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Abstract: The significant role for a contemporary control algorithm in the position control of a per-
manent magnet linear motor (PMLM) system is highlighted by the rigorous standards for accuracy in
many modern industrial and robotics applications. A robust predefined time convergent sliding mode
controller (PreDSMC) is designed for the high precision position tracking of a permanent magnet
linear motor (PMLM) system with external disturbance, and its convergence time is independent
of the system’s initial value and model parameters. We verified theoretically that the performance
function conditions are satisfied, the motor speed is steady and constrained, and the motor position
tracking error converges to zero within the prescribed time. First, we designed a sliding mode (SM)
surface with predetermined time convergence, which mathematically demonstrates that the tracking
error converges to zero within the predefined time and shows that the position tracking accuracy is
higher. Secondly, we developed a PreDSMC law that is independent of initial state and based on the
predefined time convergence Lyapunov stability criterion. Finally, to prove the accuracy and higher
precision of the proposed PreDSMC, comparative numerical simulations are performed for PMLM
with compound disturbances. Simulation findings show that the suggested robust predefined control
method considerably reduces the impacts of friction and external disturbances; consequently, it may
increase the control performance when compared to the typical proportional integral derivative (PID)
controller, the nonsingular fast terminal SMC, and the linear SMC.

Keywords: nonlinear control; robust sliding mode control; predefined time sliding mode control;
permanent magnet linear motor system

1. Introduction

Today, permanent magnet linear motors (PMLM) have a significant role in civil,
industrial, military, and other high-precision applications [1,2]. Especially, PMLM is widely
used in the high-precision manufacturing industry because of its higher thrust density,
higher acceleration, speed, and very high precision. As a result, PMLM research has
recently received more prominent attention from researchers. However, the performance
of these motors degrades due to external disturbances, force ripple, and friction effects [3].
Concerning high-precision motion control, it is always very critical to attain a fast-dynamic
response, especially when increasing the tracking accuracy is a vital goal of the PMLM.

Numerous control algorithms for PMLM analysis and design focusing on various
applications have been presented in the literature. For instance, a robust adaptive algorithm
was developed in [4] for the compensation and control of PMLM displacement in the
presence of force ripple and friction. The authors of [5] presented a water-cooled PMLM
system that was designed for studying the temperature behavior under various work
tasks. The performance of PMLM rate control based on flow-oriented primary control
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was studied in [6]. Sliding mode control (SMC) is a preferred method for managing
control problems in nonlinear systems. It is widely used in practical applications for
its insensitivity to parameter changes and perturbations [7–13]. Design of an adaptive
2-SMC method for a class of unknown nonlinear discrete systems with multiple inputs and
multiple outputs (MIMO) was described in [14]. Stable pressure control for coke oven gas
distributors was achieved by combining SMC and data-driven control (DDC) methods [15].
The traditional SMC ensures the asymptotic stability of the closed loop control only in
the sliding mode phase, i.e., the system to the equilibrium point indefinitely. However,
the finite-time terminal SMC-based PMLM system realizes uncertainties by balancing
control performance and robustness. An efficient tactic that not only guarantees control
quality but can also improve robustness is predictive interference compensation, presented
in the literature [16–18]. The observer-based design method is proficient for estimating
perturbations such as SMC [19–21] and the finite-time approach [22–24]. Owing to the
supremacy of finite-time convergence [25–27], terminal sliding mode control (TSMC) has
been presented in [28–30].

Nonlinear systems have become the topic of extensive study during the past few
decades because such systems provide a more critical perspective of the available informa-
tion on the qualities of memory and legacy [31–33]. Some examples of physical systems
involving nonlinearities include electrical circuits containing supercapacitive elements
which are vital in the design of batteries and fuel cells [34–37], mechanical systems contain-
ing viscoelastic materials [38,39], and biological systems [40,41]. Moreover, sophisticated
control design can benefit from the reliability of fractional-order approaches. Sliding mode
approaches [42–44] are amongst the most often used methods because of their effectiveness
in reducing the impact of uncertainty in the control of nonlinear systems.

