
Citation: Ma, R.; Chen, X.; Zhai, R. A

DDoS Attack Detection Method

Based on Natural Selection of

Features and Models. Electronics 2023,

12, 1059. https://doi.org/10.3390/

electronics12041059

Academic Editor: Srinivas Sampalli

Received: 22 January 2023

Revised: 12 February 2023

Accepted: 16 February 2023

Published: 20 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A DDoS Attack Detection Method Based on Natural Selection
of Features and Models
Ruikui Ma 1,2,3, Xuebin Chen 1,2,3,* and Ran Zhai 1,2,3

1 College of Science, North China University of Science and Technology, Tangshan 063210, China
2 Hebei Key Laboratory of Data Science and Application, Tangshan 063210, China
3 Tangshan Key Laboratory of Data Science, Tangshan 063210, China
* Correspondence: chxb@ncst.edu.cn

Abstract: Distributed Denial of Service (DDoS) is still one of the main threats to network security
today. Attackers are able to run DDoS in simple steps and with high efficiency to slow down
or block users’ access to services. In this paper, we propose a framework based on feature and
model selection (FAMS), which is used for detecting DDoS attacks with the aim of identifying
the features and models with a high generalization capability, high prediction accuracy, and short
prediction time. The FAMS framework is divided into four main phases. The first phase is data
pre-processing, including operations such as feature coding, outlier processing, duplicate elimination,
data balancing, and normalization. In the second stage, 79 features are extracted from the dataset and
selected by the feature selection algorithms filter, wrapper, embedded, variance, mutual information,
backward elimination, Lasso.L1, and random forest. The purpose of feature selection is to simplify
the model, avoid dimensional disasters, reduce computational costs, and reduce the prediction time.
The third stage is model selection, which aims to select the most ideal algorithm from GD, SVM,
LR, RF, HVG, SVG, HVR, and SVR using a model selection algorithm for the selected 21 features,
and the results show that RF is far ahead in all evaluation indexes compared to the other models.
The fourth stage is model optimization, which aims to further improve the performance of the
RF algorithm in detecting DDoS attacks by optimizing the parameters max_samples, max_depth,
n_estimators for the initially selected RF by the RF optimization algorithm. Finally, by testing the
100,000 CIC-IDS2018, CIC-IDS2017, and CIC-DoS2016 synthetic datasets, the results show that all
the results have achieved excellent performance in the same category. Moreover, the framework also
shows an excellent generalization performance by testing over 1 million synthetic datasets and over
330,000 CIC-DDoS2019 datasets.

Keywords: DDoS attacks; machine learning; feature selection; ensemble learning; random forest

1. Introduction

Distributed Denial of Service (DDoS) attacks typically combine multiple computers to
launch an attack against a target in order to increase the power of the attack, deny legitimate
access to normal users by exhausting bandwidth and resources, and also affect the overall
performance of the network [1]. DDoS attacks have been used as an information warfare
tool in warfare [2]. Since DDoS attacks use the same legitimate network protocols as normal
users, it is difficult to distinguish DDoS attackers from normal users from huge network
traffic by a single protocol or feature alone. Coupled with unreasonable feature selection
methods and detection models, DDoS attacks are even less easy to detect [3]. There are
many tools that can generate DDoS attacks quickly and easily, such as trinoo, Low Orbit
Ion Cannon, Trinity, mstream, Tribe Flood Network, etc. These tools differ in terms of
architecture, types of flooding attacks, and the methods used for DDoS attacks [4].

With the rapid development of machine learning (ML) in computer vision (CV),
natural language processing (NLP), robotics, image processing, and many other fields [5],

Electronics 2023, 12, 1059. https://doi.org/10.3390/electronics12041059 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12041059
https://doi.org/10.3390/electronics12041059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8335-1612
https://doi.org/10.3390/electronics12041059
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12041059?type=check_update&version=2

Electronics 2023, 12, 1059 2 of 32

the application of machine learning techniques in cyber security helps machines to make
correct decision analyses and predictions [6]. Machine learning-based techniques are
effective in the application of detecting and distinguishing DDoS attacks. Some of the
available DDoS attack detection techniques include artificial neural nets (ANNs), Bayesian
network (BN), gradient descent (GD), decision tree (DT), ensemble learning (EL), random
Ffrest (RF), logistic regression (LR), and support vector machine (SVM) [7]. In this paper,
we propose FAMS, a DDoS attack detection framework based on machine learning, which
is divided into four phases: the data preparation phase, the feature selection (FS) phase,
the model selection (MS) phase, and the RF optimization phase. Many works within
the literature do not focus on pre-processing the data [8], which may eventually lead to
problems such as poor model accuracy and a weak generalization ability. Pre-processing
the data in advance can avoid noise, enhance generalization, improve algorithm accuracy,
and reduce the prediction time. The data preparation stage includes operations such as
feature extraction, feature coding, missing value filling, outlier removal, data balancing,
duplicate elimination, and normalization. It is not always the case that the more data there
is, the better the results. Irrelevant features only overwhelm the learning process and tend
to over-fit the model, increasing the prediction time. Generally, FS methods can be divided
into three categories, namely, (1) filter [9], (2) wrapper [10], and (3) embedded [11], with
numerous FS methods in each category. We include all three types of methods in the model
selection phase of our proposed FAMS framework and, in addition, we propose a feature
selection algorithm that uses numerous FS techniques to extract the best combination of
features in the dataset. By combining them in a way that removes the inherent biases
and drawbacks of using them individually, the DDoS detection model is better simplified,
irrelevant features are removed, data dimensionality is reduced, dimensional catastrophes
are avoided, computational costs are reduced, model prediction time is reduced, and
model generalization is enhanced to avoid causing overfitting. There are many machine
learning methods, and machine learning can usually be classified into four categories:
supervised learning, unsupervised learning, semi-supervised learning, and reinforcement
learning [12]. Each category, in turn, contains numerous algorithms. No single machine
learning algorithm can achieve the best results for any dataset or any data feature. Before
choosing a machine learning model algorithm, it is often necessary to consider the size of
the dataset, the features, and the nature of the problem to be solved. If an inappropriate
machine learning model algorithm is chosen, not only will it fail to yield accurate results, but
it will lead to overfitting of the model [13], requiring longer training and prediction times,
and thus, failing to provide effective DDoS attack detection for realistic networks with
high rates of high traffic. A reasonable choice of machine learning model algorithms can
improve accuracy, reduce prediction time, and enhance the generalization capability of the
model. This is especially true in realistic network systems with high density and high speed
rates. Anomalous traffic can be detected quickly and effectively through the judicious use
of machine learning algorithm models. Therefore, we selected the most suitable algorithm
from GD, SVM, LR, RF, HVG (GDs hard voting algorithm), SVG (GDs soft voting algorithm),
HVR (RFs hard voting algorithm), and SVR (RFs soft voting algorithm) according to the
model selection algorithm in the model selection phase. The model selection algorithm
found that RF outperformed the other models in terms of Accuracy, Precision, Recall,
F1_Score, Average, and predict_time. Therefore, in the subsequent RF optimization phase,
we choose RF as the object of optimization improvement, and the model will be further
improved in performance by the RF optimization algorithm.

In this study, we propose the FAMS framework, which first pre-processes the CIC-
DDoS2019, CIC-IDS2018, CIC-IDS2017, and CIC-DoS2016 datasets in the data preparation
phase. In the feature selection stage, the best 21 feature combinations were selected by the
feature selection algorithm. In the model selection stage, the optimal algorithm RF was
initially selected by the model selection algorithm. Then, the algorithm was optimized
to further improve the DDoS attack detection performance of the algorithm through the
RF optimization stage. Finally, by testing on 100,000 CIC-IDS2018, CIC-IDS2017, and CIC-

Electronics 2023, 12, 1059 3 of 32

DoS2016 synthetic datasets, on 1,000,000 synthetic datasets, and 330,000 CIC-DDoS2019
datasets, the experimental results show that our framework FAMS compares with DDoS
detection model frameworks in the same category in terms of Accuracy, Precision, Recall,
F1_Score, Average, and predict_time. The results also show that the framework also exhibits
an excellent generalization performance when tested on the 1 million synthetic dataset and
the 330,000 CIC-DDoS2019 dataset.

The rest of the paper is organized as follows: In Section 2 we review related work
by others on DDoS attack detection. Section Section 3 describes the data pre-processing,
FS algorithm, MS algorithm, and finally, the RF optimization algorithm in the FAMS
framework. In Section Section 4, the experimental results are analyzed. Section Section 5
concludes the paper and provides an outlook for the future.

2. Related Works

With the continuous development of artificial intelligence, machine learning plays an
important role in DDoS attack detection. Nanda et al. [14] proposed four machine learning
algorithms based on C4.5, plain Bayesian, decision trees, and Bayesian networks to train
historical network attack data to detect network attacks and finally found that an average
prediction accuracy of 91% was achieved by using Bayesian networks. Fukuda et al. [15]
proposed machine learning algorithms based on regression trees, classification, support
vector machines, and random forests to classify the activities of malicious traffic originators
by using the Domain Name System (DNS) backscatter as an additional source of infor-
mation about network activities, and finally achieved an accuracy of about 75%. Deepa
V. et al. [16] proposed machine learning algorithms based on plain Bayes, support vector
machines, K-nearest neighbors, and self-organizing map (SOM) integration techniques
for DDoS attack detection. Finally, the integrated approach was found to exhibit the best
results. Sharafaldin et al. proposed a new detection and family classification method based
on network flow features by detecting the CIC-DDoS2019 dataset and finally providing the
weights of each feature of the dataset. Zhong et al. [17] proposed a big data-based hierarchi-
cal deep learning system in order to improve the intrusion detection rate (BDHDLS), which
reduces the construction time of the model BDHDL by analyzing the features and behavior
of the data and using distributed parallel training techniques. Qu et al. [18] proposed an im-
proved neural network model that identifies abnormal users by analyzing web logs, which
was eventually found through experiments to have a better performance than the tradi-
tional SVM and LSTM models. Cil et al. [19] proposed a deep neural network (DNN)-based
machine learning algorithm for packet capture detection from DDoS attacks in network
traffic and achieved a 94% attack classification accuracy by detecting the CIC-DDoS2019
dataset. Khempetch et al. [20] proposed a deep neural network (DNN) and long short-term
memory (LSTM) algorithms and introduced a new DDoS attack classification method,
which was found to achieve good detection results by detecting the CIC-DDoS2019 dataset.
Hosseini and Azizi [21] proposed a hybrid model based on data flow to detect DDoS attacks.
The task was organized by separating the computation of resources on the agent side and
the client side. Decision trees, random forests, Multi-Layer Perception (MLP), k-nearest
neighbors, and plain Bayes were used to identify DDoS attacks and finally, random forests
were found to have the best results. Yong et al. [22] used a principal component analysis
(PCA) for feature selection. Dash et al. [23] summarized and classified a number of feature
selection methods through a survey and selected a representative feature selection method
from each of the special selection methods, and then explained the advantages and dis-
advantages of the different feature selection methods. Chandrashekar et al. [24] provided
a detailed survey of various FS methods, focusing on filters, wrappers, and embedded
feature selection methods. The authors demonstrated the usefulness of special selection
through experiments on standard datasets. Sheikhpour et al. [25] presented a survey of
semi-supervised feature selection algorithms by presenting two semi-supervised selection
methods for classification. Khalid et al. [26] investigated a large number of FS methods
and then experimentally checked the applicability of different FS and feature extraction

Electronics 2023, 12, 1059 4 of 32

techniques, analyzing how these methods are effective in improving the performance of
the algorithms. Martinez et al. [27] (2021) conducted an experiment with feature selection
and different decision tree-based algorithms to select RF and XGBoost in the F-measure
for a complete feature set detection, and achieved 98.5% high performance and ultimately
found that choosing the right features and machine learning algorithms, i.e., using fewer
attributes for network intrusion detection systems (NIDS), did not significantly degrade
the performance.

This section provides a review of the literature related to DDoS intrusion detection. In
summary, it is found that in recent years, although deep learning, a subclass of machine
learning, has gained increasing popularity among researchers and is widely used for net-
work intrusion detection [28], deep learning requires long training and detection times due
to its complexity and the need for large amounts of data for training. Although most re-
searchers use various FS methods to process multiple types of datasets, they rarely consider
integrating feature selection using more than two types of feature selection methods [29].
In addition, there are different feature selection methods and numerous machine learning
methods available for the detection of DDoS attacks. Unselected, optimized, and single
feature selection methods or machine learning algorithms may not achieve satisfactory
results. After data pre-processing, feature selection plays an important role in the over-
all DDoS detection system as the basis of machine learning. A wrong feature selection
method not only fails to improve the overall performance, but also falls into the curse of
dimensionality by introducing too many redundant features [30]. This makes it difficult to
improve the final detection rate of DDoS attacks no matter what machine learning methods
are subsequently used to optimize the detection of DDoS. Detection is based on feature
selection, and because of the many machine learning methods, blindly selecting one or
more machine learning methods may also lead to the same problems as incorrect feature
selection, such as low accuracy of DDoS attack detection, long detection time, and low
generalization performance.

In this paper, we propose a dual feature and model selection-based DDoS attack
detection framework, FAMS, which draws on the “survival of the fittest” rule in biology. By
processing the latest DDoS datasets from a large number of different sources and using a
grid algorithm to select various features and machine learning algorithms, we find that the
FAMS framework selects the optimal combination of 21 features through a feature selection
algorithm. The FAMS framework was experimentally found to have selected the optimal
combination of 21 features using the feature selection algorithm. Then, the most desirable
algorithm, RF, was initially selected from GD, SVM, LR, RF, HVG, SVG, HVR, and SVR
by the model selection algorithm. Finally, the performance of DDoS attack detection was
further improved by the RF optimization algorithm for the initially selected RF. The results
were excellent in terms of detection time and generalization performance.

3. Materials and Methods

This section provides an overview of our proposed integration framework FAMS.
Figure 1 gives a detailed architecture diagram describing the process flow. It consists of
four parts, the data preparation phase, the feature selection phase, the model selection
phase, and the model evaluation phase.

3.1. Dataset

The dataset is the most fundamental part of FAMS, and the novelty of the selection
of the dataset is directly related to the subsequent feature and model processing of the
framework. There are two main types of DDoS datasets in this paper. One is from CIC-
DDoS2019 [31]. The other is from DDoS streams and corresponding ‘BENIGN’ streams that
are extracted from three different datasets from CIC-IDS2018 [32], CIC-IDS2017 [33], and
CIC-DoS2016 [34] at different times and with different DDoS attack methods, and are then
synthesized into a synthetic dataset with a total of 84 dimensional features and 10 million
records. As a result, this synthetic dataset has more records and more diverse features than

Electronics 2023, 12, 1059 5 of 32

a single dataset, and better reflects the comprehensive performance of the model in terms
of noise immunity, generalization capability, and accuracy. Each dataset is briefly described
below.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 32

Figure 1. Framework for feature selection and model selection methods (FAMS).

