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Abstract: In the process of feature propagation, the low-level convolution layers of the forward
feature propagation network lack semantic information, and information loss occurs when fine-
grained information is transferred to higher-level convolution; therefore, multi-stage feature fusion
networks are needed to solve the interaction between low-level convolution layers and high-level
convolution layers. Based on a two-way feature feedback network and feature fusion mechanism,
we created a new object detection network called Feature Pyramid Network (FPN)-based Feature
Fusion Single Shot Multibox Detector (FFSSD). A bottom-up and top-down architecture with lateral
connections enhances the detector’s ability to extract features, then high-level multi-scale semantic
feature maps are utilized to generate a feature pyramid network. The results show that the proposed
network the mAP for prostate capsule image detection reaches 83.58%, providing real-time detection
ability. The context interaction mechanism can transfer high-level semantic information to low-level
convolution, and the resulting convolution after low-level and high-level fusion contains richer
location and semantic information.

Keywords: feature pyramid network; feature fusion; prostate capsule

1. Introduction

Early object detection techniques did not use feature fusion technology [1–3]. Follow-
ing the emergence of deep learning, more and more feature fusion techniques have been
used in object detection networks, including image pyramid, feature fusion for R-CNN
series, Single Shot Multibox Detector (SSD), Feature Pyramid Network (FPN) in FoveaBox,
Sparse R-CNN and Task-aligned One-stage Object Detection (TOOD), Feature Fusion Single
Shot Multibox Detector (FSSD), Weighted Bidirectional feature pyramid Network (BiFPN)
in You Only Look Once Version 4 (YOLOv4) and EfficientDet, Path Aggregation Net-
work (PANet) in YOLOv4, and more [4–14]. An image pyramid is composed of multiple
multi-resolution and multi-scale images, such as a Gauss/Laplacian pyramid. Ziming Liu
proposed IPG-Net using image pyramid on 2020 CVPR to solve the problem of feature mis-
alignment and small target deep feature loss in object detection [15]. To an extent, an image
pyramid makes the results of object detection more accurate. The disadvantage is that as
the pyramid level increases, the amount calculation increases and the detection speed slows
down. The feature fusion work of R-CNN series makes prediction on the last layer. Taking
Faster R-CNN as an example, the algorithm relies on multi-stage training to improve the
detection precision, and the precision improvement of feature fusion for Faster R-CNN is
limited. Each feature layer of the SSD series is detected separately. Its disadvantage is that
there is less convolution at the lower level involved in detection (only one) and the location
information may not be accurate enough. The feature fusion of FPN adopts the methods
of bottom-up, lateral connection, and top-down, which improves the accuracy of object
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detection. Its disadvantage is that the network is more complex, with accuracy improved
at the expense of speed. The feature fusion strategy of FSSD is to construct the feature
pyramid through bottom-up and multi-scale fusion. FSSD fuses the features of three scales
and uses bilinear interpolation and 1× 1 convolution to adjust the size of the feature map
and the number of channels. FSSD follows the idea that the small-scale convolution layer
is not useful; thus, part of the size and number of channels are discarded during feature
fusion. The above works use a single pyramid network to complete feature extraction, and
the results of object detection may not be accurate. YOLOv4 and EfficientDet ultized BiFPN
for feature fusion, which introduces learnable weights to learn the importance of different
input features while repeatedly applying top-down and bottom-up multi-scale feature
fusion. PANet is based on the proposed instance segmentation framework enhances the
entire feature hierarchy by using accurate low-level positioning signals, thereby shortening
the information path between the low-level and top-level features; however, experiments
have shown that such complex networks may not work well with small data sets.