Dynamic characteristics involve enforcing sliding motion with finite and fixed-time
convergence [45–47]. Recent publications have investigated sliding mode and fixed-time
tools, elaborating on the remarkable qualities of these uncertain systems [48]. Moreover,
the time at which the sliding action is imposed (the settling-time function) is unbounded
with respect to the initial condition. Nevertheless, sliding mode methods ensure finite-time
convergence of the sliding function.

Recent research has established the concept of fixed-time stability to address the
issue of an unbounded settling-time function. When starting from this state, the work in
question enforces a sliding mode within a uniformly defined time. Designing appropriate
controllers for nonlinear systems has been studied using the predefined time-stability
approach [49–53]. Therefore, in the case of a second-order nonlinear system based on
the Lyapunov stability criterion, predefined time SMCs have been proposed. These
works differ from prior research as they suggest auxiliary controllers through a suitable
dynamic extension. This research was influenced by adaptive predefined time stability.

The robustness of perturbations is rarely explored for predefined settling-time strate-
gies, especially for autonomous systems [54–56]. The controller proposed in [57] could
only mitigate the disturbances if the system’s initial states are known. In [53] and [55],
complementary random time convergence is accomplished by changing the sliding phase
solely; moreover, simulations presume that the reaching time of SMC is predictable. Addi-
tionally, [56] used a time-changing piecewise controller to discard matching instabilities
and attain preset time by altering system parameters. The authors in [58,59] addressed this
problem by developing unique terminal sliding surface-based control in a combined pre-
determined settling period for the category of nonlinear second-order systems containing
coupled disturbances.

In [60–62], nonsingular terminal SMC is used to evaluate the overall effectiveness
of a fixed-time control mechanism with mismatched disturbances. It is pertinent to
mention that the constraints on the settling time were too conservative and required a
significant amount of control effort. In [63], the authors extended this work and demon-
strated the ultimate boundedness with predetermined temporal stability. Moreover, it
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is believed that the predetermined time in [59,63,64] is a factor of the system’s starting
states and characteristics.

Research in [65] proposed a back-stepping strategy to establish fixed-time stability
for higher-order systems with rigorous feedback. In [66], predetermined time stability is
attained for dynamical systems with distributed order in the context of uncertainty. In
addition, a recent study [44] designed a unique SMC that leads to preset time convergence.
Further, nonsingular terminal SMC is being proposed to avoid singularities and it has been
implemented in some practical control systems [67–71]. Despite this, inner discontinuities
appear as never before in previous terminal SMC schematics. As a result, some effective
techniques have been used to overcome the chattering problem resulting from internal dis-
continuities. In particular, the finite-time terminal SMC can achieve fast state convergence
to improve tracking accuracy and limit the jitter problem of phase. In this article, motivated
by the advantages of the finite-time terminal SMC, we designed a predefined time control
method for the PMLM system.

A permanent magnet linear motor (PML) not only has advantages of high force density,
low heat loss, and high precision and accuracy, but also has simple mechanical structure [72],
so it is the first choice for motor motion control systems involving high strength, speed,
and high precision [3]. Today, PML has been widely used in the precision manufacturing
industry. Compared with traditional rotary motors [73–76], linear motors do not require
indirect coupling mechanisms such as gear boxes, chains, and screw couplings, which
greatly reduces contact-type nonlinearity and mechanical interference such as friction and
recoiling [77–79]. As a result, PML can meet the growing demand for high performance
servo system applications and has been successfully used in machine tools, semiconductor
manufacturing systems, etc. Since PML is not equipped with a transport mechanism, the
realizable performance of PML, such as the ability to reduce uncertainty and the influence
of external interference, is inevitably lost to some extent. Therefore, it is very important to
reduce these interference effects through appropriate mechanical design or control scheme.
With new methods of mechanical design, the effect can be maintained at the allowable
level, but this method is more expensive. The controller design based on a PML system is
an economical and feasible method to suppress these effects.