3.1. Dataset

The dataset is the most fundamental part of FAMS, and the novelty of the selection

of the dataset is directly related to the subsequent feature and model processing of the

framework. There are two main types of DDoS datasets in this paper. One is from CIC-

DDoS2019 [31]. The other is from DDoS streams and corresponding ‘BENIGN’ streams

that are extracted from three different datasets from CIC-IDS2018 [32], CIC-IDS2017 [33],

and CIC-DoS2016 [34] at different times and with different DDoS attack methods, and are

then synthesized into a synthetic dataset with a total of 84 dimensional features and 10

million records. As a result, this synthetic dataset has more records and more diverse fea-

tures than a single dataset, and better reflects the comprehensive performance of the

model in terms of noise immunity, generalization capability, and accuracy. Each dataset

is briefly described below.

The CIC-IDS 2018 dataset contains 80-dimensional network flow features containing

seven different attack scenarios of Heartbleed, Web Attack, DoS, DDoS, Internal Penetra-

tion [35], Botnet [36], and Brute Force. The CIC-IDS 2017 dataset contains 80+ dimensional

network flow features containing attack types of Botnet, DoS, DDoS, and Web. The CIC-

DoS2016 dataset contains 84-dimensional network flow characteristics, with four attack

types and eight application-layer dos attack traces, with attack types skewed toward slow

send and slow read slow attacks. The CIC-DDoS2019 dataset is the most comprehensive

and up-to-date DDoS attack dataset that is publicly available to date, providing 87-dimen-

sional network flow characteristics including protocol, destination port, timestamp, etc.,

and contains LDAP, PORTMAP, NTP, MSSQL, SSDP, CharGen, NetBIOS, UDP Flood,

UDP Lag, DNS, TFTP, SNMP, and Syn Flood [37], a total of 13 different types of DDoS

attacks.

In the data pre-processing stage, it includes operations such as feature coding, outlier

processing, duplicate elimination, data balancing, and normalization. Some algo-

rithms do not work when there are missing values, and since our dataset of over 10 million

is very large and the number of missing values is small, the missing value records are

removed [38]. Although the presence of outliers tends to introduce noise into the dataset,

reducing the representativeness of the sample and leading to overfitting of the model, our

model is an RF consisting of numerous decision trees, which are more robust to datasets

Figure 1. Framework for feature selection and model selection methods (FAMS).

The CIC-IDS 2018 dataset contains 80-dimensional network flow features containing
seven different attack scenarios of Heartbleed, Web Attack, DoS, DDoS, Internal Penetra-
tion [35], Botnet [36], and Brute Force. The CIC-IDS 2017 dataset contains 80+ dimensional
network flow features containing attack types of Botnet, DoS, DDoS, and Web. The CIC-
DoS2016 dataset contains 84-dimensional network flow characteristics, with four attack
types and eight application-layer dos attack traces, with attack types skewed toward slow
send and slow read slow attacks. The CIC-DDoS2019 dataset is the most comprehensive and
up-to-date DDoS attack dataset that is publicly available to date, providing 87-dimensional
network flow characteristics including protocol, destination port, timestamp, etc., and
contains LDAP, PORTMAP, NTP, MSSQL, SSDP, CharGen, NetBIOS, UDP Flood, UDP Lag,
DNS, TFTP, SNMP, and Syn Flood [37], a total of 13 different types of DDoS attacks.

In the data pre-processing stage, it includes operations such as feature coding, outlier
processing, duplicate elimination, data balancing, and normalization. Some algorithms do
not work when there are missing values, and since our dataset of over 10 million is very
large and the number of missing values is small, the missing value records are removed [38].
Although the presence of outliers tends to introduce noise into the dataset, reducing the
representativeness of the sample and leading to overfitting of the model, our model is an
RF consisting of numerous decision trees, which are more robust to datasets containing
outliers and have higher generalization performance [39]. We will also normalize the data
in order to eliminate the different magnitudes of the different traffic features and to reduce
the computational overhead. Finally, we divide the dataset into a training set for model
training and a test set for model prediction according to 70% and 30%.

3.2. Feature Selection Methods

Feature selection is the process of selecting the most relevant and beneficial features
to improve the prediction of the model itself during model construction, and FS is a very
important part as the foundation in this framework FAMS. Too many redundant features
will only increase the computational overhead of the model, increase the risk of model

Electronics 2023, 12, 1059 6 of 32

overfitting, and greatly increase the training and detection time of the model. With feature
selection, dimensional catastrophes can be avoided, making the model simpler and easier to
understand, with fewer computational costs and shorter training and prediction times, thus
enhancing model generalization. Feature selection and model training are not two separate
processes, and different combinations of features can provide different performance for
different DDoS detection algorithms. Each of the three main categories of FS methods is
briefly discussed in the next section, and the feature selection algorithm section of this
FAMS framework is presented at the end of this section.

3.2.1. Filter

The filter method does not care about the ML algorithm used. Subsequently, it is based
on performance measures to select features. The common feature selections are variance,
mutual information, information value, Chi-square, and correlation. Filter calculates the
correlation value between each feature and the target variable, and selects features by
judging whether the correlation value exceeds a threshold [40]. The main feature of filter is
the low computational overhead, but it leads to lower prediction accuracy of the model.

(a) Variance

Variance is used to filter features by their variance. When a feature has a small variance
on its own, it means that the feature has very little variance, and then the feature is of little
use in differentiating the dataset. Therefore, before feature engineering begins, features
with a variance of zero are generally eliminated to reduce the number of subsequent
calculations.

(b) Mutual Information

In probability theory, the mutual information of two random variables is a measure of
the interdependence between the variables, and the mutual information of two discrete
random variables X and Y can be defined as in Equation (1). The mutual information is not
restricted to real-valued random variables; it is more general and determines how similar
the product p(X)p(Y) of the joint distribution p (X, Y) and the decomposed marginal distri-
butions are. From Equation (1), the larger the value of the mutual information, the greater
the mutual dependence between the features, which means that they are “more relevant”,
and vice versa. Mutual information is one of the filtered feature selection algorithms that
can be used to remove redundant features in feature selection, thereby obtaining a subset
of features that better describe the given problem with minimal performance loss [41].

I(X; Y) = ∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(1)

where p(x) is the probability of X = xi and p(y) is the probability of Y = yi, p(x.y) is the joint
probability, i.e., the probability of X = xi and Y = yi occurring simultaneously, where the
base of the log can be chosen as e or 2.

3.2.2. Wrapper

Wrappers look for all feature subsets and evaluate the selection of a high performance
subset using the evaluation metrics of the ML algorithm [42], commonly backward elimi-
nation, grid search, and forward selection. Since wrapper retrains a new model on each
feature subset, the model computation overhead is relatively high and also requires the
definition of a condition for feature selection to stop, which can be when the number of
features one needs has been reached or when performance starts to degrade, etc.

Backward Elimination

The main principle of backward elimination is that it will first start with all features
and will perform ML algorithm evaluation, then, after removing a feature, it will perform
ML algorithm evaluation again, and so on. Backward elimination will try to remove each

Electronics 2023, 12, 1059 7 of 32

feature and perform evaluations to test which feature has the biggest improvement on the
model accuracy until the required stopping condition is reached [43].

3.2.3. Embedded

Embedded combines filter and wrapper. Embedded is feature selection and algorithm
training in parallel, and is a method of letting the algorithm itself decide which features
to use [44]. Common embedded include Lasso and a range of tree-based algorithms. It is
characterized by the fact that embedded is less computationally expensive than wrapper
because it only trains the model once and takes into account the interaction between
features.

Lasso

Lasso avoids model overfitting by adding penalties to the parameters of the ML model.
The basic idea is to control the degrees of freedom of the model by adjusting the parameters
t as shown in Equations (2) and (3) below.

BLASSO = argBmin{|Y−
p

∑
j=1

XjBj|} (2)

s.t.
p

∑
j=1

∣∣Bj
∣∣ ≤ t (3)

arg is the parameter, B is the required parameter, j is the sample index, X is the input
data, s.t. is the constraint, P is the total number of samples, and t is the penalty term to
control the complexity of the model and avoid over-complexity of the model.

Typically L1, L2, and L1/L2 are used for a total of three regularizations for linear
models, while Lasso (L1) has the property of being able to reduce some coefficients to zero.
lasso regression has a cost function as in Equation (4). The essence is to adjust λ to achieve
a balanced adjustment of the model error and variance [45].

Cost function for LASSO regression:

J(θ) =
1
2

m

∑
i

(
y(i) − θTx(i)

)2
+ λ

n

∑
j

∣∣θj
∣∣ (4)

m is the number of samples, n is the number of features, θ is the parameter vector,
θT is the transpose of θ. x(i), y(i) is the coordinate vector of the ith instance, and λ is the
adjustment parameter by which λ is adjusted to achieve a balanced adjustment of the model
error and variance.

Matrix form:
J(θ) =

1
2n

(Xθ− Y)(Xθ− Y) + α||θ||1 (5)

X is a m × n matrix, Y is m × 1 vector, θ is a n × 1 vector, n is the number of samples,
α is a constant and needs to be tuned, and ||θ||1 is the norm.

Therefore, for linear and logistic regression, when using Lasso regularization to re-
move minor features, it is important to reasonably increase the penalty to avoid removing
important features from the data by increasing the penalty excessively, but insufficient
penalties can also lead to too much redundant data [46].

In summary, the feature selection algorithm is the basis of the FAMS algorithm and
plays a crucial role in the subsequent model selection. The aim is to use a feature selection
method from a large number of features in the dataset, from which a feature selection
method with high generalization capability, high performance metrics, and short pre-
diction time is selected. Specifically, as follows, first we apply the grid algorithm [47]:
for Filter-Variance, Filter-Correlation, Filter-Chi-Square, Filter-MutualInformation, Filter-
Information, and Embedded from Filter, Wrapper, and Filter-InformationValue, Wrapper-

Electronics 2023, 12, 1059 8 of 32

ForwardSelection, Wrapper-BackwardElimination, Wrapper-Exhaustive, Wrapper-Genetic,
Embedded-Lasso, Embedded Embedded-RandomForest, Embedded-GradientBoosted, and
Embedded-Recursive for a total of 13 feature selection methods, using 10MCIC-IDS2018,
CIC-IDS2017, and CIC-DoS2016 synthetic DDoS datasets, choosing the common model
algorithms GD, SVM, LR, and RF, and then, model evaluation metrics Accuracy, Precision,
Recall, and F1_Score for performance evaluation, and take the average value, Average,
which is used for ranking as a reference for selecting models as in the following Equation (6).

Average =
Accuracy + Precision + Recall + F1_Score

4
(6)

The five most suitable feature selection models for DDoS detection using the Algo-
rithm 1: feature selection algorithm are variance, mutual information from filter, backward
elimination from wrapper and Lasso.L1, and random forest from embedded. These five
feature selection methods are from each of the three types (filter, wrapper, and embedded)
and are included in the feature selection algorithm of our proposed FAMS framework as
a way to eliminate the inherent biases and drawbacks associated with one of them when
used alone. This is conducted in a way that eliminates the inherent biases and drawbacks
associated with one of the classes when used alone, to differentiate classes, reduce feature
bias, and enhance the generalization performance of the features selected by the feature se-
lection algorithm to avoid overfitting. The algorithm pseudo-code is shown in Algorithm 1:
feature selection algorithm. The flow chart of the algorithm is shown in Figure 2.

Algorithm 1: Feature Selection Algorithm

Input: dataset = [CIC-IDS2018, CIC-IDS2017, CIC-DoS2016],
features = [Filter-Variance, Filter-Correlation, Filter-Chi-Square Filter-MutualInformation,

Filter-InformationValue, Filter-InformationValue Wrapper-ForwardSelection, Wrapper-BackwardElimination, Wrapper-Chi-Square
Wrapper-Exhaustive, Wrapper-Genetic, Embedded-Lasso.
Embedded-RandomForest, Embedded-GradientBoosted, and Embedded-Recursive]
model = [GD, SVM, LR, RF]

Output: Select 21 most important features.
procedure: Feature Selection

Step 1: defined results = [Method, matrix, Accuracy, Precision,
Recall, F1_Score, Average, predict_time]

Step 2: defined method features_method_results (results) # select 5 FS algorithms
Step 3: for each ds in dataset:

for each fts in features:
model.fit

testes_out(y_test,y_pred) # Performance test function
results.append(tests_out(y_test,y_pred))

Step 4: features_method_results(results)# Apply the method to get 5 feature selection algorithms
The following is the feature selection phase using 5 feature selection algorithms
Step 5: defined variable selected_features_ds_fts = []
Step 6: dataset = [CIC-IDS2018, CIC-IDS2017, CIC-DoS2016]
Step 7: features = [Variance, Mutual Information, Backward Elimination,

Lasso.L1, Random Forest]
Step 8: for each ds in dataset:

for each fts in features:
fts.selection_feature #Count the features selected by each method

selected-features-ds-fts.append(fts.selected_feature)
Step 9: defined variable feature_selection_results = []
Step 10: for each feature in selected_features_ds_fts:

If(feature > 3):
feature_selection_results.append(feature)

Step 11: feature_selection_results
end procedure

Electronics 2023, 12, 1059 9 of 32

Electronics 2023, 12, x FOR PEER REVIEW 9 of 32

Recall, F1_Score, Average, predict_time]

Step 2: defined method features_method_results (results) # select 5 FS algorithms

Step 3: for each ds in dataset:

 for each fts in features:

model.fit

testes_out(y_test,y_pred) # Performance test function

results.append(tests_out(y_test,y_pred))

Step 4: features_method_results(results)# Apply the method to get 5 feature selection algorithms

The following is the feature selection phase using 5 feature selection algorithms

Step 5: defined variable selected_features_ds_fts = []

Step 6: dataset = [CIC-IDS2018, CIC-IDS2017, CIC-DoS2016]

Step 7: features = [Variance, Mutual Information, Backward Elimination,

Lasso.L1, Random Forest]

Step 8: for each ds in dataset:

 for each fts in features:

fts.selection_feature #Count the features selected by each method

 selected-features-ds-fts.append(fts.selected_feature)

Step 9: defined variable feature_selection_results = []

Step 10: for each feature in selected_features_ds_fts:

If(feature > 3):

feature_selection_results.append(feature)

Step 11: feature_selection_results

end procedure

Figure 2. Basic principle of feature selection algorithm. Figure 2. Basic principle of feature selection algorithm.

3.3. Model Selection Methods

Machine learning is used to classify things, discover patterns, predict outcomes, and
make informed decisions. The many machine learning methods can be broadly classified
into four types, namely, supervised learning, semi-supervised learning, unsupervised
learning, and reinforcement learning [48]. Each of these models in turn contains multiple
algorithms. No single machine learning model algorithm can achieve the best results for
any dataset and any data feature. Usually, the size of the dataset, the characteristics of the
dataset, and the nature of the problem to be solved need to be taken into account before a
machine learning model algorithm is selected [49]. If an inappropriate machine learning
model algorithm is selected, not only will it not yield accurate results, but it will lead to
overfitting of the model or will require longer training and prediction time for effective
DDoS attack detection on realistic high speed and high traffic networks. A reasonable
choice of machine learning model algorithms can improve accuracy, reduce prediction time,
and enhance the generalization ability of the model. Especially in realistic network systems
with high-density data flow, anomalous traffic can be detected quickly and effectively
through the judicious use of machine learning algorithm models [50]. In this section, the
characteristics of the machine learning methods used in this study are first reviewed. Then,
the section will conclude with a description of the model selection algorithm component of
the FAMS framework.