Fusing different networks to extract features has recently become very popular. Ibtis-
sam Bakkouri et al. proposed a multistage fusion network for skin injury recognition [16].
The most discriminant features were extracted based on the VGG, ResNet, and DenseNet
networks, with three features output from the three networks fused by the feature fusion
layer. Xiaojing Qiu proposed a multi-stage feature fusion network for medical image
segmentation which included a basic feature expression layer, intermediate feature fusion
layer, deep feature fusion layer, and feature fusion module [17]. The middle layer and
the fusion layer were used to complement the feature information of the lower layer by
means of convolution, channel superposition, and corresponding element addition. In this
approach, the deep fusion layer uses the supplementary information of deep and shallow
features while the three-level feature representation layer completes the feature aggregation
process. Lingzhi Kong used DenseNet and VGG16 for feature extraction and fusion [18].
In this approach, the input of DenseNet is the original image, and the input of VGG16 is
the image processed by ResNet. Their aim was to quickly achieve COVID-19 detection
using an AI approach. Their proposed feature fusion network integrates different backbone
networks; however, it neglects the feedback and semantic transfer of high-level convolution
to low-level convolution.

The current prostate capsule research includes the surgical level, contour recognition,
thickness calculation, and volume calculation. At the surgical level, Zia et al. explored the
U-shaped incision of the prostate capsule in laparoscopic prostatectomy, and Alon Z. Weizer
evaluated the risk of urothelial and prostate cancers in a series of patients undergoing
radical cystoprostatectomy with preserved prostate capsule [19,20]. Rania Hussein used
prostate shape and generalized Hough transform to automatically recognize the contour
of the prostate capsule [21]. K.G. Holder et al. studied the relationship between prostate
volume, prostate capsule thickness, and gland epithelial cell density in the peripheral
zone (PZ) using tissue anatomical imaging technology [22]. In this paper, we utilize
FPN to complete the reconstruction of low-level convolution, then take the convolution
reconstructed by fusion as the basis to perform 2×, 4×, 8×, 16× and 32× downsampling.
To complete the real-time detection of the prostate capsule, we construct a new network,
FFSSD, based on the FPN and FSSD networks.

This article’s innovations include the following:

(1) To reduce the impact of salt and pepper noise on the object detection network, a salt
and pepper noise reduction method based on edge feature preservation is proposed.
Compared with fourteen other methods, this method has the highest peak signal-to-
noise ratio. The proposed image denoising methods can improve the mAP of Faster
R-CNN, YOLOv4, TOOD, SSD, and FSSD.

(2) Based on FPN and FSSD, a multistage bidirectional feature fusion network called
FFSSD is proposed. Compared with other algorithms such as Faster R-CNN, YOLOv4,
TOOD, SSD, FSSD, OWOD, Foveabox, Sparse R-CNN, and Efficientdet, the proposed
algorithm has the highest mAP on the prostate capsule detection task.
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2. Materials and Methods
2.1. Dataset

The images of the prostate capsule were extracted from surgical videos. Due to the
interference of gastrointestinal peristalsis and other noise, salt and pepper noise was easily
introduced into the images. Using the Composed Fusion (CF) algorithm to denoise pictures
with noise can ensure the smooth development of subsequent object detection work. The
CF algorithm is described in Algorithm 1.

Algorithm 1 CF algorithm

Input: Noisy_img v, noisy level x
Output: p(R), s(R), R, denoised_img{R}

1: Function u = compose(v, z)
2: Initialize d = {}, p = ones(0,6), s = ones(0,6), R = 0, MAX = 0, D = {2,6}
3: set Denoised_img{1} = AMF(v,x)
4: set Denoised_img{2} = NAMF(v,x)
5: set Denoised_img{3} = ANN(v,x)
6: set Denoised_img{4} = RUN_ADF(Denoised_img{1},Denoised_img{2},0)
7: set Denoised_img{5} = RUN_ADF(Denoised_img{1},Denoised_img{3},0)
8: set Denoised_img{6} = RUN_ADF(Denoised_img{2},Denoised_img{3},0)
9: MAX = PSNR(

10: for all (sp) ∈ D do
11: p(k) = PSNR(denoised_img{k},o)
12: s(k) = COMPUTE_FOM(denoised_img{k},o)
13: IF(p(k) > MAX)
14: {MAX = p(k); R = k}
15: end for
16: return p(R), s(R), R, denoised_img{R}

