such as Logistic Regression (LR), Random Forest (RF), Support Vector
Machines (SVM), etc., form part of what is called supervised Machine Learning (ML), which
uses mathematical modeling to accomplish a given goal through the feeding of a large
and structured training dataset (e.g., set of labeled CFPs). However, one known limitation
of MLCs is that they require engineered (or handmade) filters to successfully recognize
pattern within input data [16].

Additionally, networks based on artificial neural behavior, also called Artificial Neural
Networks (ANN), implement what is known as neurons, which are a set of interconnected
nodes capable of transforming a given input by assigning a weight to it before passing it
to next one. These neurons undergo a learning process which adjusts said weights to the
point of being capable of making a prediction. A more complex version of this is called
Deep Neural Networks (DNN), containing multiple layers of processing (filters) between the
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input and output layers and, as a branch of this category, Convolutional Neural Networks
(CNN) are found [16,17]. CNN basically consists of a set of layers, each of which is a series
of convolutional layers that applies a convolution to the input before passing it to the next
layer of neurons. The major advantage of CNN is that it locally connects neurons to specific
and smaller receptive fields, which means that the algorithm considers the spatial structure of
a given input.

In the state of the art (SOTA), a plethora of methodologies for the detection or segmen-
tation of these types of lesions can be found. Although methodologies of systems, such as
the case of Dai et al. [18] and Sarhan et al. [19], resolve up to a certain point the problem
caused by data imbalance, comparison between most CAD systems still remains unfair
in terms of the reported performance metrics. This is mainly because of the performance
shift of a given metric as the imbalance ratio (e.g., prevalence of minority class) varies from
dataset to dataset, which could yield misleading (or even over-optimistic) results. In this
regard, multiple research groups [20–23] have studied the effects of data imbalance and
the effectivity of evaluation metrics implemented in binary classification tasks and they
recommend a set of metrics depending on the nature of the pre-established goals of the
study to be conducted.

2.2. AI for ONH Evaluation

Evaluation of OD, also known as optic nerve head (ONH), for GON assessment requires
special attention to a set of key features. Some of these features in CFP correspond to
retinal nerve fiber layer (RNFL) defects, peripapillary atrophy (PPA), neuroretinal rim notch,
and vertical cup-to-disk ratio (CDR). In recent work from Phene et al. [24], a comparison
between a DL classification system and a group of GON specialists was drawn, taking into
account the relative importance of different features related to a referable GON patient.
From this work, an Area Under the Receiver Operating Characteristic curve—also known
as AUC (ROC)—that ranges from 0.881 to 0.945 across three datasets was achieved, and the
authors concluded that the most relatively important features with regard to referable GON
were: neuroretinal rim notching, RNFL defect, bared circumlinear vessels, and the presence
of vertical CDR of 0.7 or more.

Vertical CDR is a specific feature from referable GON that has not been widely adopted
but has been reported recently in multiple works [12,24–31], which does not share similar
prevalence and bias in the validation results thanks to the diverse amount of CFP datasets
employed between each work. Therefore, reports of different thresholds of vertical CDR
to determine a referable case of GON are commonly found, which could be a product of
the different methodologies applied to compute CDR and inherent characteristics of each
dataset. From the literature, a threshold of 0.5 ≤ CDR < 0.8 is considered as a possible case
of GON, and CDR ≥ 0.8 as a confirmed case.

Table 1 presents current work related to classification systems for GON diagnosis,
where the network architecture and CFP datasets employed in each proposed CAD system
are detailed. In addition, data availability, capture technique of the acquisition device,
and region of interest (ROI) are shown. All of the systems cited in this work differ from
each other in the methodology used for classifying referable GON, the amount of data,
and the clinical information used outside the classifier prediction to arrive to a satisfying
decision. From a network architecture point of view, ResNet is found widely used either in
conjunction to other architectures, or by itself, and that the region analyzed more frequently
is the area comprised by the OD, although a mixture of both eye fundus as a whole and
OD crops has been applied before with near-SOTA results [32].
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Table 1. Results from recent AI systems for GON classification Non-Referable GON (NO-GON) vs. Referable GON (R-GON) based on CFP as input.