3.3.1. GD

The basic principle of gradient descent is to iteratively adjust the parameters in order
to minimize the cost function. That is, you start with a random initialization using a
random value of θ and then gradually improve, taking one step at a time, with each step
trying to reduce the cost function a little (e.g., MSE) until the algorithm converges to a
minimum value. To implement gradient descent, you need to calculate the gradient of the
cost function for each model with respect to the parameter θj. In other words, you need to
calculate how much the cost function will change if you change θj [51], which is called the

Electronics 2023, 12, 1059 10 of 32

partial derivative, and the following equation calculates the partial derivative of the cost
function with respect to the parameter θj:

∂

∂θj
MSE(θ) =

2
m

m

∑
i=1

(
θTx(i) − y(i)

)
x(i)j (7)

MSE is the cost function, θ is the parameter vector, θT is the transpose of θ, m is the
number of instances, and x(i), y(i) is the coordinate vector of the ith instance.

3.3.2. SVM

Historical data show that SVMs are often one of the most effective methods for
problem solving and are highly favored. SVMs are generalized linear classifiers that are
part of supervised learning [52]. The basic principle is to determine a hyperplane by
partitioning the space into multiple classes, and their decision boundary is a maximum
margin hyperplane that is solved for the learned samples and can be used to partition the
data non-linearly by a kernel function [53], the support vector machine formulation.

f(z) = sign(∑N
i=1υiΨ(zi) + c) (8)

Here, Ψ is the mapping function that can be chosen from SVM, radial basis function
(RBF), υ is the weight, and c is the bias.

3.3.3. LR

Logistic regression (LR) is often used to calculate the probability that an instance
belongs to this category.

The estimated probabilities of the logistic regression model are given in Equation
(9), and the output mathematical and logical values are calculated by weighing the input
features.

Logistic Regression model estimated probability (vectorized form):

p = σ
(

xTθ
)

(9)

x is the feature matrix and θ is the weighting factor.
σ is a sigmoid function that outputs a number between 0 and 1. It is defined as shown

in Equation (10). Logic functions:

σ(t) =
1

1 + exp(−t)
(10)

exp(−t) is equivalent to e−t and t is the independent variable.
When LR calculates the probability that x belongs to a class p = σ

(
xTθ

)
, then the

prediction y is given as follows (11).
Logistic regression model prediction:

y =

{
0, x < 0.5
1, x ≥ 0.5

(11)

y is the predicted outcome of x. Notice that σ(t) < 0.5 when t < 0, and σ(t) ≥ 0.5 when t ≥ 0,
so a logistic regression model predicts 1 if xTθ is positive and 0 if it is negative.

3.3.4. Ensemble Learning

A complete ensemble learning (EN) algorithm is roughly divided into two steps. First,
the process of constructing the base learner can be parallel or serial, but serial tends to be
computationally inefficient and can have an impact on subsequent base learners. The base
learners are then combined, and the common combination methods used for classification

Electronics 2023, 12, 1059 11 of 32

are hard and soft voting [54]. Hard voting basically works by aggregating the predictions
of each base classifier and then using the result with the most votes as the final predicted
class. Soft voting presupposes that all classifiers are required to be able to estimate the
probability of a category, and the basic principle is to give the category with the highest
average probability as predicted by averaging the probabilities over all individual classifiers.
Historical data suggests that soft voting usually performs better than hard voting methods
because it gives higher weights to the best classifiers [55]. Whether or not samples are put
back during sampling, the sampling methods can be classified into bootstrap (bagging)
and pasting. Bagging involves each sub-model randomly drawing a certain number of
samples from all the sample data, putting the data back into the sample data after training
is completed, and another sub-model randomly drawing the same number of sub-models
from all the sample data. The bagging sampling method is favored because it can train
more sub-models quickly without the limitation of the number of samples and without the
dependency problem of pasting [56]. Figure 3 shows the selected GD, SVM, and LR hard
and soft polling integration to generate HVG and SVG. Figure 3 below shows the selected
GD, SVM, and LR hard and soft polling integration to generate HVG and SVG. Figure 4
shows the selection of RF, SVM, and LR hard and soft polling integration to generate HVG
and SVG.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 32

Figure 3. Generating hard voting HVG and soft voting SVG.

Figure 4. Generating hard voting HVR and soft voting SVR.

3.3.5. Random Forest

Random forest (RF) is based on bagging, which uses a random sampling method with

put-back to draw multiple subsamples from the original dataset and uses these multiple

subsamples to train multiple base learners to reduce the variance of the model. RF uses a

decision tree (DT) as the base learner [57], which selects an optimal attribute division

among the set of attribute features of the current tree node by means of a certain policy.

The basic principle of random forest is shown in Figure 5. The algorithm steps are as

follows:

(1) Input: sample set S = {(x,y11), (x,y22), …, (x,ymm)}.

(2) Output: random forest model f(x).

(3) For t = 1, 2, … T (T is the number of iterations of the weak classifier).

(a) The training set is randomly sampled for the tth time, and a total of m times are

taken to obtain a sample set S containing m sample St.

(b) Train the tth decision tree model Gt (x) with the sample set St, and when training

the nodes of the decision tree model in a random selection of partial features from the

sample features of the node, a calculation based on the selected partial features, and the

selection of the optimal feature to do the division of left and right sub-trees, each tree will

grow intact without pruning. The focus of a random forest is on “random” selection in

two directions, and the randomness of these two aspects makes the random forest rela-

tively enhanced generalization performance compared to decision trees, as they are less

prone to overfitting [58].

Figure 3. Generating hard voting HVG and soft voting SVG.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 32

Figure 3. Generating hard voting HVG and soft voting SVG.

Figure 4. Generating hard voting HVR and soft voting SVR.

3.3.5. Random Forest

Random forest (RF) is based on bagging, which uses a random sampling method with

put-back to draw multiple subsamples from the original dataset and uses these multiple

subsamples to train multiple base learners to reduce the variance of the model. RF uses a

decision tree (DT) as the base learner [57], which selects an optimal attribute division

among the set of attribute features of the current tree node by means of a certain policy.

The basic principle of random forest is shown in Figure 5. The algorithm steps are as

follows:

(1) Input: sample set S = {(x,y11), (x,y22), …, (x,ymm)}.

(2) Output: random forest model f(x).

(3) For t = 1, 2, … T (T is the number of iterations of the weak classifier).

(a) The training set is randomly sampled for the tth time, and a total of m times are

taken to obtain a sample set S containing m sample St.

(b) Train the tth decision tree model Gt (x) with the sample set St, and when training

the nodes of the decision tree model in a random selection of partial features from the

sample features of the node, a calculation based on the selected partial features, and the

selection of the optimal feature to do the division of left and right sub-trees, each tree will

grow intact without pruning. The focus of a random forest is on “random” selection in

two directions, and the randomness of these two aspects makes the random forest rela-

tively enhanced generalization performance compared to decision trees, as they are less

prone to overfitting [58].

Figure 4. Generating hard voting HVR and soft voting SVR.

3.3.5. Random Forest

Random forest (RF) is based on bagging, which uses a random sampling method with
put-back to draw multiple subsamples from the original dataset and uses these multiple
subsamples to train multiple base learners to reduce the variance of the model. RF uses
a decision tree (DT) as the base learner [57], which selects an optimal attribute division
among the set of attribute features of the current tree node by means of a certain policy.

Electronics 2023, 12, 1059 12 of 32

The basic principle of random forest is shown in Figure 5. The algorithm steps are as
follows:

(1) Input: sample set S = {(x,y11), (x,y22), . . . , (x,ymm)}.
(2) Output: random forest model f(x).
(3) For t = 1, 2, . . . T (T is the number of iterations of the weak classifier).

Electronics 2023, 12, x FOR PEER REVIEW 13 of 32

Figure 5. Basic principles of the random forest algorithm.

The advantages of random forests are:

(1) Random forest based on bagging with put-back sampling, highly parallelized train-

ing, and suitable for large data samples.

(2) Random sampling is used, the model has low variance. It has a strong resistance to

noise and a strong generalization ability.

(3) Due to the random selection of the features to be selected, good training predictions

can also be achieved for high-dimensional features.

(4) Relative to the boosting algorithm [59], the implementation is relatively simple, the

accuracy is high, and the training is fast.

The basic principle of the model selection algorithm is shown in Figure 6. The model

selection algorithm is based on the feature selection algorithm, and the aim is to use the

21 features selected by the feature selection algorithm in the previous section to initially

select algorithmic models with high Accuracy, Precision, Recall, F1_Score, strong gener-

alization ability, and short prediction time using the model selection algorithm. First, the

resultant features ENF from the feature selection algorithm were trained and predicted

using GD, SVM, LR, RF, HVG, SVG, HVR, and SVR, respectively, and then, the perfor-

mance of each model was evaluated using the model evaluation metrics, Accuracy, Preci-

sion, Recall, F1_Score, and the average value, Average, was combined with the predic-

tion_time generated by each model to select a model with high accuracy and short predic-

tion time for DDoS detection. The model algorithm pseudo-code is shown in Algorithm

2: model selection algorithm.

Algorithm 2: Model Selection Algorithm

Input: feature_selection_results, GD, SVM, LR, RF, HVG, SVG, HVR, SVR

Output: Select 1 most important Model.

procedure: Top Model

Step 1: Generate the dataset after Feature Selection from the output of Algorithm 1 FS_dataset

Step 2: Applying FS_dataset, generate the GD confusion matrix and calculate the corresponding Average

Step 3: defined variable selected_models = []

Step 4: dataset = [CIC-IDS2018, CIC-IDS2017, CIC-DoS2016]

Step 5: models = [GD, SVM, LR, RF, HVG, SVG,HVR, SVR]

Step 6: for each ds in dataset:

 for each ms in models:

Figure 5. Basic principles of the random forest algorithm.

(a) The training set is randomly sampled for the tth time, and a total of m times are
taken to obtain a sample set S containing m sample St.

(b) Train the tth decision tree model Gt (x) with the sample set St, and when training
the nodes of the decision tree model in a random selection of partial features from the
sample features of the node, a calculation based on the selected partial features, and the
selection of the optimal feature to do the division of left and right sub-trees, each tree will
grow intact without pruning. The focus of a random forest is on “random” selection in two
directions, and the randomness of these two aspects makes the random forest relatively
enhanced generalization performance compared to decision trees, as they are less prone to
overfitting [58].

The advantages of random forests are:

(1) Random forest based on bagging with put-back sampling, highly parallelized training,
and suitable for large data samples.

(2) Random sampling is used, the model has low variance. It has a strong resistance to
noise and a strong generalization ability.

(3) Due to the random selection of the features to be selected, good training predictions
can also be achieved for high-dimensional features.

(4) Relative to the boosting algorithm [59], the implementation is relatively simple, the
accuracy is high, and the training is fast.

The basic principle of the model selection algorithm is shown in Figure 6. The model
selection algorithm is based on the feature selection algorithm, and the aim is to use the
21 features selected by the feature selection algorithm in the previous section to initially
select algorithmic models with high Accuracy, Precision, Recall, F1_Score, strong gener-
alization ability, and short prediction time using the model selection algorithm. First, the
resultant features ENF from the feature selection algorithm were trained and predicted us-
ing GD, SVM, LR, RF, HVG, SVG, HVR, and SVR, respectively, and then, the performance
of each model was evaluated using the model evaluation metrics, Accuracy, Precision,
Recall, F1_Score, and the average value, Average, was combined with the prediction_time
generated by each model to select a model with high accuracy and short prediction time
for DDoS detection. The model algorithm pseudo-code is shown in Algorithm 2: model
selection algorithm.

Electronics 2023, 12, 1059 13 of 32

Algorithm 2: Model Selection Algorithm

Input: feature_selection_results, GD, SVM, LR, RF, HVG, SVG, HVR, SVR
Output: Select 1 most important Model.
procedure: Top Model

Step 1: Generate the dataset after Feature Selection from the output of Algorithm 1 FS_dataset
Step 2: Applying FS_dataset, generate the GD confusion matrix and calculate the

corresponding Average
Step 3: defined variable selected_models = []
Step 4: dataset = [CIC-IDS2018, CIC-IDS2017, CIC-DoS2016]
Step 5: models = [GD, SVM, LR, RF, HVG, SVG,HVR, SVR]
Step 6: for each ds in dataset:

for each ms in models:
ms. Average # Calculate Average for each model
selected_models.append(ms.f1_score)

Step 7: defined variable model_selection_results = []
Step 8: for each model_Average in model_selection_results:

model_selection_result = model_selection_result.index(0) #initialize
If(model_Average > model_selection_result):

model_selection_result = model_f1_score
Step 9: model_selection_result

end procedure

Electronics 2023, 12, x FOR PEER REVIEW 14 of 32

ms. Average # Calculate Average for each model

selected_models.append(ms.f1_score)

Step 7: defined variable model_selection_results = []

Step 8: for each model_Average in model_selection_results:

model_selection_result = model_selection_result.index(0) #initialize

If(model_Average > model_selection_result):

model_selection_result = model_f1_score

Step 9: model_selection_result

end procedure

Figure 6. Basic principles of the model selection algorithm.

3.4. RF Optimization Algorithms

In the data network, due to the large amount of data traffic, data imbalance, and var-

ious types of data, the detection algorithm for DDoS attacks needs to be highly parallel-

ized, with simple models, strong generalization capabilities, and high detection efficiency.

There is no doubt that a random forest-based DDoS attack detection algorithm can take

on this task. When the maximum depth of the random forest and the number of decision

trees are too large, the time complexity and space complexity of training and detection

will be higher, so some optimization is needed. The main parameters of the random forest

to be optimized are as follows.

(a) max_samples: The training set size is set by max_samples.

(b) max_depth: The maximum depth of the decision tree, the default is not limited, if the

model has a lot of samples and features, it is recommended to limit this. The common

value can be between 10 and 100. If the model has a large number of samples and

features, it is recommended to modify this limit, which can commonly be taken to be

between 10 and 100.

(c) n_estimators: Specifies the number of decision trees in the random forest, default is

100. n_estimators is too small to be easily under-fitted and too large to be computa-

tionally intensive, so the parameters need to be optimized to a moderate value. The

pseudo-code for the optimization algorithm is given in Algorithm 3: random forest

optimization algorithm.

Figure 6. Basic principles of the model selection algorithm.

3.4. RF Optimization Algorithms

In the data network, due to the large amount of data traffic, data imbalance, and vari-
ous types of data, the detection algorithm for DDoS attacks needs to be highly parallelized,
with simple models, strong generalization capabilities, and high detection efficiency. There
is no doubt that a random forest-based DDoS attack detection algorithm can take on this
task. When the maximum depth of the random forest and the number of decision trees
are too large, the time complexity and space complexity of training and detection will be
higher, so some optimization is needed. The main parameters of the random forest to be
optimized are as follows.

