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Abstract: Accurately segmenting an insect from its original ecological image is the core technology
restricting the accuracy and efficiency of automatic recognition. However, the performance of existing
segmentation methods is unsatisfactory in insect images shot in wild backgrounds on account of
challenges: various sizes, similar colors or textures to the surroundings, transparent body parts
and vague outlines. These challenges of image segmentation are accentuated when dealing with
camouflaged insects. Here, we developed an insect image segmentation method based on deep
learning termed the progressive refinement network (PRNet), especially for camouflaged insects.
Unlike existing insect segmentation methods, PRNet captures the possible scale and location of
insects by extracting the contextual information of the image, and fuses comprehensive features
to suppress distractors, thereby clearly segmenting insect outlines. Experimental results based on
1900 camouflaged insect images demonstrated that PRNet could effectively segment the camouflaged
insects and achieved superior detection performance, with a mean absolute error of 3.2%, pixel-
matching degree of 89.7%, structural similarity of 83.6%, and precision and recall error of 72%, which
achieved improvements of 8.1%, 25.9%, 19.5%, and 35.8%, respectively, when compared to the recent
salient object detection methods. As a foundational technology for insect detection, PRNet provides
new opportunities for understanding insect camouflage, and also has the potential to lead to a step
progress in the accuracy of the intelligent identification of general insects, and even being an ultimate
insect detector.

Keywords: camouflaged insects; deep learning; insect detection; object segmentation; progressive
refinement network

1. Introduction

Segmenting an insect from its background is the necessary starting point for analyzing
anything else about the insect. However, it is a challenging task to segment insects from
complicated ecological images due to their various appearances, e.g., size, color and texture,
even if they are of the same type [1]. Moreover, under natural selection, many insects have
evolved an array of mechanisms that deceive the visual perceptual system of observers
to avoid being detected [2]. In this regard, camouflaged insects perform best. However,
their blurring of the boundary and lack of the intense contrast required for segmentation
approaches further aggravate the difficulties of accurate insect detection [3].

Currently, a large number of image segmentations rely on extracted handcrafted fea-
tures [4–10]. “Handcrafted” is a term in machine learning and computer vision referring to
the application of some process, such as an algorithm or a manual procedure, to extract rele-
vant features for identification from the raw data (image segmentation tasks) [1]. The hand-
crafted features are often low-level features, such as color, texture, shape, and appearance,
which are sensitive to illumination changes, complicated backgrounds and different object
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positions [11,12]. Thus, these models tend to suffer from a high misdetection rate with
regard to dealing with insect images shot in the wild.

Over the past few years, deep learning and convolutional neural networks (CNNs)
have yielded a new generation of segmentation models [13–18]. Through the process of
deep learning, CNNs extract the low-level features of the raw data via a series of nonlinear
mappings and combine them into more abstract features (i.e., high-level features) [19].
These high-level features possess stronger representational ability than traditional hand-
crafted features and can express the comprehensive information of the original natural
images. The full convolution neural network (FCN) [20] is the first method to employ fully
convolutional networks for semantic segmentation. Subsequently, the improved methods
based on FCN make great progress. Recent methods have achieved excellent results by us-
ing dilated convolution [21], deformable convolution [22], the attention mechanism [15,23],
feature pyramid spatial pooling [24], and encoder–decoder structure [24,25]. Moreover,
segmentation methods based on human hierarchy [26] or prototypes [27] have also re-
ceived extensive attention. The results are significantly better than previous algorithms,
and satisfactory results are achieved on object segmentation.

Methods for object segmentation based on deep learning show significant advan-
tages; however, to distinguish the camouflaged insects from their backgrounds, three
major challenges should be resolved: (1) Camouflaged insects have various shapes, scales,
and positions, which are difficult to be accurately perceived from the whole images. (2)
Due to similar texture or color, some noise from the multi-layer features extracted by CNNs
is easily introduced to the fused features. (3) The boundaries of camouflaged insects are
blurry, which interferes with segmentation refinement.