In the CF algorithm, Adaptive Median Filter (AMF), Anisotropic Diffusion Fusion
(ADF), Non-local Adaptive Mean Filter (NAMF), and Artificial Neural Network (ANN)
algorithms are metioned, while Peak Signal-to-Noise Ratio (PSNR) and Figure of Merit
(FoM) are the criteria used to evaluate image denoising. The CF algorithm steps are
as follows:

(1) The image with noise is denoised by AMF, NAMF, and ANN.
(2) Anisotropic diffusion fusion is used to combine the image denoising results of AMF,

NAMF, and ANN in pairs.
(3) The noise reduction results of the three algorithms and the pin-two fusion results of the

three algorithms are combined, then the maximum value of the combination according
to the PSNR is used to obtain the final image denoising cascade optimization results.

In Figure 1, the CF is closer to the original and performs better than individual
algorithms (Tristate Filter (TF), AMF, Median Filter (MF), Adaptive Total Variation L1 Reg-
ularization (ATVL1), Decision-Based Algorithms (DBA), Noise Adaptive Fuzzy Switching
Median (NAFSM), NAMF, ANN, Convolutional Neural Network (CNN)-based methods,
ADF-based methods, Adaptive Centre Weight Median Filter (ACMF), and Noise Adaptive
Edge-Preserving Filter (NAPEF)). The areas shown in detail after image denoising are
indicated by the red rectangles [23–31].
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Figure 1. CF results for denoising, compared with fourteen different methods.

Compared to ANN and NAMF, CF performs the best, maintaining better edge detail
after noise reduction; see Figure 2.

Figure 2. Edge detection comparision.

The proposed network was verified on three datasets, all of which contained 597 im-
ages split into 478 training and 119 test images. The datasets used consisted of the Primary
Component Analysis (PCA)-based dataset, PCA+CF-based dataset, and original dataset.
For the first two datasets, preprocessing was only performed on the training set, while the
test set remained unchanged.

In addition, compared with other detection objects of fixed size, the prostate capsule
has the characteristics of large-scale changes and different shapes. If the object detection
algorithm is directly used to detect the prostate capsule from an image, the mAP of the
resulting detection may not be high enough (Figure 3).
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Figure 3. The prostate capsule has the characteristics of large-scale changes and different shapes.

2.2. The Proposed Network

Based on FPN and FSSD, we propose a new network called FFSSD. The feature
pyramid network consists of three parts, two feature forward propagation parts and
one backward propagation part. A new feature pyramid was formed by three feature
propagation parts.

2.2.1. First Feature Forward Propagation

Feature forward propagation consists of two parts. The first feature forward propaga-
tion is based on the feature pyramid of the SSD network, and the feature propagation ends
at convolution layer conv7_2 (Figure 4). Fine-grained position information is passed from
the lower convolution to the higher convolution. This forward propagation belongs to the
VGG16 feature extraction backbone network.

Figure 4. First feature forward propagation.

2.2.2. Reverse Feature Propagation

After the first forward feature is passed to conv7_2, reverse feature propagation begins.
After the first forward feature information completes forward propagation of position
information, reverse feature propagation can transmit the semantic information of the
prostate capsule to the lower convolution layer. In this way, the higher-level convolu-
tion has the fine-grained information transmitted by the lower-level convolution, and
the lower-level convolution has the semantic information returned by the higher-level
convolution (Figure 5).
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Figure 5. Reverse feature propagation.

As shown in Figure 5, we adjusted the conv7_2 through 1× 1 convolution layers to
obtain conv7_2_red uce; p1 was formed by conv7_2_reduce (2x upsampling) and fc7, while
fea_concat was formed by conv4_3 and p1 (2× upsampling).