(a) max_samples: The training set size is set by max_samples.
(b) max_depth: The maximum depth of the decision tree, the default is not limited, if the

model has a lot of samples and features, it is recommended to limit this. The common
value can be between 10 and 100. If the model has a large number of samples and

Electronics 2023, 12, 1059 14 of 32

features, it is recommended to modify this limit, which can commonly be taken to be
between 10 and 100.

(c) n_estimators: Specifies the number of decision trees in the random forest, default is
100. n_estimators is too small to be easily under-fitted and too large to be computa-
tionally intensive, so the parameters need to be optimized to a moderate value. The
pseudo-code for the optimization algorithm is given in Algorithm 3: random forest
optimization algorithm.

Algorithm 3: Random Forest Optimization Algorithm

Input: FS_dataset, max_samples, max_depth, n_estimators
Output: Random Forest Optimization Model
procedure: parameter Optimization

Step 1: defined variable results = [Method,matrix, Accuracy, Precision,
Recall, F1_Score, Average, predict_time]

Step 2: Initialize the parameter RandomForestClassifier(max_samples = 0.9,
max_depth = 20, n_estimators = 100)

Step 3: Optimising max_samples
for sam in [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]:

model = RandomForestClassifier(max_samples = sam,
max_depth = 20, n_estimators = 100)

model.fit
testes_out(y_test,y_pred) # Performance test function

results.append(Method, matrix, Accuracy, Precision, Recall,
F1_Score, Average,predict_time)

Step 4: Select the opt_max_samples with the highest results
Step 5: Optimising max_depth

for dep in range(10,30,2):
model = RandomForestClassifier(max_samples = 0.9,

max_depth = dep, n_estimators = 100)
model.fit
testes_out(y_test,y_pred) # Performance test function
results.append(Method, matrix, Accuracy, Precision, Recall,

F1_Score, Average,predict_time)

Step 6: Select the opt_max_depth with the highest results
Step 7: Optimising n_estimators

for dep in range(10,210,20):
model = RandomForestClassifier(max_samples = 0.9,

max_depth = 20, n_estimators = est)
model.fit
testes_out(y_test,y_pred) # Performance test function
results.append(Method, matrix, Accuracy, Precision, Recall,

F1_Score, Average,predict_time)
Step 8: Select the opt_n_estimators with the highest results
Step 9: #Output the optimization result:
RandomForestClassifier(max_samples = opt_max_samples,

max_depth = opt_max_depth,
n_estimators = opt_n_estimators)

end procedure

Electronics 2023, 12, 1059 15 of 32

3.5. Performance Metrics and Model Evaluation

This experiment tests the performance results of the experimental study based on a
confusion matrix to evaluate the experimental results. The confusion matrix contains both
estimated and actual values. The confusion matrix is shown in Figure 7. Here, true positive
TP and true negative TN indicate correct predicted values, while false positive FP and false
negative FN indicate incorrect predicted values [60]. In addition, model performance was
assessed using the subject operating curve ROC and the area under the curve AUC. The
ROC curve has a false positive rate on the horizontal axis and a true positive rate on the
vertical axis.

Electronics 2023, 12, x FOR PEER REVIEW 16 of 32

3.5. Performance Metrics and Model Evaluation

This experiment tests the performance results of the experimental study based on a

confusion matrix to evaluate the experimental results. The confusion matrix contains both

estimated and actual values. The confusion matrix is shown in Figure 7. Here, true posi-

tive TP and true negative TN indicate correct predicted values, while false positive FP and

false negative FN indicate incorrect predicted values [60]. In addition, model performance

was assessed using the subject operating curve ROC and the area under the curve AUC.

The ROC curve has a false positive rate on the horizontal axis and a true positive rate on

the vertical axis.

Figure 7. Confusion matrix.

The confusion matrix contains information on the evaluation of the lower right true

negative, lower left false positive, upper right false negative, and upper left true. The pro-

posed model is evaluated according to the performance metrics from the confusion matrix

and the formulas Accuracy (12), Precision (13), Recall (13), F1_Score (14), and Average.

The formulas for these metrics are given in the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
 (12)

Precision =
TP

TP + FP
 (13)

Recall =
TP

TP + FN
 (14)

This experiment also used a 3-fold cross-validation method to determine the error of

the model. In order to conduct the experimental study, the dataset was used over 100,000

items, including 21 different DDoS attack features. f1_Score formula as in (15), when com-

pared to a single comparison of different classifiers Precision or Recall with bias, F1_Score

combines Precision and Recall, and the classifier will only have a higher F1 score when

both Precision and Recall are high, and so, the sub-classifier will be better.

F1 =
2

1
Precision

+
1

Recall

 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (15)

The AOC of a perfect classifier should be as shown in Figure 8 below, which corre-

sponds to an AUC of 1. The dashed line indicates the ROC curve of a purely random

classifier, which corresponds to an AUC of 0.5.

Figure 7. Confusion matrix.

The confusion matrix contains information on the evaluation of the lower right true
negative, lower left false positive, upper right false negative, and upper left true. The
proposed model is evaluated according to the performance metrics from the confusion
matrix and the formulas Accuracy (12), Precision (13), Recall (13), F1_Score (14), and
Average. The formulas for these metrics are given in the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

This experiment also used a 3-fold cross-validation method to determine the error
of the model. In order to conduct the experimental study, the dataset was used over
100,000 items, including 21 different DDoS attack features. f1_Score formula as in (15),
when compared to a single comparison of different classifiers Precision or Recall with bias,
F1_Score combines Precision and Recall, and the classifier will only have a higher F1 score
when both Precision and Recall are high, and so, the sub-classifier will be better.

F1 =
2

1
Precision + 1

Recall

=
2 ∗ TP

2 ∗ TP + FP + FN
(15)

The AOC of a perfect classifier should be as shown in Figure 8 below, which corre-
sponds to an AUC of 1. The dashed line indicates the ROC curve of a purely random
classifier, which corresponds to an AUC of 0.5.

Electronics 2023, 12, 1059 16 of 32Electronics 2023, 12, x FOR PEER REVIEW 17 of 32

Figure 8. AOC of good classifiers.

4. Experimental Results

4.1. Feature Selection

The 79 features obtained from feature extraction of each dataset after pre-processing

from CIC-IDS2018, CIC-IDS2017, and CIC-DoS2016 synthesized DDoS and CIC-

DDoS2019 were coded in Table 1 below and used as inputs to the feature selection algo-

rithm.

Table 1. Dataset characteristics and their coding.

Id Feature Name Id Feature Name Id Feature Name Id Feature Name

1 Source Port 21 Flow IAT Max 41 Min Packet Length 61 Bwd Avg Bytes/Bulk

2 Destination Port 22 Flow IAT Min 42 Max Packet Length 62 Bwd Avg Packets/Bulk

3 Protocol 23 Fwd IAT Total 43 Packet Length Mean 63 Bwd Avg Bulk Rate

4 Flow Duration 24 Fwd IAT Mean 44 Packet Length Std 64 Subflow Fwd Packets

5 Total Fwd Packets 25 Fwd IAT Std 45 Packet Length Variance 65 Subflow Fwd Bytes

6 Total Backward Packets 26 Fwd IAT Max 46 FIN Flag Count 66 Subflow Bwd Packets

7 Total Length of Fwd Packets 27 Fwd IAT Min 47 SYN Flag Count 67 Subflow Bwd Bytes

8 Total Length of Bwd Packets 28 Bwd IAT Total 48 RST Flag Count 68 Init_Win_bytes_forward

9 Fwd Packet Length Max 29 Bwd IAT Mean 49 PSH Flag Count 69 Init_Win_bytes_backward

10 Fwd Packet Length Min 30 Bwd IAT Std 50 ACK Flag Count 70 act_data_pkt_fwd

11 Fwd Packet Length Mean 31 Bwd IAT Max 51 URG Flag Count 71 min_seg_size_forward

12 Fwd Packet Length Std 32 Bwd IAT Min 52 CWE Flag Count 72 Active Mean

13 Bwd Packet Length Max 33 Fwd PSH Flags 53 ECE Flag Count 73 Active Std

14 Bwd Packet Length Min 34 Bwd PSH Flags 54 Down/Up Ratio 74 Active Max

15 Bwd Packet Length Mean 35 Fwd URG Flags 55 Average Packet Size 75 Active Min

16 Bwd Packet Length Std 36 Bwd URG Flags 56 Avg Fwd Segment Size 76 Idle Mean

17 Flow Bytes/s 37 Fwd Header Length 57 Avg Bwd Segment Size 77 Idle Std

18 Flow Packets/s 38 Bwd Header Length 58 Fwd Avg Bytes/Bulk 78 Idle Max

Figure 8. AOC of good classifiers.

4. Experimental Results
4.1. Feature Selection

The 79 features obtained from feature extraction of each dataset after pre-processing
from CIC-IDS2018, CIC-IDS2017, and CIC-DoS2016 synthesized DDoS and CIC-DDoS2019
were coded in Table 1 below and used as inputs to the feature selection algorithm.

Table 1. Dataset characteristics and their coding.

Id Feature Name Id Feature Name Id Feature Name Id Feature Name

1 Source Port 21 Flow IAT Max 41 Min Packet Length 61 Bwd Avg Bytes/Bulk
2 Destination Port 22 Flow IAT Min 42 Max Packet Length 62 Bwd Avg Packets/Bulk
3 Protocol 23 Fwd IAT Total 43 Packet Length Mean 63 Bwd Avg Bulk Rate
4 Flow Duration 24 Fwd IAT Mean 44 Packet Length Std 64 Subflow Fwd Packets
5 Total Fwd Packets 25 Fwd IAT Std 45 Packet Length Variance 65 Subflow Fwd Bytes
6 Total Backward Packets 26 Fwd IAT Max 46 FIN Flag Count 66 Subflow Bwd Packets
7 Total Length of Fwd Packets 27 Fwd IAT Min 47 SYN Flag Count 67 Subflow Bwd Bytes
8 Total Length of Bwd Packets 28 Bwd IAT Total 48 RST Flag Count 68 Init_Win_bytes_forward
9 Fwd Packet Length Max 29 Bwd IAT Mean 49 PSH Flag Count 69 Init_Win_bytes_backward
10 Fwd Packet Length Min 30 Bwd IAT Std 50 ACK Flag Count 70 act_data_pkt_fwd
11 Fwd Packet Length Mean 31 Bwd IAT Max 51 URG Flag Count 71 min_seg_size_forward
12 Fwd Packet Length Std 32 Bwd IAT Min 52 CWE Flag Count 72 Active Mean
13 Bwd Packet Length Max 33 Fwd PSH Flags 53 ECE Flag Count 73 Active Std
14 Bwd Packet Length Min 34 Bwd PSH Flags 54 Down/Up Ratio 74 Active Max
15 Bwd Packet Length Mean 35 Fwd URG Flags 55 Average Packet Size 75 Active Min
16 Bwd Packet Length Std 36 Bwd URG Flags 56 Avg Fwd Segment Size 76 Idle Mean
17 Flow Bytes/s 37 Fwd Header Length 57 Avg Bwd Segment Size 77 Idle Std
18 Flow Packets/s 38 Bwd Header Length 58 Fwd Avg Bytes/Bulk 78 Idle Max
19 Flow IAT Mean 39 Fwd Packets/s 59 Fwd Avg Packets/Bulk 79 Idle Min
20 Flow IAT Std 40 Bwd Packets/s 60 Fwd Avg Bulk Rate

Table 2 below shows the feature selection algorithm’s processing of variance, mutual
information from filter, backward elimination from wrapper and Lasso.L1, and random
forest from embedded for the feature selection method of the top 25 features selected.

Table 2. Feature selection algorithm process.

Feature Selection Method Id

filter-Variance method 1, 2, 3, 4, 8, 9, 11, 12, 17, 21, 26, 37, 38, 42, 43, 45, 50, 55, 56, 67, 68, 69, 71
wrapper-Backward Elimination 1, 2, 3, 8, 11, 17, 21, 25, 26, 28, 31, 32, 33, 34, 41, 45, 50, 51, 55, 66, 67, 68, 69

embed-Lasso.l1 1, 2, 3, 4, 8, 9, 11, 12, 17, 21, 26, 37, 38, 42, 43, 45, 50, 55, 56, 67, 68, 69, 71
filter-Mutual Information 2, 7, 8, 9, 11, 12, 13, 15, 16, 21, 22, 37, 38, 42, 43, 44, 45, 55, 56, 65, 67, 69, 71

embed-Random Forest 2, 3, 6, 9, 11, 12, 14, 17, 18, 19, 21, 26, 37, 38, 39, 42, 43, 50, 56, 67, 68, 69, 71
5 Select 4 results 2, 3, 8, 9, 11, 12, 17, 21, 26, 37, 38, 42, 43, 45, 50, 55, 56, 67, 68, 69, 71

Electronics 2023, 12, 1059 17 of 32

The final feature results obtained by the feature selection algorithm. The machine
features are coded in Table 3.

Table 3. Feature selection algorithm processing results.

Id Feature Name Id Feature Name

1 Destination Port 12 Fwd Header Length
2 Fwd Packet Length Mean 13 Bwd Header Length
3 Flow IAT Max 14 Max Packet Length
4 Subflow Bwd Bytes 15 Packet Length Mean
5 Init_Win_bytes_backward 16 Packet Length Variance
6 Protocol 17 ACK Flag Count
7 Total Length of Bwd Packets 18 Average Packet Size
8 Fwd Packet Length Max 19 Avg Fwd Segment Size
9 Fwd Packet Length Std 20 Init_Win_bytes_forward
10 Flow Bytes/s 21 min_seg_size_forward
11 Fwd IAT Max

4.2. Model Selection

We chose GD, SVM, LR, RF, HVG, SVG, HVR, and SVR according to the model
selection algorithm, and the experimental results are shown in Table 4 below.

Table 4. Performance indicators for each model of the model selection algorithm.

Method Matrix Accuracy Precision Recall F1_Score Average Normal_Detect_
Rate

Atk_Detect_
Rate

Predict_
Time

GD 15, 275 858
1506 15, 361

0.928364 0.947099 0.910713 0.928550 0.928681 0.946817 0.910713 0.000989

SVM 15, 343 790
1514 15, 353

0.930182 0.951062 0.910239 0.930203 0.930422 0.951032 0.910239 5.717282

LR 15, 206 927
1514 15, 353

0.926030 0.943059 0.910239 0.926358 0.926422 0.942540 0.910239 0.002003

RF 16, 119 14
8 16, 859

0.999333 0.999170 0.999526 0.999348 0.999344 0.999132 0.999526 0.216050

HVG 15, 298 835
1511 15, 356

0.928909 0.948428 0.910417 0.929034 0.929197 0.948243 0.910417 5.845312

SVG 15, 498 635
1510 15, 357

0.935000 0.960293 0.910476 0.934721 0.935122 0.960640 0.910476 11.845665

HVR 15, 921 212
120 16, 747

0.989939 0.987499 0.992886 0.990185 0.990127 0.986859 0.992886 12.066660

SVR 15, 926 207
76 16, 791

0.991424 0.987822 0.995494 0.991643 0.991596 0.987169 0.995494 12.069690

First, we analyzed the Accuracy, Precision, Recall and F1_Score of each method
separately, based on the generated confusion matrix. As shown in Figure 9, most of the
tested methods achieved good results, with even the worst LR achieving 92% accuracy,
while RF, HVR, and SVR had particularly good results for the metrics. In terms of individual
algorithmic models, there is no doubt that the RF method ranked first in all categories, with
an overwhelming advantage in terms of Accuracy, Precision, Recall and F1_Score, which
were all close to 100%, while taking only 0.2 s in prediction time. In terms of the integrated
models, soft voting tended to perform better than hard voting.