Specifically, camouflaged insects often have colors similar to their backgrounds, which
makes them difficult to see. Bearing the colors and patterns similar to the background is
most people’s conception of camouflage, termed “background picturing” by [28], or “back-
ground matching” by [29]. According to [30], camouflage is the ability of prey (or predators)
to prevent (or facilitate) predation by changing their features (surface luminance, body
pattern, color, texture, or edges) as per that of the environment. Insects have evolved
diverse camouflage strategies [31,32], such as background matching, disruptive coloration,
transparency, and masquerade [33–35]. An insect with background-matching camouflage
reproduces the same distribution of simple features as found in the background. Disrup-
tive coloration works at a later stage in visual perception, and suppresses the grouping
of simple features into the attributes that could potentially be recognized. Transparency
allows light to pass through the whole body or body parts, such as the wings of dragonflies.
Masquerade has its effect after perceptual segregation of an object, through mimicry of
specific objects within the background.

Examples of camouflaged insects are shown in Figure 1a. The lichen katydid is good
at disguising itself as a lichen to adapt to the environment. Kallima inachus tends to rest on
dead vegetation and closes its wings to disguise itself as a withered leaf. The stick insect
is shaped like a withered or bamboo stem and remains motionless to confuse predators.
Phyllium is shaped like a leaf, with bite marks and veins that are similar to those of a leaf.
Biston betularia often falls on lichens or stones that are similarly colored to itself. Its larvae
can even hold its body in posture to perfectly resemble the shape of twigs and also toggle its
body color. Obviously, compared with salient insects (Figure 1b) that are the most attention-
seeking to observers, camouflaged insects can hardly be captured rapidly by the naked eye
due to their high similarities to twigs, leaves, flowers and other complex backgrounds.
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Figure 1. Examples of salient and camouflaged insects.

To cope with the above challenges, we developed three novel modules: the asymmetric
receptive field (ARF) module, self-refinement module (SRM) and reverse guidance (RG)
module. The ARF modules aim to alleviate the effect of various camouflaged insects and
improve the ability to distinguish camouflaged insects from backgrounds, in which three
parallel and asymmetric convolution layers with multiple receptive fields are adopted
to extract anisotropic context information. SRM applies an initial attention strategy on
the fused the multi-layer features to suppress distractors of the background to obtain an
initial coarse segmentation map. For further outline refinement, RG modules are adopted
to enhance the attention to boundaries by erasing the predicted foreground from the
side output. The ARF, SRM and RG will further be integrated into the encoder–decoder
framework, yielding the progressive refinement network (PRNet). PRNet is expected to
improve recognition efficiency, promote camouflage research, and even improve the odds
for the development of the ultimate insect detector.

2. Dataset

The COD10K [36] and CAMO [37] benchmarks are the two largest camouflage datasets,
covering artificial camouflage, animal camouflage and insect camouflage. After discarding
the duplicate insect images, we assembled a total of 1900 ecological images and ground
truth pairs from the COD10K and CAMO for this study, which included 10 orders of typical
camouflaged insects, such as Coleoptera, Hemiptera, Odonata, Neuroptera, Hymenoptera,
Diptera, Lepidoptera, Phasmatodea, Mantodea, and Orthoptera (Figure 2). The number
distributions of each order are 8, 130, 65, 26, 24, 4, 629, 127, 140, and 747, respectively.

Examples of some ecological image and ground truth pairs are shown in Figure 3.
In each pair, the image is a color picture that contains foreground (objects) and background,
and the ground truth is an objective and standard object-level annotation that indicates the
location, scale, and shape of the objects in the image. In each image, there exists at least
one camouflaged insect. Notably, there exist many challenging properties that were often
encountered in real-world shooting, such as shape complexity, indefinable boundaries,
occlusions, multiple insects, large insects, small insects, and being out of view. The property
description is shown in Table 1.

http://mmcheng.net/cod/
https://sites.google.com/view/ltnghia/research/camo
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Figure 2. Specimens of typical camouflaged insects.

Figure 3. Examples of ecological image and ground truth pairs.

Table 1. Property descriptions.