The available literature not only ignores the impact of predefined stability and dis-
turbances, but assumes that the predefined settling time is a factor of the initial states.
Moreover, the convergence rate conventions are extra cautious and require a significant
control effort. To the best of our knowledge, predefined time convergence for nonlinear
systems containing uncertainties and unknown initial conditions remains an unsolved
topic. The contributions of our paper are summarized below:

• A predefined time sliding surface of the tracking error is designed, and we also
theoretically prove that the tracking error found at the sliding surface converges to the
equilibrium point within a prescribed time. Furthermore, its derivative is bounded,
which gives the tracking error superior information. A Lyapunov-based stability
criterion with predefined time convergence is elaborated and proved theoretically. The
results depict the predefined convergence time, which is independent of the initial
value and the parameters of the controlled system.

• A robust predefined SMC law is designed and proven theoretically. We utilize the
predefined sliding function to capture the control input variables, which simplifies
the complexity of the designed controller. It is shown that the trajectory tracking
error of the closed-loop system has a convergent nature within a predefined time.
Moreover, the trajectory satisfies the performance, and it is worth noting that its
derivative is bounded.

• We have designed a predefined robust control law to approximate the uncertain part
of the PMLM, i.e., friction and ripple forces. The presented scheme in this paper
has a wide range of applications. Our proposed PreDSMC only needs the trajectory
tracking error of the PMLM and its derivative information to realize the high-precision
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trajectory tracking control of the system. It is independent of the initial conditions and
model parameters of the system, which is why it is called a robust controller.

This study is organized into the following sections: Section 2 presents the mathe-
matical model and control objective of the PMLM. Section 3 presents the linearization
method of nonlinear parts and the variation method for the tracking error performance
based on the predefined criterion of the sliding function. Moreover, the sliding mode
surface with a predefined time for tracking error convergence and the Lyapunov sta-
bility criterion for convergence are presented in the same section. Section 4 presents
the proposed PreDSMC control law. To verify the robustness of the proposed PreDSMC
control algorithm, simulation results for various cases are presented in Section 5. Lastly,
our study is concluded in Section 6.

2. Problem Formulation

In general, the second-order nonlinear dynamic system can be mathematically ex-
pressed as 

.
x1(t) = x2(t).
x2(t) = f (θ, x(t), t) + Nu(t) + d(t)
y(t) = x1(t)

(1)

where x(t) = [x1(t), x2(t)]
T and θ (t) are the internal parameter variables. Mass and

f (θ, x(t), t) are smooth continuous functions and N includes some nonlinearities such as
Stribeck friction and ripple forces. Nomenclature is given in Table 1.

Table 1. Parameters of the PMLM model.

Parameter Symbol Value Unit

Motor mass m 5.4 Kg
Resistance R 16.8 Ω
Force constant k f 130
Back electromotive force ke 123 V/(rad/s)

Friction force

fc 10

N
fs 20
fv 10

x2s 0.1

Ripple force

A1 8.5

N

ω1 314
A2 4.25
ω2 314
A3 2
ω3 314

PMLM Model Representation

Although a second-order system may frequently be used to illustrate the dynamics
of a PMLM [27], owing to the low value of stator inductance relative to the resistance,
we neglect it in this study along with loads and slight perturbations. A typical PMLM
mathematical model is characterized as follows:

.
x1(t) = x2(t)
.
x2(t) = −

k f ke
Rm x2(t) +

k f
Rm u(t)− d(t)

m
y(t) = x1(t)

(2)

where the parameters are M =
k f ke
Rm , N =

k f
Rm , and F = d(t)

m . Assuming the reference signal
is denoted as xr and its first and second order derivatives, i.e.,

.
xr and

..
xr are sequential and

bounded, respectively. Consequently, position tracking error and speed tracking errors can
be expressed as e1(t) = xr(t)− x1(t), e2(t) =

.
xr(t)− x2(t).
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According to the model described above, the state-variable formulation of a PMLM is
easily derivable. Additionally, the error dynamics equation can be described as:

.
e1(t) = e2(t).
e2(t) = −Me2(t)− Nu(t) + F + M

.
xr +

..
xr

y(t) = x1(t)
(3)

The control goal of this article is to develop a robust controller that can accurately follow
the reference position curve in the predefined time. The Stribeck curve in Figure 1 is a well-
known tool for modeling the friction. It essentially indicates the relationship between the
friction force and angular velocity for different values of friction. The Stribeck friction model
can be expressed as in Equation (2). When the static friction is