The integrated combination of SVM, LR, and RF had a better performance than the
integrated combination of GD, SVM, and LR, indicating that the way the models are
combined can have a critical impact on the results. RF had better performance than HVR
and SVR on all items. It shows that the base learner is not necessarily weaker than the
integrated learning when the prediction is better. The contrast shows that RF has the best
performance compared to other models in all performance metrics, so the model with the
better results in the algorithm stage should be RF.

Electronics 2023, 12, 1059 18 of 32

Electronics 2023, 12, x FOR PEER REVIEW 19 of 32

The integrated combination of SVM, LR, and RF had a better performance than the

integrated combination of GD, SVM, and LR, indicating that the way the models are com-

bined can have a critical impact on the results. RF had better performance than HVR and

SVR on all items. It shows that the base learner is not necessarily weaker than the inte-

grated learning when the prediction is better. The contrast shows that RF has the best

performance compared to other models in all performance metrics, so the model with the

better results in the algorithm stage should be RF.

Table 4. Performance indicators for each model of the model selection algorithm.

Method matrix Accuracy Precision Recall F1_Score Average

Nor-

mal_De-

tect_

Rate

Atk_

Detect_

Rate

predict_

Time

GD
15,275 858
1506 15,361

 0.928364 0.947099 0.910713 0.928550 0.928681 0.946817 0.910713 0.000989

SVM
15,343 790
1514 15,353

 0.930182 0.951062 0.910239 0.930203 0.930422 0.951032 0.910239 5.717282

LR
15,206 927
1514 15,353

 0.926030 0.943059 0.910239 0.926358 0.926422 0.942540 0.910239 0.002003

RF
16,119 14

8 16,859
 0.999333 0.999170 0.999526 0.999348 0.999344 0.999132 0.999526 0.216050

HVG
15,298 835
1511 15,356

 0.928909 0.948428 0.910417 0.929034 0.929197 0.948243 0.910417 5.845312

SVG
15,498 635
1510 15,357

 0.935000 0.960293 0.910476 0.934721 0.935122 0.960640 0.910476 11.845665

HVR
15,921 212

120 16,747
 0.989939 0.987499 0.992886 0.990185 0.990127 0.986859 0.992886 12.066660

SVR
15,926 207

76 16,791
 0.991424 0.987822 0.995494 0.991643 0.991596 0.987169 0.995494 12.069690

Figure 9. Performance of each model.

AUC is defined as the area under the ROC curve enclosed by the coordinate axis. As

shown in Figure 10, The ROC curve of each model shows that the ROC curve of RF is the

closest to the standard ROC curve Figure 11, and the AUC scores of each model are shown

in Table 5, where the AUC score of RF is 0.99948, which is the best performance among

the models, corresponding to the histogram Figure 12.

Model selection algorithm AUC scores for each model.

Figure 9. Performance of each model.

AUC is defined as the area under the ROC curve enclosed by the coordinate axis. As
shown in Figure 10, The ROC curve of each model shows that the ROC curve of RF is the
closest to the standard ROC curve Figure 11, and the AUC scores of each model are shown
in Table 5, where the AUC score of RF is 0.99948, which is the best performance among the
models, corresponding to the histogram Figure 12.

Electronics 2023, 12, x FOR PEER REVIEW 20 of 32

Figure 10. ROC curves of GD, SVM, LR, RF, HVG, SVG, HVR, SVR.

Figure 11. Standard ROC curve.

Table 5. AUC scores for model selection algorithms GD, SVM, LR, RF, HVG, SVG, HVR, and SVR.

 GD SVM LR RF HVG SVG HVR SVR

AUC 0.9292 0.9306 0.9265 0.9995 0.9291 0.9414 0.9894 0.9912

Figure 10. ROC curves of GD, SVM, LR, RF, HVG, SVG, HVR, SVR.

Electronics 2023, 12, 1059 19 of 32

Electronics 2023, 12, x FOR PEER REVIEW 20 of 32

Figure 10. ROC curves of GD, SVM, LR, RF, HVG, SVG, HVR, SVR.

Figure 11. Standard ROC curve.

Table 5. AUC scores for model selection algorithms GD, SVM, LR, RF, HVG, SVG, HVR, and SVR.

 GD SVM LR RF HVG SVG HVR SVR

AUC 0.9292 0.9306 0.9265 0.9995 0.9291 0.9414 0.9894 0.9912

Figure 11. Standard ROC curve.

Table 5. AUC scores for model selection algorithms GD, SVM, LR, RF, HVG, SVG, HVR, and SVR.

GD SVM LR RF HVG SVG HVR SVR

AUC 0.9292 0.9306 0.9265 0.9995 0.9291 0.9414 0.9894 0.9912Electronics 2023, 12, x FOR PEER REVIEW 21 of 32

Figure 12. AUC score for model selection algorithms GD, SVM, LR, RF, HVG, SVG, HVR, and

SVR.

4.3. RF Optimization

After the initial selection of a suitable model algorithm for RF in the model selection

algorithm phase, the initially selected RF parameters: random forest sampling rate, maxi-

mum depth per tree, and number of trees were then optimized by the RF optimization

algorithm in order to further improve its DDoS detection performance. Firstly, we set

max_samples = 0.9, max_depth = 20 and n_estimators = 100 to initialize the parameters of

the RF before optimization. The resulting Accuracy, Precision, Recall, F1_Score, Average,

and predict_time are shown in Table 6 below.

Table 6. Performance indicators before RF optimization.

 Accuracy Precision Recall F1_Score Average Predict_Time

bef_opt 0.9993 0.9992 0.9993 0.9993 0.9993 0.2164

4.3.1. Exploring Maximum Sampling

The RF optimization algorithm performs the optimization of the parameter

max_samples, in order to control the variables, always keeping the parameter max_depth

= 20 and n_estimators = 100, and max_samples is selected for the parameter interval [0.1,

0.9], with each incremental step being 0.1.

The results obtained are shown in Table 7 below.

Table 7. max_samples optimization performance table.

Max_Sam-

ples
Accuracy Precision Recall F1_Score Average Predict_Time

0.1 0.9986 0.9985 0.9987 0.9986 0.9986 0.1999

0.2 0.9989 0.9990 0.9989 0.9990 0.9990 0.2043

0.3 0.9991 0.9991 0.9991 0.9991 0.9991 0.2050

0.4 0.9992 0.9992 0.9992 0.9992 0.9992 0.2031

0.5 0.9993 0.9993 0.9993 0.9993 0.9993 0.2161

0.6 0.9993 0.9992 0.9995 0.9993 0.9993 0.2098

0.7 0.9994 0.9992 0.9995 0.9994 0.9994 0.2056

0.8 0.9992 0.9992 0.9993 0.9993 0.9993 0.2121

0.9 0.9994 0.9994 0.9994 0.9994 0.9994 0.2114

0.8800

0.8950

0.9100

0.9250

0.9400

0.9550

0.9700

0.9850

1.0000

GD SVM LR RF HVG SVG HVR SVR

Figure 12. AUC score for model selection algorithms GD, SVM, LR, RF, HVG, SVG, HVR, and SVR.

Model selection algorithm AUC scores for each model.

4.3. RF Optimization

After the initial selection of a suitable model algorithm for RF in the model selection
algorithm phase, the initially selected RF parameters: random forest sampling rate, max-
imum depth per tree, and number of trees were then optimized by the RF optimization
algorithm in order to further improve its DDoS detection performance. Firstly, we set
max_samples = 0.9, max_depth = 20 and n_estimators = 100 to initialize the parameters of
the RF before optimization. The resulting Accuracy, Precision, Recall, F1_Score, Average,
and predict_time are shown in Table 6 below.

Table 6. Performance indicators before RF optimization.

Accuracy Precision Recall F1_Score Average Predict_Time

bef_opt 0.9993 0.9992 0.9993 0.9993 0.9993 0.2164

Electronics 2023, 12, 1059 20 of 32

4.3.1. Exploring Maximum Sampling

The RF optimization algorithm performs the optimization of the parameter max_samples,
in order to control the variables, always keeping the parameter max_depth = 20 and
n_estimators = 100, and max_samples is selected for the parameter interval [0.1, 0.9], with
each incremental step being 0.1.

The results obtained are shown in Table 7 below.

Table 7. max_samples optimization performance table.

Max_Samples Accuracy Precision Recall F1_Score Average Predict_Time

0.1 0.9986 0.9985 0.9987 0.9986 0.9986 0.1999
0.2 0.9989 0.9990 0.9989 0.9990 0.9990 0.2043
0.3 0.9991 0.9991 0.9991 0.9991 0.9991 0.2050
0.4 0.9992 0.9992 0.9992 0.9992 0.9992 0.2031
0.5 0.9993 0.9993 0.9993 0.9993 0.9993 0.2161
0.6 0.9993 0.9992 0.9995 0.9993 0.9993 0.2098
0.7 0.9994 0.9992 0.9995 0.9994 0.9994 0.2056
0.8 0.9992 0.9992 0.9993 0.9993 0.9993 0.2121
0.9 0.9994 0.9994 0.9994 0.9994 0.9994 0.2114

To facilitate the analysis, we selected three important performance metrics from
Table 7, namely Accuracy, F1_Score, and Average, and made the corresponding line graphs,
Figure 13: As can be seen from the graphs, the trends and overlap of Accuracy, F1_Score, and
Average are very consistent. It can be seen that as the maximum sampling max_samples
increases, Accuracy, F1_Score, and Average all show a corresponding increase, but at
max_samples = 0.5, the growth slows down significantly, and at max_samples = 0.9,
Accuracy, F1_Score, and Average achieved the maximum value when max_samples = 0.9.

Electronics 2023, 12, x FOR PEER REVIEW 22 of 32

To facilitate the analysis, we selected three important performance metrics from Ta-

ble 7, namely Accuracy, F1_Score, and Average, and made the corresponding line graphs,

Figure 13: As can be seen from the graphs, the trends and overlap of Accuracy, F1_Score,

and Average are very consistent. It can be seen that as the maximum sampling max_sam-

ples increases, Accuracy, F1_Score, and Average all show a corresponding increase, but

at max_samples = 0.5, the growth slows down significantly, and at max_samples = 0.9,

Accuracy, F1_Score, and Average achieved the maximum value when max_samples = 0.9.

Figure 13. max_samples optimizes Accuracy, F1_Score, and Average.

To facilitate the analysis of the concern between max_samples and model prediction

time, we chose the predict_time indicator from Table 7 for the following Figure 14, from

which we see that predict_time shows a wave-like pattern, with max_samples. However,

the increasing size of the predict_time does not show a significant increase, indicating that

the increase in the maximum sampling and the impact on the prediction time is not sig-

nificant.

Figure 14. max_samples optimizes predict_time.

0.9980

0.9982

0.9984

0.9986

0.9988

0.9990

0.9992

0.9994

0.9996

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

max_samples

Accuracy F1_Score Average

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.4500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ti
m

e/
s

max_samples

Figure 13. max_samples optimizes Accuracy, F1_Score, and Average.

To facilitate the analysis of the concern between max_samples and model prediction
time, we chose the predict_time indicator from Table 7 for the following Figure 14, from
which we see that predict_time shows a wave-like pattern, with max_samples. However,
the increasing size of the predict_time does not show a significant increase, indicating
that the increase in the maximum sampling and the impact on the prediction time is not
significant.

Electronics 2023, 12, 1059 21 of 32

Electronics 2023, 12, x FOR PEER REVIEW 22 of 32

To facilitate the analysis, we selected three important performance metrics from Ta-

ble 7, namely Accuracy, F1_Score, and Average, and made the corresponding line graphs,

Figure 13: As can be seen from the graphs, the trends and overlap of Accuracy, F1_Score,

and Average are very consistent. It can be seen that as the maximum sampling max_sam-

ples increases, Accuracy, F1_Score, and Average all show a corresponding increase, but

at max_samples = 0.5, the growth slows down significantly, and at max_samples = 0.9,

Accuracy, F1_Score, and Average achieved the maximum value when max_samples = 0.9.

Figure 13. max_samples optimizes Accuracy, F1_Score, and Average.

To facilitate the analysis of the concern between max_samples and model prediction

time, we chose the predict_time indicator from Table 7 for the following Figure 14, from

which we see that predict_time shows a wave-like pattern, with max_samples. However,

the increasing size of the predict_time does not show a significant increase, indicating that

the increase in the maximum sampling and the impact on the prediction time is not sig-

nificant.

Figure 14. max_samples optimizes predict_time.

0.9980

0.9982

0.9984

0.9986

0.9988

0.9990

0.9992

0.9994

0.9996

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

max_samples

Accuracy F1_Score Average

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.4500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ti
m

e/
s

max_samples

Figure 14. max_samples optimizes predict_time.

In summary, combining the Method-Accuracy, F1_Score, and Average line graphs,
since the best results for each metric are achieved at max_samples = 0.9, and the Method-
predict_time line graph illustrates that an increase in maximum samples has little effect
on prediction time, we can conclude that the best results are achieved when we set the
parameter max_samples samples to 0.9.

4.3.2. Exploring the Maximum Depth

The RF optimization algorithm always keeps the parameter max_samples = 0.9 when
performing the optimization of the parameter max_depth in order to control the variables,

n_estimators = 100, max_depth selects a parameter interval in the range [10, 28], and
each incremental step is 2. The results obtained are shown in Table 8 below.

Table 8. max_depth optimization performance table.

Max_Depth Accuracy Precision Recall F1_Score Average Predict_Time

10 0.9985 0.9977 0.9993 0.9985 0.9985 0.1870
12 0.9987 0.9981 0.9994 0.9988 0.9987 0.1945
14 0.9990 0.9984 0.9996 0.9990 0.9990 0.1992
16 0.9993 0.9991 0.9995 0.9993 0.9993 0.2039
18 0.9992 0.9992 0.9993 0.9992 0.9992 0.2063
20 0.9993 0.9992 0.9994 0.9993 0.9993 0.2106
22 0.9993 0.9993 0.9993 0.9993 0.9993 0.2102
24 0.9993 0.9993 0.9994 0.9993 0.9993 0.2100
26 0.9993 0.9993 0.9994 0.9993 0.9993 0.2142
28 0.9994 0.9993 0.9994 0.9994 0.9994 0.2091

Similarly, we selected three important performance indicators from Table 8, namely
Accuracy, F1_Score, and Average, and made the corresponding Method-Accuracy, F1_Score,
and Average line graphs in Figure 15: As can be seen from the graphs, the trend direction
and overlap of the three curves of Accuracy, F1_Score, and Average are also very consistent,
from which we can see that as the maximum sampling, max_depth keeps increasing,
Accuracy, F1_Score, and Average, which show a corresponding increase, and a turning
point occurs when max_depth = 16. When max_depth continues to increase, Accuracy,
F1_Score, and Average do not increase significantly when max_depth = 18, and they
even decrease somewhat when max_depth = 18. The difference between the performance

Electronics 2023, 12, 1059 22 of 32

indicators after max_depth = 20 and those at max_depth = 16 is not significant. The graph
also reflects that blindly increasing the max_depth may not improve the performance of the
model, but may bring additional overhead to the model and affect the other performance
of the model.