Attribute Description

Multiple Objects Image contains at least two insects, e.g., Figure 3b

Small object Ratio between insect area and whole image area is lower than 0.1.,
e.g., Figure 3e

Big Object Ratio between insect area and whole image area is higher than 0.5.,
e.g., Figure 3d

Complex shape Insect has thin parts and holes. e.g., Figure 3g
Indefinable boundaries Insect has a similar color appearance, e.g., Figure 3c

Occlusion Insect is partially occluded, e.g., Figure 3j
Out-of-View Insect is clipped by image boundaries, e.g., Figure 3h

3. Method

To ‘see’ an object clearly, in general, visual stimuli received by our eyes are processed
into neural signals by the visual nervous system and interpreted by visual centers in our
brains. Researchers have proven that the information processing of the visual system is
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hierarchical in the cerebral cortex, and it is a constantly iterative and abstract process [38],
as shown in Figure 4. According to this, the progressive refinement network (PRNet) was
proposed in this paper. PRNet is composed of the following parts: (a) a backbone network
for feature extraction; (b) three asymmetric receptive field (ARF) modules for deriving
discriminative features, such as size and direction, (c) a self-refinement module (SRM),
for abstracting outline and shape features, and (d) three reverse guidance (RG) modules
for paying more attention to insect regions for making sharp outlines.

Figure 4. The process of PRNet for camouflaged insects, i.e., PRNet, consistent with the process of
human vision.

Figure 5 shows the overall flowchart of our proposed model, which is built on an
encoder–decoder architecture. Particularly, for the encoder, we use Res2Net [39] as the
backbone, which is capable of capturing more multi-scale semantic features. We define
the extracted multi-layer features as low-level features {X0, X1} and high-level features
X2, X3, X4. The resolution of each feature Xk is H/2k+1 ×W/2k+1, k ∈ {0, 1, 2, 3, 4}, cover-
ing diversified feature pyramids from high resolution, weak semantics to low resolution,
strong semantics. Note that average pooling layers and the fully connected layers are
removed to reduce the loss of details. For the decoder, we first introduce a novel ARF
module, whose inputs are middle-level and high-level features, which is necessary to ex-
tract anisotropy contextual information in the horizontal, vertical and square kernel modes.
Second, we propose a novel SRM with an initial attention strategy in order to aggregate the
coarse information from the output of the proposed ARF module and to generate a refined
camouflaged map based on the integrated features. Moreover, our SRM can be seen as a
special self-attention module that makes full use of more fine-grained information. Finally,
in the top-down decoding process, we use an RG module to supplement the missing regions
and details of this refined map, which is essential to achieving a high-quality saliency map
and clear boundaries. The details of the above are elaborated as follows.

3.1. Asymmetric Receptive Field

Since camouflaged insects often come from natural scenes, their sizes are varied and
stochastic. Neuroscience experiments have verified that, in the human visual system,
a set of various-sized receptive fields helps to highlight the area close to the retinal fovea,
which is sensitive to small spatial information [40]. This motivated us to adopt receptive
fields with various sizes to incorporate more discriminative camouflage cues after feature
extraction. Additionally, the standard convolution operation of size (2i− 1)× (2i− 1) can
be factorized as a sequence of two steps with (2i− 1)× 1 and 1× (2i− 1) kernels, speeding
up the inference efficiency without decreasing the representation capabilities [41]. As the
1× k and k × 1 layers have non-square kernels, they are referred to as the asymmetric
convolutional layers. Therefore, we proposed the asymmetric receptive field (ARF), which
includes five branches {bk, k = 1, . . . , 5}. In each branch, the first convolutional (Bconv)
layer had dimensions of 1× 1 to reduce the channel size to 32. This was followed by two
other layers: a (2k − 1) × (2k − 1) Bconv layer and a 3× 3 Bconv layer with a specific
dilation rate (2k− 1) when k > 2. The first four branches were concatenated, and then
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their channel size was reduced to 32 with a 1× 1 Bconv operation. Finally, the 5th branch
was added, and the whole module was fed to a ReLU [42] function to obtain the feature
{e fk, k = 2, 3, 4}. In brief, compared to the standard receptive field block structure [40], ARF
added one more branch with a larger dilation rate to enlarge the receptive field and further
replaced the standard convolution with two asymmetric convolutional layers. By using the
ARF modules, comprehensive information with integrated anisotropy context from three
levels was generated, and the approximate scales of insects in images could be acquired.

Figure 5. Overview of the proposed network, which consists of three main modules: asymmetric
receptive field (ARF) module, self-refinement module (SRM) and reverse guidance (RG) module (Best
viewed in color).