∣∣∣ .
θ (t)

∣∣∣ < α, with α threshold,
the dynamic friction Ff riction(t) can be given by the following piecewise expression:

Ffriction(t) =


fm f (t) > fm

f (t)− fm < f < fm
− fm f (t) < − fm
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The Stribeck friction curve is a well-known model of the friction. It shows the relationship
between the friction force and angular velocity for different values of the friction. A friction
model can be expressed as in Equation (4). When the static friction is |θ ˙(t)| < α, with
threshold, the dynamic friction can be given by (4). One can see that the static friction is
|θ ˙(t)| > α, and can be given as above in which Fs denotes the driving force, Fc represents
the maximum static friction force, and it is a small scaling factor.

Ffriction(t) =
[

fc + ( fs − fc)e−(x2/x2s)
2
+ fvx2

]
sgn(x2) (4)

where fv is the viscous friction coefficient, x2s is the assumed measured lubrication parame-
ter, fc is the minimum value of the Coulomb friction, and fs is the static friction. According
to the cogging effect in the structure of the PMLM, the pulsating force Fripple(t) generated
by the reluctance is modeled as

Fripple(t) = ∑n
i=1 Ai sin(ωix1) (5)
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where ωi is the angular velocity and Ai is the amplitude. The load disturbance torque FL(t)
is a constant value. The overall system is described as follows:

.
x1(t) = x2(t).
x2(t) = Mx2(t) + Nu(t) + d(t)
y(t) = x1(t)

(6)

3. Predefined Time Sliding Surface Design

Definition 1: For the nonlinear system (2), if there is a predefined constant Ts > 0 such
that the condition is satisfied for any t ∈ [0, ∞]:

(1) At the time t→ Ts , lim
t→Ts

y(t) = 0;

(2) When t ≥ Ts, and has y(t) ≡ 0, then the nonlinear system (2) is globally predefined
time stable.

To take the full advantage of strong robustness of the sliding mode controller and
ensure that the trajectory tracking error e(t) can converge to the equilibrium point within
the predefined time Ts1, the sliding mode surface with the predefined time convergence is
designed as follows:

S = e2(t) +
π

2p1Ts1
√

a1b1

(
a1e1−p1

1 (t) + b1e1+p1
1 (t)

)
(7)

where the parameter satisfies 0〈p1〈1, a1〉0, b1〉0; Ts1 is the predefined time. For the sliding
mode surface (7), Theorem 1 is given below.

3.1. Predefined Time Error Convergence Criterion

Theorem 1. For any predefined time Ts1 > 0 and parameter 0 < p1〈1 , a1〉0, b1 > 0, when the
sliding mode surface (3) satisfies S = 0, the following holds true:

(1) If the initial value of the tracking error is e1(0) 6= 0, then e1(t) will converge to zero within
the predefined time Ts, and the convergence time

ts =
2Ts1

π
arctan

(√
b1

a1
ep1

1 (0)

)
< Ts1 (8)

(2) If the initial value of the tracking error is e1(0) = 0, then at that the time e1(t) that converges
to zero is ts = 0, that is, when S = 0 is the trajectory tracking error e1(t) ≡ 0.

Proof of Theorem 1.
When S = 0, there is:

e2 =
de1

dt
= − π

2p1Ts1
√

a1b1
a1e1−p1

1 (1 +
b1

a1
e2p1

1 ) (9)

After transforming (8), we obtain

p1ep1−1
1 de1

1 + (
√

b1
a1

ep1
1 )

2 = −
π
√

a1

2Ts1
√

b1
dt (10)

The following measures were taken to ease the integration:

d(
√

b1
a1

ep1
1 )

1 + (
√

b1
a1

ep1
1 )

2 = −

√
b1

a1

π

2Ts1

√
a1

b1
dt = − π

2Ts1
dt (11)
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Assuming that the tracking error e1(t) converges to zero at time ts, i.e., e1(ts) = 0,
integrating both sides of Equation (10) on [0, ts] gives

∫ ts

0

d
(√

b1
a1

ep1
1

)
1 + (

√
b1
a1

ep1
1 )