Electronics 2023, 12, x FOR PEER REVIEW 24 of 32

Figure 15. max_depth optimizes Accuracy, F1_Score, and Average.

Similarly, to facilitate the analysis of the relationship between max_depth and the

model prediction time predict_time, we take the data from Table 8, which is plotted in

Figure 16. The predict_time does not increase as the max_depth increases, and even after

max_depth = 20, there is an up and down variation. It can be seen that max_depth and

predict_time have a great influence on the prediction time within a certain range, but the

influence is not constant.

Figure 16. max_depth optimization predict_time.

From a comprehensive point of view, from the Method-Accuracy, F1_Score, and Av-

erage line graphs, it can be seen that within the maximum depth max_depth of 20, the

prediction time predict_time is greatly influenced by max_depth, while in the Method-

Accuracy, F1_Score, and Average, the Accuracy, F1_Score, and Average indicators have

reached a more ideal state when max_depth = 16 in the line graph, and so, the optimiza-

tion result of this parameter max_depth is 16.

0.9980

0.9982

0.9984

0.9986

0.9988

0.9990

0.9992

0.9994

0.9996

10 12 14 16 18 20 22 24 26 28

max_depth

Accuracy F1_Score Average

0.1700

0.1750

0.1800

0.1850

0.1900

0.1950

0.2000

0.2050

0.2100

0.2150

0.2200

10 12 14 16 18 20 22 24 26 28

ti
m

e/
s

max_depth

Figure 15. max_depth optimizes Accuracy, F1_Score, and Average.

Similarly, to facilitate the analysis of the relationship between max_depth and the
model prediction time predict_time, we take the data from Table 8, which is plotted in
Figure 16. The predict_time does not increase as the max_depth increases, and even after
max_depth = 20, there is an up and down variation. It can be seen that max_depth and
predict_time have a great influence on the prediction time within a certain range, but the
influence is not constant.

Electronics 2023, 12, x FOR PEER REVIEW 24 of 32

Figure 15. max_depth optimizes Accuracy, F1_Score, and Average.

Similarly, to facilitate the analysis of the relationship between max_depth and the

model prediction time predict_time, we take the data from Table 8, which is plotted in

Figure 16. The predict_time does not increase as the max_depth increases, and even after

max_depth = 20, there is an up and down variation. It can be seen that max_depth and

predict_time have a great influence on the prediction time within a certain range, but the

influence is not constant.

Figure 16. max_depth optimization predict_time.

From a comprehensive point of view, from the Method-Accuracy, F1_Score, and Av-

erage line graphs, it can be seen that within the maximum depth max_depth of 20, the

prediction time predict_time is greatly influenced by max_depth, while in the Method-

Accuracy, F1_Score, and Average, the Accuracy, F1_Score, and Average indicators have

reached a more ideal state when max_depth = 16 in the line graph, and so, the optimiza-

tion result of this parameter max_depth is 16.

0.9980

0.9982

0.9984

0.9986

0.9988

0.9990

0.9992

0.9994

0.9996

10 12 14 16 18 20 22 24 26 28

max_depth

Accuracy F1_Score Average

0.1700

0.1750

0.1800

0.1850

0.1900

0.1950

0.2000

0.2050

0.2100

0.2150

0.2200

10 12 14 16 18 20 22 24 26 28

ti
m

e/
s

max_depth

Figure 16. max_depth optimization predict_time.

From a comprehensive point of view, from the Method-Accuracy, F1_Score, and
Average line graphs, it can be seen that within the maximum depth max_depth of 20, the

Electronics 2023, 12, 1059 23 of 32

prediction time predict_time is greatly influenced by max_depth, while in the Method-
Accuracy, F1_Score, and Average, the Accuracy, F1_Score, and Average indicators have
reached a more ideal state when max_depth = 16 in the line graph, and so, the optimization
result of this parameter max_depth is 16.

4.3.3. Exploring the Decision Trees

The RF optimization algorithm was used to optimize the n_estimators of the paramet-
ric decision tree, keeping the parameters max_samples = 0.9 and max_depth = 20 in order
to control the variables. The n_estimators were selected in the parameter interval range
[10, 190], with each incremental step being 20. The results are shown in Table 9 below.

Table 9. n_estimators optimization performance table.

n_Estimators Accuracy Precision Recall F1_Score Average Predict_Time

10 0.9992 0.9991 0.9994 0.9993 0.9993 0.0241
30 0.9993 0.9993 0.9993 0.9993 0.9993 0.0671
50 0.9994 0.9993 0.9996 0.9994 0.9994 0.1043
70 0.9993 0.9992 0.9994 0.9993 0.9993 0.1492
90 0.9994 0.9993 0.9995 0.9994 0.9994 0.1900
110 0.9993 0.9993 0.9993 0.9993 0.9993 0.2283
130 0.9993 0.9992 0.9994 0.9993 0.9993 0.2703
150 0.9993 0.9992 0.9994 0.9993 0.9993 0.3146
170 0.9993 0.9993 0.9994 0.9993 0.9993 0.3542
190 0.9993 0.9993 0.9994 0.9993 0.9993 0.3946

Similarly, we selected three indicators from Table 9, namely, Accuracy, F1_Score,
and Average, which are important performance indicators, and made the corresponding
Method-Accuracy, F1_Score, and Average line graphs Figure 17. As can be seen from the
graphs, the trend direction and overlap of the three curves of Accuracy, F1_Score, and
Average are basically the same, from which we can see that in the n_estimators interval
[10, 50], as the n_estimators of the decision tree increases, Accuracy, F1_Score, and Average
keep increasing, and when the decision tree is 50, Accuracy, F1 _Score, and Average peaked
when the decision tree was 50, and then the indicators showed fluctuations with the increase
in the decision tree, and finally leveled off. It also shows that too large a decision tree does
not improve performance, but may bring additional overhead to the model and increase
the prediction time of the model.

Electronics 2023, 12, x FOR PEER REVIEW 25 of 32

4.3.3. Exploring the Decision Trees

The RF optimization algorithm was used to optimize the n_estimators of the para-

metric decision tree, keeping the parameters max_samples = 0.9 and max_depth = 20 in

order to control the variables. The n_estimators were selected in the parameter interval

range [10, 190], with each incremental step being 20. The results are shown in Table 9

below.

Table 9. n_estimators optimization performance table.

n_Estimators Accuracy Precision Recall F1_Score Average Predict_Time

10 0.9992 0.9991 0.9994 0.9993 0.9993 0.0241

30 0.9993 0.9993 0.9993 0.9993 0.9993 0.0671

50 0.9994 0.9993 0.9996 0.9994 0.9994 0.1043

70 0.9993 0.9992 0.9994 0.9993 0.9993 0.1492

90 0.9994 0.9993 0.9995 0.9994 0.9994 0.1900

110 0.9993 0.9993 0.9993 0.9993 0.9993 0.2283

130 0.9993 0.9992 0.9994 0.9993 0.9993 0.2703

150 0.9993 0.9992 0.9994 0.9993 0.9993 0.3146

170 0.9993 0.9993 0.9994 0.9993 0.9993 0.3542

190 0.9993 0.9993 0.9994 0.9993 0.9993 0.3946

Similarly, we selected three indicators from Table 9, namely, Accuracy, F1_Score, and

Average, which are important performance indicators, and made the corresponding

Method-Accuracy, F1_Score, and Average line graphs Figure 17. As can be seen from the

graphs, the trend direction and overlap of the three curves of Accuracy, F1_Score, and

Average are basically the same, from which we can see that in the n_estimators interval

[10, 50], as the n_estimators of the decision tree increases, Accuracy, F1_Score, and Aver-

age keep increasing, and when the decision tree is 50, Accuracy, F1 _Score, and Average

peaked when the decision tree was 50, and then the indicators showed fluctuations with

the increase in the decision tree, and finally leveled off. It also shows that too large a de-

cision tree does not improve performance, but may bring additional overhead to the

model and increase the prediction time of the model.

Figure 17. n_estimators optimize Accuracy, F1_Score, and Average.

0.9991

0.9992

0.9992

0.9993

0.9993

0.9994

0.9994

0.9995

0.9995

10 30 50 70 90 110 130 150 170 190

n_estimators

Accuracy F1_Score Average

Figure 17. n_estimators optimize Accuracy, F1_Score, and Average.

Electronics 2023, 12, 1059 24 of 32

Similarly, to facilitate the analysis of the relationship between the decision tree and
the model prediction time predict_time, we selected the predict_time metric from Table 9
and plotted it as Figure 18 below. The relationship between predict_time and max_depth
increases linearly.

Electronics 2023, 12, x FOR PEER REVIEW 26 of 32

Similarly, to facilitate the analysis of the relationship between the decision tree and

the model prediction time predict_time, we selected the predict_time metric from Table 9

and plotted it as Figure 18 below. The relationship between predict_time and max_depth

increases linearly.

Figure 18. n_estimators optimizes predict_time.

In summary, the prediction time in the n_estimators-predict_time line graph shows

a linear increase in prediction time and max_depth. In the Method-Accuracy, F1_Score,

and Average line graphs, the performance of each tree reaches the maximum point when

the decision tree is 50, so the optimization result for n_estimators is 50.

4.3.4. Optimization Results

The new model parameters and performance test results after the RF optimization

algorithm are shown in Table 10 and Figure 19, corresponding to the confusion matrix

and ROC as Figure 20 and Figure 21, respectively. The model = RandomForestClassifier

(max_samples = 0.9, max_depth = 16, n_estimators = 50)

For the Accuracy, Precision, Recall, F1_Score, and Average, each metric is close to

100% and the predict_time is only 0.1 s, which also facilitates the subsequent deployment

of the model to the production environment for real-time testing.

Table 10. RF optimized performance indicators.

 Accuracy Precision Recall F1_Score Average Predict_Time

aft_opt 0.9993 0.9992 0.9995 0.9993 0.9993 0.1082

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.4500

10 30 50 70 90 110 130 150 170 190

ti
m

e/
s

n_estimators

Figure 18. n_estimators optimizes predict_time.

In summary, the prediction time in the n_estimators-predict_time line graph shows a
linear increase in prediction time and max_depth. In the Method-Accuracy, F1_Score, and
Average line graphs, the performance of each tree reaches the maximum point when the
decision tree is 50, so the optimization result for n_estimators is 50.

4.3.4. Optimization Results

The new model parameters and performance test results after the RF optimization
algorithm are shown in Table 10 and Figure 19, corresponding to the confusion matrix and
ROC as Figures 20 and 21, respectively. The model = RandomForestClassifier (max_samples
= 0.9, max_depth = 16, n_estimators = 50).

For the Accuracy, Precision, Recall, F1_Score, and Average, each metric is close to 100%
and the predict_time is only 0.1 s, which also facilitates the subsequent deployment of the
model to the production environment for real-time testing.

The comparison between before and after optimization is shown in Table 11, Figures 22
and 23 below. Accuracy increased by 0.00006, Recall increased by 0.00018, and Average
increased by 0.00006; however, the prediction time was reduced from 0.21636 to 0.10816,
which is 0.10820 less than the original, reducing the prediction time by more than half.
This is certainly significant in a system with high real-time requirements, and provides
important support for the model to be deployed in production for real-time DDoS detection,
and also shows important practicality.

Table 10. RF optimized performance indicators.

Accuracy Precision Recall F1_Score Average Predict_Time

aft_opt 0.9993 0.9992 0.9995 0.9993 0.9993 0.1082

Electronics 2023, 12, 1059 25 of 32Electronics 2023, 12, x FOR PEER REVIEW 27 of 32

Figure 19. RF optimized performance metrics chart.

Figure 20. Confusion matrix after RF optimization.

Figure 21. ROC after RF optimization.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

Accuracy Precision Recall F1_Score Average predict_time

Figure 19. RF optimized performance metrics chart.

Electronics 2023, 12, x FOR PEER REVIEW 27 of 32

Figure 19. RF optimized performance metrics chart.

Figure 20. Confusion matrix after RF optimization.

Figure 21. ROC after RF optimization.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

Accuracy Precision Recall F1_Score Average predict_time

Figure 20. Confusion matrix after RF optimization.

Electronics 2023, 12, x FOR PEER REVIEW 27 of 32

Figure 19. RF optimized performance metrics chart.

Figure 20. Confusion matrix after RF optimization.

Figure 21. ROC after RF optimization.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

Accuracy Precision Recall F1_Score Average predict_time

Figure 21. ROC after RF optimization.

Electronics 2023, 12, 1059 26 of 32

Table 11. Comparison of performance indicators before and after RF optimization.

Accuracy Precision Recall F1_Score Average Predict_Time

bet_opt 0.9993 0.9992 0.9993 0.9993 0.9993 0.2164
aft_opt 0.9993 0.9992 0.9995 0.9993 0.9993 0.1082

Difference 0.0001 −0.0001 0.0002 0.0001 0.0001 −0.1082

Electronics 2023, 12, x FOR PEER REVIEW 28 of 32

The comparison between before and after optimization is shown in Table 11, Figure

22 and Figure 23 below. Accuracy increased by 0.00006, Recall increased by 0.00018, and

Average increased by 0.00006; however, the prediction time was reduced from 0.21636 to

0.10816, which is 0.10820 less than the original, reducing the prediction time by more than

half. This is certainly significant in a system with high real-time requirements, and pro-

vides important support for the model to be deployed in production for real-time DDoS

detection, and also shows important practicality.

Table 11. Comparison of performance indicators before and after RF optimization.

 Accuracy Precision Recall F1_Score Average Predict_Time

bet_opt 0.9993 0.9992 0.9993 0.9993 0.9993 0.2164

aft_opt 0.9993 0.9992 0.9995 0.9993 0.9993 0.1082

Difference 0.0001 −0.0001 0.0002 0.0001 0.0001 −0.1082

Figure 22. Performance comparison before and after RF optimization.

Figure 23. predict_time comparison before and after RF optimization.

4.4. FAMS Generalization Performance Test

Among the metrics for evaluating the goodness of a FAMS, the generalization per-

formance test of the FAMS is essential. In addition to the original Accuracy, Precision,

Recall, F1_Score, Average, and predict_time, we have also added the AUC score indicator

roc_auc_score to the FAMS generalization test performance evaluation metrics. On the

other hand, we used a new dataset of over 330,000 items from CIC-DDoS2019, which we

had not used before. The results of the two generalization performance tests are as follows:

The generalization capability of the increased DDoS detection dataset is shown in the

0.9989

0.9990

0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

Accuracy Precision Recall F1_Score Average

bef_opt Aft_opt

0.0000

0.0300

0.0600

0.0900

0.1200

0.1500

0.1800

0.2100

0.2400

before optimization After optimization

ti
m

e/
s

Figure 22. Performance comparison before and after RF optimization.