3.2. Self-Refinement Module

After obtaining the informative features from the previous ARF modules, in the
SRM, we need to preliminarily segment the camouflaged object. Due to repeated down-
sampling operations, such as pooling and convolution, the resolution of the prediction
map is greatly reduced, which leads to blurred insect outlines. According to the recent
evidence [43], high-level features have more global semantic information, which helps to
differentiate which features are camouflaged objects in an image. However, due to the
lack of details, the camouflage regions are blurred. In contrast, low-level features have
detailed information, but it is difficult to determine the camouflage regions. To accurately
locate camouflaged insects and obtain sharper outlines simultaneously, it is necessary to
integrate multi-level features together. However, feature fusion across multiple levels
easily introduces redundant information, resulting in the inaccurate location of targets.
Therefore, it is necessary to reduce the differences between the three coarse features. To this
end, we used the partial decoder component (PDC) [44] to extract the fusion features that
contained high-level information. Such features could then be directly used to generate a
coarse camouflaged map Sc, via a simple convolutional operation. However, due to the
low resolution, the coarse map generated by the fusion features was far from the ground
truth mask. Inspired by [45], we formulate the generated coarse camouflaged map as an
attention mask, where such an attention mechanism can help denoise the features and
generate a preliminary coarse segmentation map. In detail, the inputs of this SRM are the
three coarse features {e fi, i = 4, 3, 2}. We then use a PDC to integrate these features and
use a 3× 3 Bconv and a 1× 1 Bconv to extract a coarse camouflaged map Sc as follows:

fd = Pd(e f4, e f3, e f2), (1)

Sc = iBconv( fd), (2)
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where Pd uses multiplication and concatenation to gradually decrease the gap between
different features, and iBconv denotes multiple Bconv operators. To generate a more
accurate camouflage map, we multiply this map Sc with the discriminative features to
obtain a discriminative feature fr, which can be described as follows:

fr = fd � Sc, (3)

where � denotes element-wise multiplying. Finally, we also use a 3× 3 Bconv and a 1× 1
Bconv to extract a fine-grained camouflaged map Sr.

3.3. Reverse Guidance Module

The human vision system pays great attention to the outline of the object, and often
obtains the specific shape of the target object through the edge information and interprets
the target object and so on. However, a key factor for insect camouflage is edge disrup-
tion [46–48]. As previously described above, the coarse camouflage map Sc was derived
from the three highest layers, which could only capture a probable location of the cam-
ouflaged insect, ignoring boundary details. Moreover, direct up-sampling could further
introduce more noise and make the boundary non-smooth. To this end, the RG module,
which erases the predicted foreground from side-output, is proposed to refine such missing
parts or details in the high-level prediction and apply residual architecture to further refine
the predicted camouflaged map. As shown in Figure 5, the RG module aims to generate the
corresponding edge attention map Wi by using a reverse attention map Ri. We further split
the feature Xi with C channels into n groups (the number of channels in each group is c),
and concatenate it with n reverse attention maps Ri so as to guide the features to focus on
boundaries. To obtain a more complete camouflaged map, we iteratively add the predicted
result of the latter layer Si+1 to the corresponding edge attention map Wi, which can be
described as follows:

Wi = Ri � Xi, (4)

x1
i , ..., xm

i , ..., xn
i = split(Xi), (5)

Fi = concat(x1
i , Wi, ..., xm

i , Wi, ..., xn
i , Wi), (6)

Si = iBconv(Fi) + Si+1 (7)

Note that this reverse attention map Ri is obtained by erasing the foreground in the
prediction, and it can be formulated as

Ri = 1− σ(U(Si+1)), (8)

where σ is the sigmoid function, and U is the up-sampling operation. Having access
to high-level information, lower levels can learn more powerful features for refining the
camouflage map in a coarse-to-fine manner, and output the final segmentation result, which
is a binary bitmap.

In short, ARF captures contextual information from multi-layer features for coarse-
grained refinement of fusion features. For fine-grained refinement, SRM and RG modules
cover more useful information by applying an initial attention strategy on fusion features,
and erasing the foreground to pay more attention to boundaries, respectively. These
three modules progressively refine features from coarse to fine so as to achieve accurate
segmentation. Finally, we integrate the ARF, SRM and RG into the encoder–decoder
architecture, and the entire network can be trained end to end.