2 =
∫ ts

0
− π

2Ts1
dt (12)

arctan

(√
b1

a1
ep1

1

)
|ts
0 = − πt

2Ts1
|ts
0 (13)

Simplifying with the help of the steps given in Equations (12) and (13), we obtain

ts =
2Ts1

π
arctan

(√
b1

a1
ep1

1 (0)

)
≤ 2Ts1

π

π

2
= Ts1 (14)

When e1(0) = 0 and ts =
2Ts1

π arctan
(√

b1
a1

ep1
1 (0)

)
= 0 represent constant e1(t) ≡ 0, it

means that when the sliding surface S = 0, the tracking error e1(t) is also equal to zero and
hence the theorem is proved. �

3.2. Predefined Time Convergence Stability

Theorem 2. For nonlinear system
.
x(t) = f (x), f (0) = 0, x(0) = x0, for any predefined time

Ts > 0, and parameter 0〈p〈1, a〉0, b〉0, if there is a radially unbounded and positive definite
Lyapunov function V(t) that satisfies

.
V(t) ≤ − π

2pTs
√

ab

(
aV1−p(t) + bV1+p(t)

)
(15)

then

(1) If V(0) 6= 0 , the system is stable at the global predefined time and converges to the
equilibrium point.

ts =
2Ts

π
arctan

(√
b
a

Vp(0)

)
< Ts

(2) If V(0) = 0, then V(t) ≡ 0 and it indicates that the system state is always at the
equilibrium point.

Proof of Theorem 2.
Let

.
V(t) = − π

2pTs
√

ab

(
aV1−p(t) + bV1+p(t)

)
+ ∆, then

dV
dt

= − π

2pTs
√

ab
aV1−p(1 +

b
a

V2p − 2pTs
√

ab
πaV1−p ∆) (16)

After transforming (15) and taking the differential, we have

π

2Ts
dt = − 1

1 + (
√

b
a Vp)

2
− 2pTs

√
ab

πaV1−p ∆
d(

√
b
a

Vp) (17)



Electronics 2023, 12, 813 8 of 16

Let us assume that at time ts, V(ts) = 0. Next, integrate both sides of Equation (16).

Since, V ≥ 0, ∆ ≥ 0 then 2pTs
√

ab
πaV1−p ∆ ≥ 0, we obtain:

∫ ts

0

π

2Ts
dt = −

∫ V(ts)

V(0)

d(
√

b
a Vp)

1 + (
√

b
a Vp)

2
− 2pTs

√
ab

πaV1−p ∆
≤ −

∫ V(ts)

V(0)

d(
√

b
a Vp)

1 + (
√

b
a Vp)

2

After simplification, we have

π

2Ts
ts ≤ arctan

(√
b
a

Vp(0)

)
− arctan

(√
b
a

Vp(ts)

)


V(t) ≤
(√

a
b tan

(
arctan

(√
b
a Vp(0)

)
− π

2Ts
t
)) 1

p

ts =
2Ts
π arctan

(√
b
a Vp(0)

)
≤ Ts2

�

4. Design of Predefined Time Control Law

First, take the Lyapunov function as V1 = 0.5STS, and derive it with respect to t:

.
V1 = ST

.
S = ST

(
.
e2 +

π

2p1Ts1·
√

a1b1
(a1(1− p1)e

−p1
1 + b1(1 + p1)e

p1
1 )e2

)
After simplification, we obtain

.
V1 = ST

(
−Me2(t)− Nu(t) + F + M

.
xr +

..
xr +

π

2p1Ts1
√

a1b1
(a1(1− p1)e

−p1
1 + b1(1 + p1)e

p1
1 )e2

)
(18)

The controller is designed as: utotal = ua + ub where

ua =
1
N

(
−Me2(t) + F + M

.
xr +

..
xr +

π
2p1Ts1

√
a1b1

(a1(1− p1)e
−p1
1 + b1(1 + p1)e

p1
1 )e2

)
ub = π

2Np2Ts2
√

a2b2
(a2S1−p2 + b2S1+p2)

(19)

then

−Me2(t)− Nu(t) + F + M
.
xr +

..
xr +

π
2p1Ts1

√
a1b1

(a1(1− p1)e
−p1
1 + b1(1 + p1)e

p1
1 )e2

= − π
2p2Ts2

√
a2b2

(a2S1−p2 + b2S1+p2)
(20)

Therefore,
.