Electronics 2023, 12, x FOR PEER REVIEW 28 of 32

The comparison between before and after optimization is shown in Table 11, Figure

22 and Figure 23 below. Accuracy increased by 0.00006, Recall increased by 0.00018, and

Average increased by 0.00006; however, the prediction time was reduced from 0.21636 to

0.10816, which is 0.10820 less than the original, reducing the prediction time by more than

half. This is certainly significant in a system with high real-time requirements, and pro-

vides important support for the model to be deployed in production for real-time DDoS

detection, and also shows important practicality.

Table 11. Comparison of performance indicators before and after RF optimization.

 Accuracy Precision Recall F1_Score Average Predict_Time

bet_opt 0.9993 0.9992 0.9993 0.9993 0.9993 0.2164

aft_opt 0.9993 0.9992 0.9995 0.9993 0.9993 0.1082

Difference 0.0001 −0.0001 0.0002 0.0001 0.0001 −0.1082

Figure 22. Performance comparison before and after RF optimization.

Figure 23. predict_time comparison before and after RF optimization.

4.4. FAMS Generalization Performance Test

Among the metrics for evaluating the goodness of a FAMS, the generalization per-

formance test of the FAMS is essential. In addition to the original Accuracy, Precision,

Recall, F1_Score, Average, and predict_time, we have also added the AUC score indicator

roc_auc_score to the FAMS generalization test performance evaluation metrics. On the

other hand, we used a new dataset of over 330,000 items from CIC-DDoS2019, which we

had not used before. The results of the two generalization performance tests are as follows:

The generalization capability of the increased DDoS detection dataset is shown in the

0.9989

0.9990

0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

Accuracy Precision Recall F1_Score Average

bef_opt Aft_opt

0.0000

0.0300

0.0600

0.0900

0.1200

0.1500

0.1800

0.2100

0.2400

before optimization After optimization

ti
m

e/
s

Figure 23. predict_time comparison before and after RF optimization.

4.4. FAMS Generalization Performance Test

Among the metrics for evaluating the goodness of a FAMS, the generalization per-
formance test of the FAMS is essential. In addition to the original Accuracy, Precision,
Recall, F1_Score, Average, and predict_time, we have also added the AUC score indicator
roc_auc_score to the FAMS generalization test performance evaluation metrics. On the
other hand, we used a new dataset of over 330,000 items from CIC-DDoS2019, which we
had not used before. The results of the two generalization performance tests are as follows:
The generalization capability of the increased DDoS detection dataset is shown in the his-
togram Figure 24. Compared with the original 10M dataset, all performance metrics have
been improved, including Accuracy by 0.00022, Precision by 0.00005, Recall by 0.00038,
F1_Score by 0.00021, and Average by 0.00021, Table 12. The corresponding histogram is
shown in Figure 24. As shown in Figures 25–27, the generalization performance test of the
dataset with increased DDoS detection achieved excellent results.

Electronics 2023, 12, 1059 27 of 32

Electronics 2023, 12, x FOR PEER REVIEW 29 of 32

histogram Figure 24. Compared with the original 10M dataset, all performance metrics

have been improved, including Accuracy by 0.00022, Precision by 0.00005, Recall by

0.00038, F1_Score by 0.00021, and Average by 0.00021, Table 12. The corresponding histo-

gram is shown in Figure 24. As shown in Figures 25–27,the generalization performance

test of the dataset with increased DDoS detection achieved excellent results.

Table 12. Performance metrics for generalization capability of increasing DDoS dataset.

 Accuracy Precision Recall F1_Score Average

10Mdata 0.9993 0.9992 0.9995 0.9993 0.9993

100Mdata 0.9996 0.9992 0.9999 0.9996 0.9996

Difference 0.0002 0.0000 0.0004 0.0002 0.0002

Figure 24. Performance comparison of increasing DDoS dataset.

Figure 25. Performance demonstration of increasing DDoS dataset.

0.9980

0.9985

0.9990

0.9995

1.0000

Accuracy Precision Recall F1_Score Average

10Mdata 100Mdata

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

AccuracyPrecision Recall F1_Score Average AUC

Figure 24. Performance comparison of increasing DDoS dataset.

Table 12. Performance metrics for generalization capability of increasing DDoS dataset.

Accuracy Precision Recall F1_Score Average

10Mdata 0.9993 0.9992 0.9995 0.9993 0.9993
100Mdata 0.9996 0.9992 0.9999 0.9996 0.9996
Difference 0.0002 0.0000 0.0004 0.0002 0.0002

Electronics 2023, 12, x FOR PEER REVIEW 29 of 32

histogram Figure 24. Compared with the original 10M dataset, all performance metrics

have been improved, including Accuracy by 0.00022, Precision by 0.00005, Recall by

0.00038, F1_Score by 0.00021, and Average by 0.00021, Table 12. The corresponding histo-

gram is shown in Figure 24. As shown in Figures 25–27,the generalization performance

test of the dataset with increased DDoS detection achieved excellent results.

Table 12. Performance metrics for generalization capability of increasing DDoS dataset.

 Accuracy Precision Recall F1_Score Average

10Mdata 0.9993 0.9992 0.9995 0.9993 0.9993

100Mdata 0.9996 0.9992 0.9999 0.9996 0.9996

Difference 0.0002 0.0000 0.0004 0.0002 0.0002

Figure 24. Performance comparison of increasing DDoS dataset.

Figure 25. Performance demonstration of increasing DDoS dataset.

0.9980

0.9985

0.9990

0.9995

1.0000

Accuracy Precision Recall F1_Score Average

10Mdata 100Mdata

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

AccuracyPrecision Recall F1_Score Average AUC

Figure 25. Performance demonstration of increasing DDoS dataset.

The FAMS performance was found to be equally strong after testing on a new 33M
dataset from CIC-DDoS2019, as shown in Table 13 and Figure 28, compared to the original
10M. Compared to the original 10M dataset, the experiments on the 33M dataset show
that our FAMS also improves in all performance metrics, with Accuracy improving by
0.00048, Precision improving by 0.00077, Recall improving by 0.00030, F1_Score improving
by 0.00054, and Average improving by 0.00052. The histogram in Figure 29 of the dataset
generalization capability test for changing DDoS detection corresponds to Figures 30 and 31
for the confusion matrix and ROC, respectively. Similarly, the generalization performance
of the dataset with increased DDoS detection also yielded satisfactory results.

Electronics 2023, 12, 1059 28 of 32Electronics 2023, 12, x FOR PEER REVIEW 30 of 32

Figure 26. Increasing the DDoS dataset confusion matrix.

Figure 27. Increasing the DDoS dataset ROC.

The FAMS performance was found to be equally strong after testing on a new 33M

dataset from CIC-DDoS2019, as shown in Table 13 and Figure 28, compared to the original

10M. Compared to the original 10M dataset, the experiments on the 33M dataset show

that our FAMS also improves in all performance metrics, with Accuracy improving by

0.00048, Precision improving by 0.00077, Recall improving by 0.00030, F1_Score improv-

ing by 0.00054, and Average improving by 0.00052. The histogram in Figure 29 of the da-

taset generalization capability test for changing DDoS detection corresponds to Figures 30

and 31 for the confusion matrix and ROC, respectively. Similarly, the generalization per-

formance of the dataset with increased DDoS detection also yielded satisfactory results.

Table 13. Performance metrics for generalization capability of changing DDoS dataset.

 Accuracy Precision Recall F1_Score Average

10Mdata 0.9993 0.9992 0.9995 0.9993 0.9993

33Mdata 0.9998 0.9999 0.9998 0.9999 0.9999

Difference 0.0005 0.0008 0.0003 0.0005 0.0005

Figure 26. Increasing the DDoS dataset confusion matrix.

Electronics 2023, 12, x FOR PEER REVIEW 30 of 32

Figure 26. Increasing the DDoS dataset confusion matrix.

Figure 27. Increasing the DDoS dataset ROC.

The FAMS performance was found to be equally strong after testing on a new 33M

dataset from CIC-DDoS2019, as shown in Table 13 and Figure 28, compared to the original

10M. Compared to the original 10M dataset, the experiments on the 33M dataset show

that our FAMS also improves in all performance metrics, with Accuracy improving by

0.00048, Precision improving by 0.00077, Recall improving by 0.00030, F1_Score improv-

ing by 0.00054, and Average improving by 0.00052. The histogram in Figure 29 of the da-

taset generalization capability test for changing DDoS detection corresponds to Figures 30

and 31 for the confusion matrix and ROC, respectively. Similarly, the generalization per-

formance of the dataset with increased DDoS detection also yielded satisfactory results.

Table 13. Performance metrics for generalization capability of changing DDoS dataset.

 Accuracy Precision Recall F1_Score Average

10Mdata 0.9993 0.9992 0.9995 0.9993 0.9993

33Mdata 0.9998 0.9999 0.9998 0.9999 0.9999

Difference 0.0005 0.0008 0.0003 0.0005 0.0005

Figure 27. Increasing the DDoS dataset ROC.
Electronics 2023, 12, x FOR PEER REVIEW 31 of 32

Figure 28. Performance comparison with changing DDoS dataset.

Figure 29. Performance demonstration with changing DDoS dataset.

Figure 30. Changing the DDoS dataset confusion matrix.

0.9986

0.9988

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000

1.0002

Accuracy Precision Recall F1_Score Average

10Mdata 33Mdata

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

AccuracyPrecision Recall F1_Score Average AUC

Figure 28. Performance comparison with changing DDoS dataset.

Electronics 2023, 12, 1059 29 of 32

Table 13. Performance metrics for generalization capability of changing DDoS dataset.

Accuracy Precision Recall F1_Score Average

10Mdata 0.9993 0.9992 0.9995 0.9993 0.9993
33Mdata 0.9998 0.9999 0.9998 0.9999 0.9999

Difference 0.0005 0.0008 0.0003 0.0005 0.0005

Electronics 2023, 12, x FOR PEER REVIEW 31 of 32

Figure 28. Performance comparison with changing DDoS dataset.

Figure 29. Performance demonstration with changing DDoS dataset.

Figure 30. Changing the DDoS dataset confusion matrix.

0.9986

0.9988

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000

1.0002

Accuracy Precision Recall F1_Score Average

10Mdata 33Mdata

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

AccuracyPrecision Recall F1_Score Average AUC

Figure 29. Performance demonstration with changing DDoS dataset.

Electronics 2023, 12, x FOR PEER REVIEW 31 of 32

Figure 28. Performance comparison with changing DDoS dataset.

Figure 29. Performance demonstration with changing DDoS dataset.

Figure 30. Changing the DDoS dataset confusion matrix.

0.9986

0.9988

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000

1.0002

Accuracy Precision Recall F1_Score Average

10Mdata 33Mdata

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

AccuracyPrecision Recall F1_Score Average AUC

Figure 30. Changing the DDoS dataset confusion matrix.
Electronics 2023, 12, x FOR PEER REVIEW 32 of 32

Figure 31. Changing the DDoS dataset ROC.

5. Conclusions

In this paper, we propose a framework based on feature and model selection, FAMS,

and this framework contains a total of four phases. These are the data preparation phase,

the feature selection (FS) phase, the model selection (MS) phase, and the RF optimization

phase. Firstly, the data processing stage includes feature extraction, feature coding, miss-

ing value filling, outlier removal, and normalization operations. The data are pre-pro-

cessed first. Then, in the feature selection phase, we propose a feature selection algorithm

that includes filter, wrapper, and embedded in order to eliminate the bias and shortcom-

ings of a single feature selection algorithm and generate 21 DDoS attack features. In the

model selection phase, the RF was initially selected from GD, SVM, LR, RF, HVG, SVG,

HVR, and SVR by the model selection algorithm. Finally, in the model optimization phase,

the RF parameters max_samples, max_depth, and n_estimators were further optimized

by the RF optimization algorithm. By testing the 100,000 CIC-IDS2018, CIC-IDS2017, and

CIC-DoS2016 synthetic datasets, the results show that the detection Accuracy of this

framework FAMS for DDoS attacks was 99.93%, Precision was 99.91%, Recall was 99.95%,

and F1_Score was 99.93%, and the detection time of predict_time was only 0.1 s. All the

results have achieved excellent performance in the same category. Moreover, the results

show that the framework also shows excellent generalization performance by testing over

1 million synthetic datasets and over 330,000 CIC-DDoS2019 datasets. This framework,

FAMS, achieves the goals of strong generalization capability, high prediction accuracy,

and short prediction time for DDoS attack detection. For future work, our optimized RF

model, with high accuracy, short prediction time, and high generalization performance

for DDoS attack detection, is highly practical and can subsequently be deployed in pro-

duction environments on distributed real-time detection systems in conjunction with big

data technologies.

Author Contributions: Conceptualization, R.M. and X.C.; methodology, R.M.; software, R.M.; vali-

dation, R.M., X.C. and R.Z.; resources, R.Z.; writing—original draft preparation, R.M.; supervision,

X.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number

U20A20179.

Data Availability Statement: https://www.unb.ca/cic/datasets/ids-2018.html (accessed on 13 Au-

gust 2022). https://www.unb.ca/cic/datasets/ids-2017.html (accessed on 13 August 2022).

https://www.unb.ca/cic/datasets/dos-dataset.html (accessed on 13 August 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Figure 31. Changing the DDoS dataset ROC.

Electronics 2023, 12, 1059 30 of 32

5. Conclusions

In this paper, we propose a framework based on feature and model selection, FAMS,
and this framework contains a total of four phases. These are the data preparation phase, the
feature selection (FS) phase, the model selection (MS) phase, and the RF optimization phase.
Firstly, the data processing stage includes feature extraction, feature coding, missing value
filling, outlier removal, and normalization operations. The data are pre-processed first.
Then, in the feature selection phase, we propose a feature selection algorithm that includes
filter, wrapper, and embedded in order to eliminate the bias and shortcomings of a single
feature selection algorithm and generate 21 DDoS attack features. In the model selection
phase, the RF was initially selected from GD, SVM, LR, RF, HVG, SVG, HVR, and SVR by
the model selection algorithm. Finally, in the model optimization phase, the RF parameters
max_samples, max_depth, and n_estimators were further optimized by the RF optimization
algorithm. By testing the 100,000 CIC-IDS2018, CIC-IDS2017, and CIC-DoS2016 synthetic
datasets, the results show that the detection Accuracy of this framework FAMS for DDoS
attacks was 99.93%, Precision was 99.91%, Recall was 99.95%, and F1_Score was 99.93%,
and the detection time of predict_time was only 0.1 s. All the results have achieved excellent
performance in the same category. Moreover, the results show that the framework also
shows excellent generalization performance by testing over 1 million synthetic datasets
and over 330,000 CIC-DDoS2019 datasets. This framework, FAMS, achieves the goals of
strong generalization capability, high prediction accuracy, and short prediction time for
DDoS attack detection. For future work, our optimized RF model, with high accuracy, short
prediction time, and high generalization performance for DDoS attack detection, is highly
practical and can subsequently be deployed in production environments on distributed
real-time detection systems in conjunction with big data technologies.