Author Network
Architecture Database Capture

Technique
Region

Analyzed

Ting et al., 2017 [12] VGGNet

SiDRP 2010-2013, SIMES,
SINDI, SCES, Singapure

National Eye Center
SiDRP 2014-2015: N/A

Mixed Fundus

Chai et al., 2018 [25] Multi-Branch Neural
Network (MB-NN) N/A N/A OD crop

Christopher et al., 2018 [33] VGG16, Inceptionv3, ResNet-50 ADAGES: N/A,
UCSD DIGS: N/A Mydriatic OD crop

Li et al., 2018 [26] Inception-v3 LabelMe (subset): N/A N/A Fundus

Liu et al., 2018 [34] ResNet-50 RIM-ONE: OA + private,
HRF: OA Non-mydriatic + N/A N/A

Al-Aswad et al., 2019 [28] ResNet-50 Clinic-based images: N/A,
ORIGA: N/A Mixed OD crop

Hemelings et al., 2019 [35] ResNet-50 University Hospitals
Leuven: N/A Non-mydriatic Fundus

Kim et al., 2019 [32] VGG-16, ResNet-152,
Inception-v4

Glaucoma clinic, Samsung
medical center: N/A N/A Mixed (OD cropped

center 1:1 ratio)

Liu et al., 2019 [29] ResNet
CGSA, Handan Eye Study,

+ additional hospital
and clinic based images: N/A

Mydriatic OD crop

Phene et al., 2019 [24] Inception-v3

EYEPACS, Inoveon AREDS
Aravind Eye Hospital,
Sankara Nethralaya,

Narayana Nethralaya, India
N/A Fundus

Diaz-Pinto et al., 2019 [36]
VGG16, VGG19,

InceptionV3, ResNet-50,
Xception

HRF: OA,
Drishti-GS1: OA,
RIM-ONE: OA,

sjchoi86-HRF: N/A,
ACRIMA: OA

Mixed OD crop

Li et al., 2020 [30] ResNet-101
Shanghai Zhongshan

Hospital Shanghai
First People’s hospital: NA

Mydriatic OD crop

Sreng et al., 2020 [37]

AlexNet, GoogleNet, InceptionV3,
XceptionNet, ResNet-50, SqueezeNet,

ShuffleNet, MobileNet, DenseNet,
InceptioN/AesNet, NasNet-Large

REFUGE: OA,
ACRIMA: OA,
ORIGA: OA,

RIM-ONE: OA,
DRISHTI-GS1: OA

N/A OD crop

Civit-Masot et al., 2020 [31]
Generalized U-net +
(VGG16, ResNet-50,

Xception, MobileNetV2)

RIM-ONE: OA,
DRISHTI: OA N/A OD crop

N/A = Not Available, OA= Open Access.
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2.3. Classification of Imbalance Datasets

A dataset can be defined as imbalanced if its class distribution is unequal, meaning that a
disproportion among the total number of samples per class is present in said dataset. For in-
stance, even a difference of just one sample between classes could technically be considered
an imbalanced dataset. Many tasks related to ML are affected by data imbalance, e.g., face
recognition irregularity detection and natural language processing, among others. This
phenomenon is particularly present in medical diagnosis, as prevalence of a disease varies
between populations due to different factors, including socioeconomic status and ethnicity.

In the case of binary classification (BC), a discrimination between two classes is per-
formed, in ML, this could be the output of a dedicated classification algorithm. As defined
by Hicks et al. [22], a BC problem can be expressed as follows:

p(X, α) = αpP(X) + (1 − α)pN(X) , (1)

where data samples are represented by X, pP/N represent class distributions of positive and
negative classes, and α is a mixture parameter of the positive class defined as α = NP

NP+NN
,

with NP/N as the total number of positive and negative data samples from the dataset
of interest. The performance of an algorithm for BC can be summarized in the form of a
two-class confusion matrix (CM):

CM =

[
TN FP
FN TP

]
.

For the above, instances of a positive case being correctly identified as positive are
denominated True Positive (TP), and in the case of correctly classified negative cases, True
Negative (TN) denomination is used. On the other hand, False Positive (FP) and False
Negative (FN) categories are used for instances related to positive and negative misclassi-
fications, respectively. From these four base components, other elemental metrics could
also be computed—metrics such as True Positive Rate (TPR) and True Negative Rate (TNR).
In BC, performance results should—ideally—land only on the TP and TN (negative slope
diagonal).