3.4. Implementation and Evaluation

To evaluate the performance of PRNet, 5-fold cross validation was adopted in this
research. The camouflaged insect dataset was randomly split into 1520 images (80%) for
training and 380 images (20%) for validation in each fold. The proposed method was
implemented on the PyTorch platform. We used the Adam optimizer with a learning
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rate 1 × 10−4 for training, in which the epoch size was 40, and the batch size was 16.
The encoder was initialized by the weights of Res2Net that is pre-trained on ImageNet. We
resized all input images to 352× 352 and used images with three scale rates {0.75, 1, 1.25}
during training.

PRNet is a supervised segmentation network to predict each pixel to be the insect
or background, thus it is trained by minimizing the pixel position-aware (PPA) loss [49]
of camouflaged maps {S2, S3, S4, Sc, Sr}. PPA loss assigns different weights to different
positions and pays more attention to hard pixels. PPA loss Lppa is formulated as

Lppa = Lwbce + Lwiou, (9)

where Lwbce is a weighted binary cross entropy loss and Lwiou is a weighted intersection
over Union (IoU) loss. The Lwbce loss function is formed as the following:

Lwbce = −
1
N

∑i,j
(
1 + γαij

)[
gij log

(
pij

)
+

(
1− gij

)
log

(
1− pij

)]
∑i,j γαij

, (10)

where gij and pij represent the predicted values and ground truth of the pixel at location (i,j),
respectively. N denotes the total number of pixels in an image, and γ is a hyperparameter.
The weight α is calculated according to the difference between the center pixel and its
surroundings, which can be defined as follows:

αij =

∣∣∣∣∣∑m,n∈Aij
gmn

∑m,n∈Aij
1
− gij

∣∣∣∣∣, (11)

where Aij is the area surrounding the pixel (i,j). If aij is large, the pixel at (i,j) is very different
from its surroundings, which may represent an important pixel (e.g., edge) and deserves
more attention. Similarly, α is assigned to Lwiou for emphasizing the importance of hard
pixels, which can be defined as

Lwiou = 1− 1
N

∑i,j
(
1 + γαij

)
gij pij

∑i,j
(
1 + γαij

)(
gij + pij − gij pij

) (12)

In this paper, all of the output segmentation maps are upsampled to the same size as
the ground truth G. Thus, the total loss can be defined as

Ltotal = L
(

G, σ
(

Rup
g

))
+

5

∑
t=1

L
(

G, σ
(

Rup
t

))
(13)

4. Results
4.1. Evaluation Metrics

Four popular metrics were utilized to evaluate its performance in camouflaged insect
segmentation, i.e., mean absolute error (MAE) [50], enhanced-alignment measure (EΦ) [51],
structural similarity measure (Sα) [52], and weighted harmonic mean of precision and
recall (Fw

β ) [53]. For the predicted camouflage map C and its corresponding ground truth G,
the image size is W × H.

MAE calculates the pixel-wise absolute difference between the predicted camouflage
map and ground truth, which is defined as

MAE =
1

W × H

W

∑
i=1

H

∑
j=1
|C(i, j)− G(i, j)|, (14)

where H and W are the height and the width of the map, respectively.



Electronics 2023, 12, 804 9 of 17

EΦ is defined as

EΦ =
1

W × H

W

∑
i=1

H

∑
j=1

ΦFM(i, j), (15)

which can obtain image-level statistics and local pixel-matching information, based on the
enhanced alignment matrix ΦFM.

Sα uses the object-aware and region-aware structure similarities, namely So and Sr,
to obtain structural similarity between the predicted camouflage map and ground truth,
and is formulated as

Sα = α ∗ So + (1− α) ∗ Sr, (16)

where α = 0.5.
Fw

β takes both the weighted precision (Precisionw) and weighted recall (Recallw) into
account, which is formulated as

Fw
β = (1 + β2)

Precisionw · Recallw

β2 · Precisionw + Recallw , (17)

where β2 = 0.3.