Author Contributions: Conceptualization, R.M. and X.C.; methodology, R.M.; software, R.M.; vali-
dation, R.M., X.C. and R.Z.; resources, R.Z.; writing—original draft preparation, R.M.; supervision,
X.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number
U20A20179.

Data Availability Statement: https://www.unb.ca/cic/datasets/ids-2018.html (accessed on 13
August 2022). https://www.unb.ca/cic/datasets/ids-2017.html (accessed on 13 August 2022). https:
//www.unb.ca/cic/datasets/dos-dataset.html (accessed on 13 August 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Behal, S.; Kumar, K. Detection of DDoS attacks and flash events using information theory metrics-An empirical investigation.

Comput. Commun. 2017, 103, 18–28. [CrossRef]
2. Mallikarjunan, K.N.; Muthupriya, K.; Shalinie, S.M. A survey of distributed denial of service attack. In Proceedings of the 2016

10th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, India, 7–8 January 2016; IEEE: Piscataway,
NJ, USA, 2016; pp. 1–6.

3. Wang, B.; Zheng, Y.; Lou, W.; Hou, Y.T. DDoS attack protection in the era of cloud computing and software-defined networking.
Comput. Netw. 2015, 81, 308–319. [CrossRef]

4. Nagpal, B.; Sharma, P.; Chauhan, N.; Panesar, A. DDoS tools: Classification, analysis and comparison. In Proceedings of the 2015
2nd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 11–13 March
2015; IEEE: Piscataway, NJ, USA, 2015; pp. 342–346.

5. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [CrossRef]
[PubMed]

6. Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Morgan Kaufmann; Morgan Kaufmann: Burlington, MA,
USA, 2016.

7. Buczak, A.L.; Guven, E. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE
Commun. Surv. Tutor. 2016, 18, 1153–1176. [CrossRef]

8. García, S.; Ramírez-Gallego, S.; Luengo, J.; Benítez, J.M.; Herrera, F. Big data preprocessing: Methods and prospects. Big Data
Anal. 2016, 1, 1–22. [CrossRef]

https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/dos-dataset.html
https://www.unb.ca/cic/datasets/dos-dataset.html
http://doi.org/10.1016/j.comcom.2017.02.003
http://doi.org/10.1016/j.comnet.2015.02.026
http://doi.org/10.1126/science.aaa8415
http://www.ncbi.nlm.nih.gov/pubmed/26185243
http://doi.org/10.1109/COMST.2015.2494502
http://doi.org/10.1186/s41044-016-0014-0

Electronics 2023, 12, 1059 31 of 32

9. An, D.; Choi, J.H.; Kim, N.H. Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab. Reliab. Eng.
Syst. Saf. 2013, 115, 161–169. [CrossRef]

10. Kasongo, S.M.; Sun, Y. A deep learning method with wrapper based feature extraction for wireless intrusion detection system.
Comput. Secur. 2020, 92, 101752. [CrossRef]

11. Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv.
(CSUR) 2017, 50, 1–45. [CrossRef]

12. Sohn, K.; Berthelot, D.; Carlini, N.; Zhang, Z.; Zhang, H.; Raffel, C.A.; Cubuk, E.D.; Kurakin, A.; Li, C.-L. Fixmatch: Simplifying
semi-supervised learning with consistency and confidence. Adv. Neural Inf. Process. Syst. 2020, 33, 596–608.

13. Dietterich, T. Overfitting and undercomputing in machine learning. ACM Comput. Surv. (CSUR) 1995, 27, 326–327. [CrossRef]
14. Nanda, S.; Zafari, F.; DeCusatis, C.; Wedaa, E.; Yang, B. Predicting network attack patterns in SDN using machine learning

approach. In Proceedings of the 2016 IEEE Conference on Network Function Virtualization and Software Defined Networks
(NFV-SDN), Palo Alto, CA, USA, 7–10 November 2016; IEEE: Piscataway, NJ, USA, 2016.

15. Fukuda, K.; Heidemann, J.; Qadeer, A. Detecting malicious activity with DNS backscatter over time. IEEE/ACM Trans. Netw. 2017,
25, 3203–3218. [CrossRef]

16. Deepa, V.; Sudar, K.M.; Deepalakshmi, P. Design of ensemble learning methods for DDoS detection in SDN environment. In
Proceedings of the 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking
(ViTECoN), Vellore, India, 30–31 March 2019; IEEE: Piscataway, NJ, USA, 2019.

17. Zhong, W.; Yu, N.; Ai, C. Applying big data based deep learning system to intrusion detection. Big Data Min. Anal. 2020, 3,
181–195. [CrossRef]

18. Qu, Z.; Su, L.; Wang, X.; Zheng, S.; Song, X.; Song, X. A unsupervised learning method of anomaly detection using gru. In
Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), Shanghai, China, 15–17
January 2018; IEEE: Piscataway, NJ, USA, 2018.

19. Cil, A.E.; Yildiz, K.; Buldu, A. Detection of DDoS attacks with feed forward based deep neural network model. Expert Syst. Appl.
2021, 169, 114520. [CrossRef]

20. Khempetch, T.; Wuttidittachotti, P. DDoS attack detection using deep learning. IAES Int. J. Artif. Intell. 2021, 10, 382. [CrossRef]
21. Hosseini, S.; Azizi, M. The hybrid technique for DDoS detection with supervised learning algorithms. Comput. Netw. 2019, 158,

35–45. [CrossRef]
22. Yong, B.; Wei, W.; Li, K.C.; Shen, J.; Zhou, Q.; Wozniak, M.; Połap, D.; Damaševičius, R. Ensemble machine learning approaches

for webshell detection in Internet of things environments. Trans. Emerg. Telecommun. Technol. 2022, 33, e4085. [CrossRef]
23. Dash, M.; Liu, H. Feature selection for classification. Intell. Data Anal. 1997, 1, 131–156. [CrossRef]
24. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [CrossRef]
25. Sheikhpour, R.; Sarram, M.A.; Gharaghani, S.; Chahooki, M.A.Z. A survey on semi-supervised feature selection methods. Pattern

Recognit. 2017, 64, 141–158. [CrossRef]
26. Khalid, S.; Khalil, T.; Nasreen, S. A survey of feature selection and feature extraction techniques in machine learning. In

Proceedings of the 2014 Science and Information Conference, London, UK, 27–29 August 2014; IEEE: Piscataway, NJ, USA, 2014.
27. Martinez, V.; Salas, R.; Tessini, O.; Torres, R. Machine learning techniques for behavioral feature selection in network intrusion

detection systems. In Proceedings of the 11th International Conference of Pattern Recognition Systems (ICPRS 2021), Online,
17–19 March 2021; pp. 91–96.

28. Khan, I.A.; Pi, D.; Yue, P.; Li, B.; Khan, Z.U.; Hussain, Y.; Nawaz, A. Efficient behaviour specification and bidirectional gated
recurrent units-based intrusion Detection method for industrial control systems. Electron. Lett. 2020, 56, 27–30. [CrossRef]

29. Liu, Y.; Zheng, Y.F. FS_SFS: A novel feature selection method for support vector machines. Pattern Recognit. 2006, 39, 1333–1345.
[CrossRef]

30. Novak, E.; Ritter, K. The curse of dimension and a universal method for numerical integration. In Multivariate Approximation and
Splines; Birkhäuser: Basel, Switzerland, 1997; pp. 177–187.

31. Sharafaldin, I.; Lashkari, A.H.; Hakak, S.; Ghorbani, A.A. Developing realistic distributed denial of service (DDoS) attack dataset
and taxonomy. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India,
1–3 October 2019; IEEE: Piscataway, NJ, USA, 2019.

32. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp 2018, 1, 108–116.

33. Sharafaldin, I.; Gharib, A.; Lashkari, A.H.; Ghorbani, A.A. Towards a reliable intrusion detection benchmark dataset. Softw. Netw.
2018, 1, 177–200. [CrossRef]

34. Jazi, H.H.; Gonzalez, H.; Stakhanova, N.; Ghorbani, A.A. Detecting HTTP-based application layer DoS attacks on web servers in
the presence of sampling. Comput. Netw. 2017, 121, 25–36. [CrossRef]

35. Denis, M.; Zena, C.; Hayajneh, T. Penetration testing: Concepts, attack methods, and defense strategies. In Proceedings of the
2016 IEEE Long Island Systems, Applications and Technology Conference (LISAT), Farmingdale, NY, USA, 29 April 2016; IEEE:
Piscataway, NJ, USA, 2016.

36. Antonakakis, M.; April, T.; Bailey, M.; Bernhard, M.; Bursztein, E.; Cochran, J. Understanding the mirai botnet. In Proceedings of
the 26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC, Canada, 16–18 August 2017.

http://doi.org/10.1016/j.ress.2013.02.019
http://doi.org/10.1016/j.cose.2020.101752
http://doi.org/10.1145/3136625
http://doi.org/10.1145/212094.212114
http://doi.org/10.1109/TNET.2017.2724506
http://doi.org/10.26599/BDMA.2020.9020003
http://doi.org/10.1016/j.eswa.2020.114520
http://doi.org/10.11591/ijai.v10.i2.pp382-388
http://doi.org/10.1016/j.comnet.2019.04.027
http://doi.org/10.1002/ett.4085
http://doi.org/10.3233/IDA-1997-1302
http://doi.org/10.1016/j.compeleceng.2013.11.024
http://doi.org/10.1016/j.patcog.2016.11.003
http://doi.org/10.1049/el.2019.3008
http://doi.org/10.1016/j.patcog.2005.10.006
http://doi.org/10.13052/jsn2445-9739.2017.009
http://doi.org/10.1016/j.comnet.2017.03.018

Electronics 2023, 12, 1059 32 of 32

37. Bogdanoski, M.; Suminoski, T.; Risteski, A. Analysis of the SYN flood DoS attack. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 2013, 5,
1–11. [CrossRef]

38. Shao, E. Encoding IP Address as a Feature for Network Intrusion Detection. Doctoral Dissertation, Purdue University Graduate
School, West Lafayette, IN, USA, 2019.

39. Nyitrai, T.; Virág, M. The effects of handling outliers on the performance of bankruptcy prediction models. Socio-Econ. Plan. Sci.
2019, 67, 34–42. [CrossRef]

40. Ambusaidi, M.A.; He, X.; Nanda, P.; Tan, Z. Building an intrusion detection system using a filter-based feature selection algorithm.
IEEE Trans. Comput. 2016, 65, 2986–2998. [CrossRef]

41. Amiri, F.; Yousefi, M.R.; Lucas, C.; Shakery, A.; Yazdani, N. Mutual information-based feature selection for intrusion detection
systems. J. Netw. Comput. Appl. 2011, 34, 1184–1199. [CrossRef]

42. Kohavi, R.; John, G.H. The wrapper approach. Feature extraction, construction and selection. In A Data Mining Perspective;
Springer: Boston, MA, USA, 1998; pp. 33–50.

43. Mao, K.Z. Orthogonal forward selection and backward elimination algorithms for feature subset selection. IEEE Trans. Syst. Man
Cybern. Part B (Cybern.) 2004, 34, 629–634. [CrossRef]

44. Lal, T.N.; Chapelle, O.; Weston, J.; Elisseeff, A. Embedded methods. In Feature Extraction; Springer: Berlin/Heidelberg, Germany,
2006; pp. 137–165.

45. Zou, H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [CrossRef]
46. Fonti, V.; Belitser, E. Feature selection using lasso. VU Amst. Res. Pap. Bus. Anal. 2017, 30, 1–25.
47. Yang, S.; Li, M.; Liu, X.; Zheng, J. A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput.

2013, 17, 721–736. [CrossRef]
48. Saravanan, R.; Sujatha, P. A state of the art techniques on machine learning algorithms: A perspective of supervised learning

approaches in data classification. In Proceedings of the 2018 Second International Conference on Intelligent Computing and
Control Systems (ICICCS), Madurai, India, 14–15 June 2018; IEEE: Piscataway, NJ, USA, 2018.

49. Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 1997; Volume 1.
50. Carl, G.; Kesidis, G.; Brooks, R.R.; Rai, S. Denial-of-service attack-detection techniques. IEEE Internet Comput. 2006, 10, 82–89.

[CrossRef]
51. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016. [CrossRef]
52. Schuldt, C.; Laptev, I.; Caputo, B. Recognizing human actions: A local SVM approach. In Proceedings of the 17th International

Conference on Pattern Recognition, Cambridge, UK, 26 August 2004; ICPR 2004. IEEE: Piscataway, NJ, USA, 2004; Volume 3.
53. Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17,

113–126. [CrossRef]
54. Kumari, S.; Kumar, D.; Mittal, M. An ensemble approach for classification and prediction of diabetes mellitus using soft voting

classifier. Int. J. Cogn. Comput. Eng. 2021, 2, 40–46. [CrossRef]
55. Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [CrossRef]
56. Oza, N.C.; Russell, S. Online Ensemble Learning; University of California: Berkeley, CA, USA, 2001.
57. Sumadi FD, S.; Widagdo, A.R.; Reza, A.F. SD-Honeypot Integration for Mitigating DDoS Attack Using Machine Learning

Approaches. JOIV Int. J. Inform. Vis. 2022, 6, 39–44. [CrossRef]
58. Biau, G.; Scornet, E. A random forest guided tour. Test 2016, 25, 197–227. [CrossRef]
59. Cui, H.; Huang, D.; Fang, Y.; Liu, L.; Huang, C. Webshell detection based on random forest-gradient boosting decision tree

algorithm. In Proceedings of the 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC), Guangzhou,
China, 18–21 June 2018; IEEE: Piscataway, NJ, USA, 2018.

60. Krstinić, D.; Braović, M.; Šerić, L.; Božić-Štulić, D. Multi-label classifier performance evaluation with confusion matrix. Comput.
Sci. Inf. Technol. 2020, 10, 1–14.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.5815/ijcnis.2013.08.01
http://doi.org/10.1016/j.seps.2018.08.004
http://doi.org/10.1109/TC.2016.2519914
http://doi.org/10.1016/j.jnca.2011.01.002
http://doi.org/10.1109/TSMCB.2002.804363
http://doi.org/10.1198/016214506000000735
http://doi.org/10.1109/TEVC.2012.2227145
http://doi.org/10.1109/MIC.2006.5
http://doi.org/10.48550/arXiv.1609.04747
http://doi.org/10.1016/S0893-6080(03)00169-2
http://doi.org/10.1016/j.ijcce.2021.01.001
http://doi.org/10.1002/widm.1249
http://doi.org/10.30630/joiv.6.1.853
http://doi.org/10.1007/s11749-016-0481-7

	Introduction
	Related Works
	Materials and Methods
	Dataset
	Feature Selection Methods
	Filter
	Wrapper
	Embedded

	Model Selection Methods
	GD
	SVM
	LR
	Ensemble Learning
	Random Forest

	RF Optimization Algorithms
	Performance Metrics and Model Evaluation

	Experimental Results
	Feature Selection
	Model Selection
	RF Optimization
	Exploring Maximum Sampling
	Exploring the Maximum Depth
	Exploring the Decision Trees
	Optimization Results

	FAMS Generalization Performance Test

	Conclusions
	References