V1 = S
(
− π

2p2Ts2
√

a2b2
(a2S1−p2 + b2S1+p2)

)
= − π

2p2Ts2
√

a2b2
(a2S2−p2 + b2S2+p2)

= − π

2pTs2
√

ab
(aV1

1−p + bV1
1+p)

(21)

Among them a = a221−0.5p2 , b = b221+0.5p2 , p = 0.5p2, according to Theorem 2,
it can be known that system (2) is globally stable at predefined time, and the sliding
mode surface S will converge to zero within the predefined time; the convergence time is

ts =
2Ts2

π arctan
(√

b2
a2

V1
p2(0)

)
< Ts2.
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Remarks. In SMC, the usage of the signum function often results in a chattering phenomenon.
Therefore, we must define a special function in order to mitigate this chattering effect. We can now
define a continuous function, i.e., sat (s), for the compensation of chattering in the linear SMC
(LSMC) control signal such that:

sat(s) =

{
s
ζ for |s| < ζ

sgn(s) for |s| ≥ ζ
(22)

where ζ is taken as a positive constant. Its value can be chosen so that the control action and
chattering effect are not compromised. For practical applications, any random but positive value can
be set. 

.
x1 = x2.

x2 = −Mx2 + Nu− F + dx
y = x1

Here, the system states are [x1, x2]
T ; x1 denotes the displacement and x2 represents the

velocity of the PMLM. From this equation, we can set the sliding surface as: s = e2 + λe1.
In accumulation, the LSMC is taken as:

uLSMC =
1
N
[ ..
xr + Mx2 + µe2 + φ1sat(s)

]
(23)

The renowned PID control law is given as: uPID = Γpe1 + Γi
∫

e1dt + Γde2.
To compare with the finite control method, we can select the nonsingular fast terminal

SMC (NFTSMC), which is given as follows:
utotal = umain + ucomp

umain = 1
N

[
−Me2 + M

.
xr +

..
xr + F + 1

β1υ1
|e2|2−υ1 sgn(e2) +

β2
β1
|e2|2−υ1 |e1|υ1−1

]
ucomp = 1

N [k1s + k2sgn(s)]
s = e1 + β1|e2|υ1 sgn(e2) + β2|e1|υ1 sgn(e1)

(24)

In this formula, utotal is the main control law. For nonsingularity, there is a compensa-
tion technique that provides a control law to compensate for disturbances. The following
control is our proposed PreDSMC input control law: ua =

1
N

(
−Me2(t) + F + M

.
xr +

..
xr +

π
2p1Ts1

√
a1b1

(a1(1− p1)e
−p1
1 + b1(1 + p1)e

p1
1 )e2

)
ub = π

2Np2Ts2
√

a2b2
(a2S1−p2 + b2S1+p2)

(25)

According to Theorem 2, based on the proposed PreDSMC in Equation (25), a closed-
loop system is able to converge to a defined surface within a predefined time Ts2. When the
system state reaches and stabilizes in the sliding mode surface, (please refer to Equation (21),
i.e., S = 0), then according to Theorem 1, a tracking error will always converge to the
equilibrium point within a predefined time Ts1. Thus, the system also converges to its
origin to the respective predefined time Ts = Ts1 + Ts2. According to the conclusion of
Theorem 1, the system tracking error and its derivative are bounded.

5. Numerical Simulation Analysis
5.1. PMLM Simulation

Taking the PMLM mathematical model as the simulation target [80–82], the relevant
parameters of the PMLM model are set as given in Table 1. Additionally, the overall
proposed robust control structure is shown in Figure 2.
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Figure 2. Structure of the proposed PreDSMC.

PreDSMC is a robust controller that is particularly designed for PMLM position
tracking in this study. The main goal is to track the displacement within a predefined time
with a higher accuracy for the PMLM model. Two cases have been considered to check
the robust performance of the proposed control scheme. The first is step tracking, and the
second is sinusoid tracking. The control parameters are chosen according to the PMLM
system for higher performance and accuracy. Multiple control schemes are considered
for the purpose of comparison analysis with the PreDSMC. The control gains are chosen
accordingly to achieve higher accuracy and precision in both the step and sinusoid tracking.
The numerical values of these parameters are listed in Table 2.