In general, positive (or minority) cases of a disease are less frequent than negative (or
majority) cases in many medical applications. Therefore, maximization of TP instances and
minimization of FN instances should be the main focus within this field, as, in general, FP
instances would not be as detrimental as the other case.

A general sense of classification performance can be shown with the resultant CM.
However, the need for more compact metrics has led scientists to develop evaluation metrics
such as Accuracy, Fβ-score, and Recall. Recent works have demonstrated that at least
Accuracy, as a performance metric, does not have the same performance at different levels
of imbalance ratio [21–23]. Instead, metrics such as Matthews Correlation Coefficient (MCC)
should be considered for a balanced indication of performance; Bookmaker Informedness (BM)
and g-mean of TRP and TNR (GBA) should be used for a reasonable comparison between
different classifiers. In the literature [38], several approaches have been proposed to
address this particular issue, which could be based on an Algorithm, Data, or Ensemble-based
methodology.

A system based on the last category provides a suitable alternative to reach a satisfying
decision in classification-related tasks. It is important to note that in order to achieve a
desirable result, a level of diversity in the system should be established. Within this context,
diversity is used as a term to relate to a situation where the output of the base classifiers
(classifiers that compose the ensemble system) differ. This characteristic is visualized with
statistical concepts such as bias and variance, which are related to overfitting and underfitting
problems, respectively. The main objective in an ensemble system is the reduction of
variance with the averaging procedure applied to a set of base classifiers. This work takes
advantage of a combination technique called Classifier fusion, which aggregates all classifiers
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involved to establish a final decision, assuming that every classifier is competent within
the feature space and each one is expected to misclassify different examples.

3. Materials and Methods

During this section, a detailed explanation of the general work scheme for the proposed
CAD system is given, including a DL-based classification and OD segmentation block.
In addition to this, general aspects of the datasets employed during training, validation,
and testing procedures are presented.

3.1. Ensemble-Based CAD System for GON

The current proposal for a CAD system is based on an ensemble of three CNNs in
a classification block, with a total of two, which differ from each other in aspects of
architecture to imitate the analysis from multiple points of view of a single CFP as input. Each
classification block focuses on different regions of the input image, one of these is dedicated
to the analysis of the image on a global aspect, and the other just to a region of interest (ROI)
comprising the OD and OC. A classification structure based on an ensemble assimilates
an inspection methodology similar to natural human behavior, in which a conclusion is
reached based on the opinion of multiple experts in a field. Such a configuration was
selected for the CAD system due to the performance improvement yield in comparison
with classification systems based on just one CNN classification system [39]. Furthermore,
a subsystem was added to the main workflow, using a U-shaped encoder–decoder network
architecture (UNet) to generate a mask base on the semantic segmentation of two particular
biomarkers of interest for the study of GON (OD and OC), and from which vertical CDR is
computed based on the relationship of the vertical diameter of both biomarkers. Figure 2
establishes a general block diagram of the proposed CAD system.

Figure 2. General scheme workflow for the proposed Multi-stage Ensemble-based CAD system.

3.2. Datasets

As stated before, the eye pathology of interest in this case is GON. Therefore, CFP
datasets that provide clinical validation by a group of professionals in this discipline are
required. For this study, a set of public CFP datasets were employed: LAG [40], iChallenge-
GON [41], and RIM-ONE DL [42], whose labels correspond to a patient with a diagnosis
of referable GON (R-GON) or not (NO-GON), which are needed for BC. Similarly to this,
in a segmentation related task, a set of images with a manual segmentation of areas of
interest (ground truth) by a specialist is essential. Fortunately, the iChallenge-GON dataset
provides OD and OC ground truths for every image, which led to the respective training and
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validation procedures of a segmentation network (U-Net in this case). An overview of the
technical specifications of each dataset is shown in Table 2 for the required training process.

Table 2. CFP datasets specifications employed for Training, Validation, and Test procedures related
to ensemble-based CAD system.

Datasets for
Global Assessment Ethnicity

Class
Distribution

(R-GON/NO-GON)

Image Resolution
(Mean H × W)

LAG Asian 1711/3143 500 × 500
iChallenge-GON Asian 40/360 2056 × 2124

Datasets for
OD-only Assessment

LAG a Asian 404/1564 418 × 391
RIM-ONE DL Latin 172/313 503 × 503

a Custom subset of OD-cropping from OD detection algorithm.