2.2.3. New Feature Pyramid Network

After completion of the reverse propagation, the new feature pyramid is generated by
the second feature forward propagation. The second feature forward propagation builds
on the first forward propagation and reverse feature propagation. The forward and reverse
feature propagation of conv4_3, fc7, conv7_2 constitute an FPN feature pyramid network.
Bidirectional passing (forward propagation and reverse propagation) constitutes the context
interaction mechanism, which integrates and supplements the low-level location information
and high-level semantic information. The three convolution layers are fused by the FPN
feature pyramid to form a new convolution layer. On this basis, second feature forward
propagation is carried out to generate a new feature pyramid network (Figures 6 and 7).

On the basis of the new fea_concat layer generated by FPN fusion, downsampling of
2×, 4×, 8×, 16×, and 32× was implemented to carry out the second forward propagation
of features. Compared with SSD, which is only downsampled on a single convolution
layer, conv4_3, the details of the shallow convolution layer of the multistage feature fusion
method are richer thanks to bidirectional feature fusion, which enables the high level to
learn more information about the prostate capsule. In Figure 7, the orange dotted line
box represents the FPN feature fusion network and the blue dotted box indicates the
feature fusion network of the FSSD. The small dotted line box in black represents the fusion
process of the lower-layer feature graphs by one transverse connection (1× 1conv) and 2×
upsampling with higher convolution. BatchNorm accelerates the convergence process of
the convolutional network, and the 1× 1conv eliminates the effect caused by upsampling.
The fusion details are shown in the large dotted black box.

Figure 6. Reverse feature transfer.
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Figure 7. Multi-level feature pyramid network in FFSSD.

2.2.4. FFSSD Network

Based on the new feature pyramid network, the FFSSD network is designed as shown
Figure 8.

Figure 8. FFSSD Network.

The FFSSD backbone network is the VGG16 network. The feature fusion network
consists of one FPN network and one FSSD fusion module. The FPN network consists of
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conv4_3, fc7, and conv7_2 through feature forward propagation and reverse propagation.
The first feature forward propagation transmits the position information of the model from
the bottom layer to the top layer; the position information gradually decreases while the
semantic information gradually increases. Through this initialization, the network ensures
the preliminary determination of the category of the object by high-level convolution. In the
second reverse propagation, the semantic (type) information is transferred from the upper
level (conv7_2) to the lower level (conv4_3) and the semantic information in the lower level
convolution is increased, that is, the lower-level convolution (conv4_3) now carries the
location information of the prostatic envelope and has rough knowledge of its semantic
information. After the fusion of semantic and positional information through bi-directional
transmission of the FPN feature pyramid network, the conv4_3 fusion of positional and
semantic information carries the dual information for the third feature propagation, that
is, the second feature forward propagation. This time, based on fusion convolution, the
fusion information is transmitted from the lower level to the upper level by bidirectional
transmission, and the final category determination and location calibration are carried out.

The VGG16 backbone network of FFSSD is the same as that of FSSD. Unlike SSD, the
convolution of feature maps less than 10× 10 is abandoned. An FPN network consists of
two feature fusion modules. There are three convolution layers involved in FPN feature
fusion, namely, conv4_3, fc7, and conv7_2; the dimensions of the three convolutional layers
are 38× 38× 512, 19× 19× 1024, and 10× 10× 512, respectively. The convolution layer with
the smallest scale is fused to form the first module through the second smallest convolution
layer with twice the upsampling and adjusted channels, and the second module is fused
with the feature degree of the maximum scale with twice the upsampling and adjusted
channels. The two feature fusion modules of FPN were fused with conv4_3 through double
upsampling and transverse connection, which together constitute the feature fusion module
of FSSD.

The feature extraction layer involved in detection in the network structure is based on
the result of two-stage fusion, and the result layer of two-stage fusion is obtained by 2×,
4×, 8×, 16×, and 32× downsampling.

3. Results

The framework used for training the deep learning networks was Caffe/pytorch.
The hardware environment for network training was an Intel Core-i7-8700 (Microsoft
Corporation, Redmond, WA, USA) , the main frequency of the CPU was 3.2 GHz , the
running memory was 8 GB , the graphics card model was an NVIDIA GTX 1070/Tesla
v100 (Microsoft Corporation, Redmond, WA, USA) , and the operating system was Linux
Ubuntu 64-bit (Red Hat, Raleigh, NC, USA) . The learning rate of the first 500 iterations
was 0.0001, and the batch_size used for training was 1.