4.2. Comparisons with State-of-the-Art Detection Methods

Our proposed PRNet was compared with seven recently published methods, includ-
ing two detection methods designed for salient objects, i.e., BASNet [54] and F3Net [49],
and five detection methods designed for camouflaged objects, i.e., SINet [44], PraNet [12],
SINet-V2 [36], PFNet [55] and C2FNet [3]. For fair comparison, all results of these mod-
els were retrained with our camouflaged insect dataset, and the parameters were set as
recommended in the corresponding papers. The open source codes were taken from
http://dpfan.net/camouflage/ (accessed on 10 September 2022) and https://github.com/
jiwei0921/SOD-CNNs-based-code-summary- (accessed on 10 September 2022). In addi-
tion, all the prediction maps are evaluated with the same code.

Quantitative Evaluation: The quantitative results of our PRNet against seven other
object detection methods on the camouflaged insect dataset are presented in Table 2. Obvi-
ously, the performance of salient object detection methods, both BASNet and F3Net was not
as good as that of all camouflaged object detection methods. Moreover, most models that
employed Res2Net-50 as the backbone outperformed the models that employed ResNet-50.
In terms of camouflaged object detection methods, PRNet was superior to PraNet and
SINet which were also built on a customized UNet-based architecture. In particular, our
method achieved the best performance on camouflaged insect detection with an MAE of
3.2%, EΦ of 89.7%, Sα of 83.6% and Fw

β of 72%, which were improved by 0.1%, 0.4%, 0.3%
and 0.1%, respectively, when compared to the second-best method.

Table 2. Quantitative comparison with state-of-the-art methods for camouflaged insect detection.
↑ / ↓ indicates that larger or smaller is better. The three best results are in red, green and blue colors,
respectively.

Method Year Field Backbone MAE ↓ EΦ ↑ Sα ↑ Fw
β ↑

BASNet [54] 2019 Camouflage ResNet-50 0.068 0.770 0.692 0.483
F3Net [49] 2020 Salient ResNet-50 0.113 0.638 0.641 0.362
SINet [44] 2020 Camouflage ResNet-50 0.050 0.872 0.803 0.567
PraNet [12] 2020 Camouflage Res2Net-50 0.040 0.857 0.801 0.662
SINet-V2 [36] 2022 Camouflage Res2Net-50 0.033 0.889 0.836 0.719
PFNet [55] 2021 Camouflage ResNet-50 0.033 0.893 0.83 0.715
C2FNet [3] 2021 Camouflage Res2Net-50 0.035 0.887 0.833 0.712
PRNet 2021 Camouflage Res2Net-50 0.032 0.897 0.836 0.720

http://dpfan.net/camouflage/
https://github.com/jiwei0921/SOD-CNNs-based-code-summary-
https://github.com/jiwei0921/SOD-CNNs-based-code-summary-
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Qualitative Evaluation: Furthermore, some visualization results are shown in Figure 6.
Compared with other state-of-the-art models, our model achieved better visual effects
by detecting more accurate and complete camouflaged objects with rich details. BASNet
failed to detect some insects (see the 1st, 2nd and 3rd (last) rows). All boundaries of insects
detected by F3Net were blurred. In particular, SINet and PraNet were weak at detecting the
thin parts, such as the antennas (see 8th row) and feet (see 1st row). SINet-V2, PFNet and
C2FNet interfused the noise from background in the last row and the last 4th row, in which
the shapes of insects were complex.

Figure 6. Visual comparison of different methods (Best viewed in color).

4.3. Effectiveness Verification of Each Module

To verify the effectiveness of each key module, they were removed from the complete
model for contrast tests. Note that three tests were performed under the same training
settings, and the results are summarized in Table 3. In the No.1 (SRM+RG) experiment, we
replaced the ARF module with a convolution operation to adjust the features of the last
three layers to a consistent number of channels. In the No.2 (ARF+RG) experiment, we
removed the SRM module while keeping the ARF and RG modules, and then fused the
features of the last three layers to generate an attention map via the combined operation of
up-sampling and multiplication. In the No.3 (ARF+SRM) experiment, we replaced the RG
with the combined operation of up-sampling and concatenation, and the ARF and SRM
remained unchanged. No.4 (ARF+SRM+RG) was the complete model, consistent with the
structure shown in Figure 5.
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Table 3. Results of the effectiveness verification. The best results are highlighted in bold fonts.