3.3. Training process

As shown in Figure 2, a set of 3 different CNNs were employed for the analysis
of GON. The first one, ResNet-50, is a CNN that employs a series of skip connections to
assimilate information with fewer layers than a regular or flat CNN implementation. Since
its introduction in 2015, it has remained as a SOTA architecture for tasks related to image
classification, and this particular version of it manages only 50 layers of processing, which
have been proven to yield acceptable results for pathologies such as GON and diabetic
retinopathy [43].

In the case of MobileNet_v2, its architecture is based on a combination of depthwise and
pointwise convolutions that significantly reduces the total amount of trainable parameters
when compared to a network with the same depth with a flat implementation. The principal
criteria for its selection were established based purely on the results gathered from current
literature, which have presented near-SOTA results for classification of GON.

For the final network, Squeezenet was chosen. This network architecture has an AlexNet
performance level with a reduction of 50× related to model size, using what is called a fire
module, comprising a squeeze convolution layer (only 1× 1 filters), which feeds into an expand
layer that has a combination of 1 × 1 and 3 × 3 convolution filters.

For each training process, an additional training scheme based on Scheduled Learning
Rate (SLR) was considered, which relies on a constant verification of a parameter (in this
case, a Validation score) to determine whether the computed loss follows a correct trending
(i.e., a reduction at each epoch) and if this condition is not fulfilled, it reduces α by a fixed
factor in an attempt to improve the current behavior. The training configuration setup used
in this training process is shown in Table 3.

Table 3. Parameters selected for Training process.

Model ResNet-50 MobileNet_v2 Squeezenet

Batch size 16 32

Optimizer SGD (α = as stated below, momentum = 0.9),
Adam (α = as stated below, β1 = 0.9, β2 = 0.999)

Learning Rate (α) 1 × 10−3 (regular scheme),
1 × 10−3 to 1 × 10−5 (under SLR)

Epochs 100

In the context of an optimization algorithm, the function used to evaluate a candidate
solution (i.e., a set of weights) is called objective function, and for the case of neural networks,
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minimizing the error produced between a prediction and a target value is desired. At the
same time, the objective function is often referred to as a cost function or a loss function,
and the value calculated by the loss function is referred to simply as Loss. In this work, two
of the best-performing optimization algorithms for training DL models were alternated:
Stochastic Gradient Descent (SGD) and Adaptive Moment Estimation (Adam).

Nevertheless, in the current literature, it is found that there is no standard combination
of parameters and hyperparameters that provides good results for a specific eye pathology.
However, an α ≈ 1 × 10−3 and momentum-related parameter within the optimization
algorithm stays close to 1. In the following section, the results from 6 out of a total of
24 training procedures are presented as the final selection of trained parameters for the
implementation of the current iteration of the proposed ensemble-based CAD system.

4. Results

A set of CMs is shown in the following figures as a visualization of general performance
on the best-performing model for GON classification. It is based on the data of the Train
(TR) and Validation (VAL) sets. In addition to this, an external Validation dataset (TST) was
selected as a measure of robustness (or generalization) for each model with information that
differs from what is used to see as an input CFP.

From the models represented by Figures 3–5, it was observed that models with these
trained parameters did not perform as expected, considering that the TST dataset was
selected trying to match some of the characteristics (e.g., field of view, clean optic media,
illumination) of the TR and VAL datasets. However, a general improvement in this regard
can be observed in Figures 6–8, which represents the performance of the trained parameters
for each model based on the classification of a ROI within a CFP, in this case, the OD and
OC. This could indicate that even if a dataset has a higher number of samples, but lower
quality overall, training cannot translate into better validation results. Based on these
results, we suggest that further attention should be focused on a set of specific regions,
and exclude non-valuable information within each CFP used as input for GON assessment,
such as the typical FOV mask applied by commercially available acquisition systems.

Figure 3. Confusion matrix of ResNet-50 trained parameters for GON.

Figure 4. Confusion matrix of MobileNet_v2 trained parameters for GON.
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Figure 5. Confusion matrix of Squeezenet trained parameters for GON.

Figure 6. Confusion matrix of ResNet-50 trained parameters for GON-OD.

Figure 7. Confusion matrix of MobileNet_v2 trained parameters for GON-OD.