3.1. Criteria for Evaluation

In object detection techniques, algorithms are generally evaluated on their mAP (mean
Average Precision) and FPS (Frame Per Second). The mAP indicates the Average Precision
AP of all detection classes, while the AP refers to the area enclosed under the Precison–
Recall (PR) curve, with a larger area being better. Its formula is defined as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(1)

Precision generally refers to the number of correct classes in all results, while Recall gener-
ally refers to the recall ratio, which represents the proportion of positive categories in all
the results. For object detection, if the Intersection over Union (IOU) is larger than a given
threshold and positive samples are detected, this is considered a True Positive TP, which
means that the correct sample prediction is positive; in other words, the IOU is larger than
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the threshold. When the IOU of the prediction box is less than the threshold provided by
the system, the correct sample prediction is marked as negative, that is, as a False Positive
FP; a positive class predicted as a negative class is a False Negtive FN, while a negative
class predicted correctly is a True Negative TN.

In order to draw the Precision–Recall (PR) curve, the detection results are first sorted
by the system will sort according to the descending order of the confidence score. After
assigning a value (rank), only accuracy and recall scores higher than this value are calcu-
lated. Changing the rank value changes the final recall value. We set eleven recall values
([0, 0.1, . . . , 0.9, 1.0]), equal to eleven rank values, and selected eleven confidence thresholds.
Generally speaking, to calculate mAP it is necessary to first calculate the average precision
AP of each sample. Here, AP is defined as the mean value of the precision after eleven
recalls, with the mean value of the eleven maximum precision values taken as the mean
precision. The formula is as follows:

AP =
1
11 ∑

r∈0.0.1,...,1
pinterp (r) where pinterp (r) = max

r̃:r̃>=r
p (r̃) (2)

In the formula, p (r̃) refers to the measurement accuracy when it is recalled to r̃.
Here, pinterp (r) takes only the maximum precision where the recall rate exceeds r . When
calculating AP , the prediction box is first calculated and sorted. Second, a value of k is set
to calculate the respective FP and TP values to ensure that the recall is equal to the above
eleven values, then the calculation accuracy is determined. Third, the eleven accuracies
are averaged to obtain the AP. The mAP is the sum of all AP values divided by the total
number of AP values. FPS stands for the frame rate per second. FPS represents the real-time
speed of the object detection model, and represents the total number of images that can be
detected per second. In addition, the time taken to detect an image has been used by many
researchers to evaluate the detection speed of object detection models.

3.1.1. mAP and Loss

The mAP curve transformation during SSD, FSSD, and FFSSD training (a total of
5000 training times) is shown in Figure 9.

Figure 9. The mAP curve transformation during SSD, FSSD, and PCA+FFSSD training (a total of
5000 training instances).

Because of the participation of the two levels, namely, feature fusion and pre-training
weight, the starting mAP of FFSSD is high. When the batch size is equal to 1, the mAP of
the FSSD fluctuates greatly.

The transformation of the loss curve (5000 times in total) during SSD, FSSD, and FFSSD
training is shown in Figure 10.
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Figure 10. Loss curve transformation during SSD, FSSD, and FFSSD training (a total of 5000 training
times).

Because of the participation of two-stage feature fusion and pre-training weight, the
loss of FFSSD decreases rapidly.

3.1.2. Feature Visualization

A feature visualization comparison of the conv3_3, conv4_3, conv5_3, and fc7 features
of the convolution layer of FSSD and FFSSD is shown in Figure 11.

Figure 11. Feature visualization comparison of conv3_3, conv4_3, conv5_3, and fc7 features of the
convolution layer of FSSD and FFSSD.