ModuleNo. ARF SRM RG MAE ↓ EΦ ↑ Sα ↑ Fw
β ↑

1
√ √

0.033 0.89 0.834 0.715
2

√ √
0.040 0.897 0.831 0.657

3
√ √

0.161 0.830 0.672 0.326
4

√ √ √
0.032 0.897 0.836 0.720

Compared with the complete model (No.4), removing the ARF module (No.1) slightly
degraded the detection performance. The reason for this phenomenon was the fact that
the asymmetric receptive field brought the semantic strength and location accuracy of
high-level features into full play but also inevitably introduced noise and fuzzy edges for
the target object. When removing the SRM, i.e., No.2, the performance declined in several
respects as well, which suggested that the lack of details went against extracting coarse
camouflage maps. In particular, comparing No.3 with No.4, the use of RG significantly
improved by 12.9%, 6.7%, 16.4%, and 39.4% in terms of MAE, EΦ, Sα, and Fw

β , respectively.
This result demonstrated that employing the RG module to mine edge information could
help the model overcome the challenges in camouflaged object detection, such as complex
shapes and indefinable boundaries. Thus, the contrast tests validated the rationality of
integrating these modules into PRNet.

4.4. Generalization Verification

The generalization ability of the neural network model is of vital importance for its
popularization and application. In other words, a good deep learning model should not
only perform well on the existing images in academic datasets, but also perform well on
fresh images. To further assess the generalization capability of the proposed PRNet, some
camouflaged images from CHAMELEON. were directly fed into PRNet without retraining
or any tune-up.

On the dataset CHAMELEON, our PRNet achieved the performance with an MAE of
3.8%, EΦ of 84.1%, Sα of 83.1% and Fw

β of 65.7%. According to the visual results shown in
Figure 7, despite the outlines of segmentation maps being vague, PRNet could segment
most parts of camouflaged objects, indicating that PRNet might provide more chances
for the discovery and detection of various camouflaged objects. For further accurate
segmentation performance on various camouflaged objects, retraining the PRNet on a large
number of images of relevant objects is the most practical and effective method.

Figure 7. Generalization verification results of the proposed PRNet (Best viewed in color).

5. Discussion

This work proposed an end-to-end network PRNet that achieved the best performance
on camouflaged insect detection compared with seven state-of-the-art detection methods

https://github.com/lartpang/awesome-segmentation-saliency-dataset~#chameleon
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designed for salient objects and camouflaged objects. PRNet integrated three key modules:
ARF, SRM, and RG. The ARF module captured rich contextual information on the camou-
flaged images. SRM obtained a coarse segmentation map by suppressing distractors of
the background. The RG module increased attention to insect edges by integrating reverse
attention into multi-layer features.

As one of the toughest cases, camouflaged insect detection was often accompanied by
weak boundaries, low contrast, and similar texture to the backgrounds, and thus, there were
more challenges for camouflaged insect detection than salient insect or generic insect detec-
tion. Note that generic insects could be either salient or camouflaged, and camouflaged
insects could be seen as difficult cases. Multi-level feature aggregation was explored for
robust detection [56,57]. Recurrent and iterative learning strategies were also employed to
progressively refine the prediction map [58,59]. Due to the effectiveness of feature enhance-
ment, attention mechanisms [60,61] have also been applied to saliency detection [62,63].
In addition, edge cues were leveraged to refine the saliency map [54,64]. However, directly
applying salient insect or generic insect detection methods to detect camouflaged insects
may not yield the desired results, as the term “salient” was essentially the opposite of
“camouflaged”, i.e., standout versus immersion. This view was underpinned by quantita-
tive and qualitative results. The saliency methods that achieved superior performance on
salient object detection, e.g., BASNet [54] and F3Net [49], were inapplicable to camouflaged
insect detection since they highlighted the most attention-seeking part of an image and
discarded the seemingly unimportant pixels.