Figure 8. Confusion matrix of Squeezenet trained parameters for GON-OD.

In order to generate a mask of OD and OC (based on semantic segmentation) and
compute the corresponding CDR value of a given OD from an input CFP, a model based on
the U-Net architecture was trained on top of pretrained parameters from a VGG19 model.
Said model was trained using a dataset containing 400 examples of a CFP paired with a
png image (mask) where the features of interest, or classes, are highlighted in a different
color. In this case, three different classes were taken into account, which considered the
OC, OD, and Background (BG) or everything that is not related to the biomarkers of interest.
Furthermore, to assign a certain weight to the prediction made to each class, a mean inverse
relationship between the total amount of pixels in the image and the coverage area was
calculated. In Table 4, results for OD and OC segmentation from a validation subset of
iChallenge-GON dataset are presented.
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Table 4. Results from validation of trained model (U-Net) for OD/OC segmentation.

Dataset Precision Recall F1-Score ACC MCC

iChallenge-
GON

(Validation set)

BG OD OC BG OD OC BG OD OC
0.9965 0.905

1.0 0.8693 0.6285 0.998 0.901 0.9878 0.999 0.8847 0.7682

This provided enough data to perform CDR estimation via the computation of the
vertical diameter of both OD and OC, from the bounding boxes of the respectively detected
contours. Moreover, a specific CDR threshold for GON classification was established
considering a point where the number of TP and TN cases were maximized, and the
standard deviation from the computed CDR of validation data was at minimum. A set
of examples in this regard are shown in Figures 9 and 10, respectively. Unfortunately,
a comparison against an external validation set has not been possible due to the lack of
data available with the same label quality. Regardless, this segmentation network was used
in conjunction with multiple image manipulation techniques, based on OpenCV libraries,
to generate a custom subset of OD-crops from the LAG dataset.

Figure 9. Performance of segmentation network (U-Net) on external dataset LAG. Columns A, B,
and C represent examples of the best, mild, and worst scenarios, respectively. Each row, in this case,
shows a step into the OD segmentation process, (1) input CFP, (2) output mask by U-Net, (3) output
from contour filter algorithm, (4) ellipse-fitting output for detected contours, and (5) final OD crop.
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Figure 10. Boxplot related to CDR estimation based on TP and TN cases for LAG dataset.

In relation to GON classification performance, Table 5 shows results for Global and
OD-only assessment from the proposed CAD system, taking into account different aspects
of evaluation. First, an average value from all CNNs as a unit over TR and VAL sets is
given. Finally, as a measure of robustness for the CAD system, the performance yield over
the TST set in the overall average value was considered. In some cases, it had a negative
effect due to the disparity of the image quality between TR/VAL and TST sets. This is
mostly present in procedures related to the iChallenge-GON dataset and was expected up
to a certain point. As a complement to the commonly reported metrics, BM, GBA, and MCC
are included, considering their inherent properties discussed in previous sections.

Table 5. Results from Multi-stage ensemble-based CAD system proposed for GON classification.

Method a Subsets
for Evaluation ACC (%) SN (%) SP (%) AUC(ROC) BM GBA MCC

Global
Assessment

TR/VAL 98.39 97.93 98.64 0.9951 0.9752 0.9845 0.9647
TR/VAL/TST 95.93 70.01 98.94 0.9231 0.6961 0.9307 0.7444

OD-only
Assessment

TR/VAL 97.86 94.5 98.71 0.984 0.9445 0.9761 0.9345
TR/VAL/TST 90.17 83.61 93.11 0.9119 0.7921 0.9297 0.7788

TR = Training set; VAL = Validation set; TST = Test set; a Average values from performance yield by ResNet-50,
MobileNet_v2, and Squeezenet on each classification block.

A general comparison between the proposed CAD system and multiple studies found
in the literature for GON classification is shown in Table 6, in which, for practical rea-
sons, only those metrics reported in most cases were considered, and the results from
the proposed CAD system were established based on the average value of both TR/VAL
evaluation, as this was considered a less over-optimistic representation of the performance
from the proposed system.



Electronics 2023, 12, 1046 12 of 15

Table 6. Comparison between proposed CAD system for GON classification and currents studies.