Compared with FSSD, the convolution layer in FFSSD can obtain more and richer
features due to the addition of FPN and PCA. FSSD performs multi-fold downsampling
based on the fusion of three convolution layers, then performs multi-scale detection. FFSSD
performs multifold downsampling on the basis of three-times fusion of three convolution
layers. In FPN, the upper convolution is fused with the lower convolution by double
upsampling. The convolution layer after fusion is convolved by BatchNorm and 1× 1,
which makes the model converge quickly during training, eliminates the noise caused by
the upper convolution, and provides more nonlinear factors.

3.1.3. Speed and Precision Comparison

We first show a speed and precision comparison of FSSD, FSSD, and PCA+FFSSD
on NVIDIA 1070 (Table 1). The speed is expressed as img/s , that is, the time required to
detect an image.
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Table 1. Speed and Precision comparison on NVIDIA 1070.

Model Backbone Network mAP img/s

SSD VGG16 71.90% 0.027
FSSD VGG16 73.82% 0.037

FSSD+FPN VGG16 75.45% 0.046
PCA+FFSSD VGG16 82.39% 0.046

The proposed FSSD includes a new feature fusion model based on SSD, and on this
basis, mAP improved by 1.9%, with a 1.62% increase when FPN is used on top of FSSD.
In the case of small samples, PCA was used to accelerate the convergence, pre-training
weight, and multi-stage feature fusion, achieving a final the detection precision of 82.35%.
In terms of time, FSSD takes 4 s to detect all test images, SSD takes 3 s to detect all test
images, and PCA+FFSSD takes 5 s to detect all test images. Another very important reason
why PCA+FFSSD has such a high precision is that we use the weight of FSSD+FPN training
50,000 times as the initial pre-training weight of PCA+FFSSD, meaning that the loss and
mAP are in relatively low and relatively high positions, respectively. While FFSSD is nearly
twice as fast as SSD, mAP has results of 82.35% in real-time. Compared with FSSD, the
addition of FPN slows down FFSSD, while the detection precision of FFSSD is improved
due to the top-down connection, the lateral connection between convolutional layers, the
bottom-up connection, and the addition of pre-training weights. FFSSD is able to transmit
information from both high-level to low-level and from low-level to high-level. The pre-
training weight of FSSD+FPN makes the starting point of FFSSD very high, and the loss
value is very low; thus, the detection precision is greatly improved.

Next, we provide a comparison with other object detection algorithms such as Faster R-
CNN (VGG16), Faster R-CNN (ResNet 50+FPN), SSD (VGG16), SSD (ResNet-101), Efficient-
D0, Efficient-D1, FSSD (VGG16), FoveaBox (ResNet+FPN), TOOD (ResNet 50+FPN),
YOLOv4 (CSPDarknet-53), and Sparse R-CNN (ResNet 50+FPN) (Table 2). Their backbone
networks compared algorithmically by mAP and FPS are shown in parentheses. An FPS
is greater than 12.5 can be considered real-time. Faster R-CNN is only approximately
real-time, and Faster R-CNN (ResNet 50+FPN) and Efficient-D7 do not reach real-time;
thus, we use a short horizontal line to indicate the threshold.

Table 2. Comparison of various methods.

Model Backbone Network mAP FPS

Faster R-CNN [7] VGG16 62.67% 5 (K40)
Faster R-CNN [7] ResNet 50+FPN 74.41% -
PCA+CF+Faster
R-CNN (ours) ResNet 50+FPN 77.10% -

SSD [5] VGG16 71.90% 46
SSD [5] ResNet-101 [5] 74.39% 15 (NVIDIA GTX 1070)

PCA+CF+SSD (ours) VGG16 77.30% 46
EfficientDet-D0 [14] B0 53.38% 97 (Telsa v100)
EfficientDet-D1 [14] B1 56.58% 74 (Telsa v100)
EfficientDet-D2 [14] B2 59.23% 57 (Telsa v100)
EfficientDet-D3 [14] B3 61.14% 35 (Telsa v100)
EfficientDet-D4 [14] B4 58.81% 23 (Telsa v100)
EfficientDet-D5 [14] B5 58.09% 10 (Telsa v100)
EfficientDet-D7 [14] B6 78.37% —