The recently proposed camouflaged object segmentation approaches achieved perfor-
mance improvement to some extent; however, their performance degraded significantly for
a number of challenging cases, such as complex shape, small size, being out-of-view, etc.
As shown in Figure 6, PraNet [12] and PFNet [55] missed some parts of the insect body in
the cases of insects with indefinable boundaries or thin parts. As a human visual system,
a set of various-sized receptive fields helped to highlight the area close to the retinal fovea
that is sensitive to details [40], which was overlooked by PraNet and PFNet. In addition,
cross-level feature fusion also played a vital role in the success of camouflaged object
detection. The ARF and SRM modules jointly considered both rich context information
and effective cross-level feature fusion, yielding superior detection performance. Neverthe-
less, SINet [44] and C2FNet [3] utilized region and boundary information simultaneously,
but the relationship between them was not fully captured, hence failing to correctly identify
camouflage regions and interfusing the noise from the background when the camouflaged
insect was oversize or out of view. The region and boundary were two key characteristics
that distinguished camouflaged insects and backgrounds. After aggregating features in
high levels and then predicting coarse regions, SINet-V2 [36] and our PRNet leveraged a
set of recurrent reverse attention modules to establish the relationship between the region
and boundary cues, which enabled the models to calibrate some misaligned predictions.

Our results went beyond recent studies in terms of both quantitative evaluation and
visualization evaluation. The verification of module rationality, as well as the model gener-
alization, were further done in the previous section. Extensive experiments showed that
our PRNet outperforms the state-of-the-art methods on both quantitative and qualitative
evaluations, which made it possible to become an ultimate universal insect detector for not
only the camouflaged insects, but also the salient or generic insects.

Despite the superior performance of PRNet, due to the limited sample size and long-
tailed distribution of challenging cases (see Figure 8), such as small insects and multiple
insects, the dataset studied in this work is unable to take full advantage of deep learning
models. The effect of deep learning depends on a large amount of data to some extent,
and the emergence of new datasets will lead to rapid progress in computer vision [65–68].
With this in mind, we encourage researchers to construct a camouflaged insect dataset of
large size and with high-quality annotation. Moreover, some measures should be taken
in the future to address the challenging problem caused by the imbalance of samples
of the camouflage dataset. The performance of small insect segmentation can also be
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improved by data augmentation in the training set, such as oversampling those images
with small insects and augmenting each of those images by copy-pasting small objects
many times [69]. In addition, generative adversarial networks (GANs) [70,71] can also
alleviate the problem arising from a few discriminative features of the small objects. GANs
can be used to generate a super-resolved representation of a small object that is very similar
to a large object. The super-resolved feature is superimposed on the feature map of the
original small target so as to enhance the feature expression to improve the segmentation
performance of the small object. In addition to the small object problem, multiple insects
and the congestion or occlusion between multiple insects will lead to the loss of feature
information, causing false or missed segmentation. The short-term transformer block [72],
lifted edges [73] and repulsion loss [74] might be effective in addressing these constraints.
Additionally, our model shows highly correlated statistical dependencies between the
predictions and inputs, but datasets may have different distributions in different domains.
If the new domain were directly input to validate the model, the prediction results on the
new dataset CHAMELEON might be inaccurate [75]. For example, the spider’s feet cannot
be completely distinguished from the background in Figure 7. Therefore, transfer learning
is encouraged here as well to reduce the distribution difference between the new domain
and the original domain.

Figure 8. Number distribution of each order in our dataset.

6. Conclusions

In the present paper, we addressed the problem of segmenting insect objects. Camou-
flaged insects were the focus due to their extreme features in solving the detection problem.
This was the first attempt and achieved success in applying deep learning techniques to
camouflaged insect image detection. The main ingredients of our approach are the ARF,
SRM and RG modules. ARF formulates a novel means of extracting contextual information
that perceives the varied appearances of camouflaged insects. SRM fuses comprehensive
features to suppress the distractors of the background exhibiting similar colors or textures
to camouflaged insects. The refinement of insect outlines using the proposed RG module
yields more robust segmentation results than recent approaches for the same task. Our
method reaches state-of-the-art detection accuracy on 1900 images of camouflaged insects
(MAE = 3.2%), approaching the performance of human experts. In future work, we will
extend our camouflaged insect dataset as well as having high-quality annotations, and new
techniques, such as weakly supervised learning, zero-shot learning, transfer learning,
and multi-scale backbone, could also be explored.
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