Author ACC (%) SN (%) SP (%) AUC(ROC)

Ting et al., 2017 [12] N/A 96.4 87.2 0.942
Chai et al., 2018 [25] 91.51 92.33 90.9 N/A
Christopher et al., 2018 [33] N/A 84.0 83.0 0.91
Li et al., 2018 [26] N/A 95.6 92.0 0.986
Liu et al., 2018 [34] 91.6 87.9 96.5 0.97
Al-Aswad et al., 2019 [28] N/A 83.7 88.2 0.926
Hemelings et al., 2019 [35] N/A 99.0 93.0 0.996
Kim et al., 2019 [32] 96.0 95.0 100 0.99
Liu et al., 2019 [29] N/A 91.8286 90.043 0.9546
Phene et al., 2019 [24] N/A 80.0 90.2 0.945
Diaz-Pinto et al., 2019 [36] 89.77 93.46 85.8 0.9605
Li et al., 2020 [30] 95.3 98.0 94.95 0.994
Sreng et al., 2020 [37] 93.308 N/A N/A 0.924
Civit-Masot et al., 2020 [31] 88.0 91.0 86.0 0.96

Ours a 98.125 96.215 98.675 0.9895
N/A = Not Available; a Average values from performance of Global and OD-only classification blocks based on
the subsets for TR/VAL from LAG dataset.

5. Discussion

From the comparison made in Table 6, it can be observed that specifically for GON,
there are plenty of methodologies related to BC based on ML. However, there are a set
of problems that have emerged during the development of the proposals presented in
previous sections. First, there is an evident lack of reproducibility from the reported
results, which might come from non-disclosure of CMs obtained by each dataset employed,
and privacy concerns related to the use of private clinic/hospital data. Moreover, unlike
other disciplines, the applications of DL techniques for tasks related to ophthalmology
require strictly to undertake a labeling process that is performed by experts in the area to
reduce the factor of human error during the training process. This is difficult in most cases
due to a lack of resources to conduct mass clinical studies, or simply the low prevalence
levels of some diseases (e.g., GON).

Second, low levels of generalization is a quite notorious problem within the datasets
that are publicly available, since there are differences between key characteristics of every
CFP, such as the model of the acquisition camera, resolution of CFPs, intensity of the light
source, and other quality-related parameters. This causes some models within the SOTA
to only obtain satisfactory results under a given group of datasets. A possible solution to
this would be the use of Domain Adaptation, as suggested by Wang and Deng [44]. When
testing their effectiveness in a real clinical environment, it denotes the extent to which
work-related physicians are able to accept the results of a system that comes from a black box
process, which is an inherent feature of DL. Some of the most frequently used procedures to
reduce the negative impact of this type of system is the construction of features maps or class
activation maps (heatmaps) that show which part of the CFPs analyzed by the DL system
has greater relevance during the process of the final prediction.

6. Conclusions

In this work, a multi-stage ensemble-based CAD system is proposed. A mixture of
deep neural network architectures was applied in conjunction with a dedicated U-shaped
segmentation network in order to classify the information within a CFP as a referable case
of GON.

The advent of high-performance results in DL-based systems for performing tasks
related to the CAD of retinal pathologies using CPFs is promising. In some cases, they even
deliver better performance compared with a medical specialist. However, there are still
several aspects to improve in the current ensemble-based CAD system. First, the lack of
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generalization of the less deep network—in this case, Squeezenet—adds a considerable
amount of burden to the final classification assessment, which could be resolved with
its replacement and experimentation of other networks such as DenseNet, or further
improvements to the current training procedures for this specific model.

In terms of network structure, a tendency is observed in the selection of base structures
used for classification tasks, such as ResNet and DenseNet, as well as a combination of
other kinds of methodologies (e.g., transfer learning). In the case of segmentation tasks,
a transition from the use of architectures such as CNNs (manually designed CNNs) to
Fully Connected Neural Networks (FCN) is observed, as well as the use of other models
such as YOLOv7, Mask-RCNN, and DeepbV3+. However, these results are not the product
of the trivial use of different architectures applied to a particular classification and/or
segmentation problem, but the product of a series of contributions in the form of processing
blocks that manage, in some cases, to imitate the procedure by which a medical specialist
or physician performs eye fundus examination.

In future work, the use of multimodal data for validation, or testing, CFPs could also be
considered to produce more reliable predictions based on the complementary information
obtained from in-depth anatomic studies such as OCT scans or IOP measurements.
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