FSSD [6] VGG16 73.82% 65.8 (NVIDIA 1080Ti)
PCA+CF+FSSD (ours) VGG16 75.58% 65.8 (NVIDIA 1080Ti)

FoveaBox [11] ResNet50+FPN 81.10% 25 (NVIDIA RTX 2060)
TOOD [12] ResNet50+FPN 73.08% 20 (NVIDIA RTX 2060)

PCA+CF+TOOD (ours) ResNet50+FPN 76.50% 20 (NVIDIA RTX 2060)
YOLOv4 [10] CSPDarknet-53 70.29% 45 (NVIDIA RTX 2060)

PCA+CF+YOLOv4 (ours) CSPDarknet-53 72.47% 45 (NVIDIA RTX 2060)
Sparse R-CNN [9] ResNet50+FPN 75.68% 17 (NVIDIA RTX 2060)

OWOD [13] ResNet-50 71.30% 62 (NVIDIA RTX 2060)
PCA+CF+FFSSD (ours) VGG16 83.58% 27 (NVIDIA GTX 1070)
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The proposed method has the highest detection precision and real-time detection
speed. As the scale and shape of medical images can vary greatly, a general object detec-
tion algorithm is not necessarily suitable for detection of the prostate capsule, requiring
verification by experiment. Image denoising can improve the mAP of algorithms such as
SSD, FSSD, Faster R-CNN, YOLOv4, and TOOD. Other algorithms, such as EfficientDet,
FoveaBox, Sparse R-CNN, and OWOD, do not require image denoising.

3.1.4. Detection Results

A comparison of the detection results of SSD, FSSD, and PCA+FFSSD is shown in
Figure 12.

Figure 12. Detection result comparison for SSD, FSSD, and FFSSD.

PCA+FFSSD has better detection results and more accurate positioning. This accuracy
is mainly due to the effect of blending the feature fusion mechanism of FPN and FSSD.
PCA provides the effect of small sample accelerated convergence.

The mAP of FFSSD can be improved to 83.58% using PCA+FFSSD trained weights
and using the PCA+CF dataset for fine-tuning during training. Because the network is
unchanged, the detection speed is unchanged as well. The mAP results for ten training
epochs are compared in Figure 13.
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Figure 13. Comparison of mAP for ten training epochs.

Because of the pre-training weight, the mAP of the PCA+CF+FFSSD is relatively high;
FoveaBox is second (Figure 14).

Figure 14. Detection result comparison for PCA+CF+FFSSD, TOOD, Sparse R-CNN, and FoveaBox.

Compared with the original model, PCA+CF+FFSSD detects the location of the
prostate capsule more accurately.
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4. Discussion and Conclusions

Although FSSD integrates the features of all three scales, it is easy to lose semantic
details after multiple downsampling. However, as SSD only has one single-layer con-
volution to participate in subsampling, much of the location information is ignored and
semantic information from the high level cannot be transferred to the low level. This paper
proposes a new feature fusion mechanism that combines the feature fusion techniques of
FPN and FSSD and uses top-down, bottom-up, and lateral connection methods to construct
a new feature pyramid through two forward transfers and one reverse transfers. Feature
visualization and ablation experiments prove the effectiveness of the proposed approach.
The combination of FPN and FSSD improves the accuracy of prostate capsule detection
and is able to extract more abundant features. In the later stage, the accuracy of the dataset
with noise reduction is further improved. The reason for this is that during training, the
pre-training weights which had been trained 50,000 times by PCA+FFSSD were used for
transfer learning; thus, the accuracy of the model was further improved after fine-tuning the
noise removal. In terms of detection, the multi-level network mixed method can improve
the detection precision of the network. Next, we intend to try to find a method that can
achieve a good balance of speed and precision. Typical object detection algorithms such
as YOLOv4, Sparse R-CNN, TOOD, and FoveaBox fail to produce excellent performance
in this case due to the unique deformation and multi-scale characteristics of the prostatic
envelope and the sparsity of the datasets.
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