Table 2. Parameters of the controllers.

Control Algorithm Step Tracking
Control Parameters

Sinusoid Tracking
Control Parameters

PID [82,83] Γp = 800, Γd = 50, Γi = 2 Γp = 23, 000, Γd = 5000, Γi = 2
LSMC [82,83] µ = 100, φ1 = 200, ζ = 0.5 µ = 100, φ1 = 200, ζ = 0.5

NFTSMC [82–84] k1 = 700, k2 = 10, β1 = 0.1, β2 = 0.1, υ1 = 1 k1 = 5000, k2 = 7000, β1 = 0.1, β2 = 0.1, υ1 = 1.1

Proposed PreDSMC Ts1 = 0.5, p1 = 0.8, a1 = 100, b1 = 150
Ts2 = 0.2, p2 = 0.4, a2 = 10, b2 = 1

Ts1 = 0.5, p1 = 0.7, a1 = 100, b1 = 150
Ts2 = 0.5, p2 = 0.3, a2 = 10, b2 = 1

5.2. Step Tracking Response of PMLM Displacement

We chose the step signal as a reference to simulate the displacement of the PMLM, and
the load is set to dload = 0 N. The step response of NFTSMC, LSMC, PID, and our proposed
PreDSMC control is shown in Figure 3a, and the respective error curve is given in Figure 3b.
The predefined time for our proposed controller is set to Ts = 0.5 s. The convergence of
PID, LSMC, and NFTSMC is very slow as compared to our proposed PreDSMC. Owing to
the steady state error, the convergence time of the other three controllers is about 1 s. Thus,
the proposed control strategy has a good convergence time, which is settled before 0.5 s.
The error tracking results in Figure 3b depict that our proposed control strategy has a good
convergence as compared to NFTSMC, LSMC, and PID control.



Electronics 2023, 12, 813 11 of 16

Electronics 2023, 12, x FOR PEER REVIEW 11 of 17 
 

 

Table 2. Parameters of the controllers. 

Control Algorithm 
Step Tracking  

Control Parameters 

Sinusoid Tracking  

Control Parameters 

PID [82,83] 𝛤𝑝 = 800, 𝛤𝑑 = 50, 𝛤𝑖 = 2 𝛤𝑝 = 23,000, 𝛤𝑑 = 5000, 𝛤𝑖 = 2 

LSMC [82,83] 𝜇 = 100, 𝜙1 = 200, 𝜁 = 0.5 𝜇 = 100, 𝜙1 = 200, 𝜁 = 0.5 

NFTSMC [82–84] 𝑘1 = 700, 𝑘2 = 10, 𝛽1 = 0.1, 𝛽2 = 0.1, 𝜐1 = 1 𝑘1 = 5000, 𝑘2 = 7000, 𝛽1 = 0.1, 𝛽2 = 0.1, 𝜐1 = 1.1 

Proposed PreDSMC 
𝑇𝑠1 = 0.5, 𝑝1 = 0.8, 𝑎1 = 100, 𝑏1 = 150 

𝑇𝑠2 = 0.2, 𝑝2 = 0.4, 𝑎2 = 10, 𝑏2 = 1 

𝑇𝑠1 = 0.5, 𝑝1 = 0.7, 𝑎1 = 100, 𝑏1 = 150 

𝑇𝑠2 = 0.5, 𝑝2 = 0.3, 𝑎2 = 10, 𝑏2 = 1 

5.2. Step Tracking Response of PMLM Displacement 

We chose the step signal as a reference to simulate the displacement of the PMLM, 

and the load is set to 𝑑load = 0 N. The step response of NFTSMC, LSMC, PID, and our 

proposed PreDSMC control is shown in Figure 3a, and the respective error curve is giv-

en in Figure 3b. The predefined time for our proposed controller is set to 𝑇𝑠 =0.5 s. The 

convergence of PID, LSMC, and NFTSMC is very slow as compared to our proposed 

PreDSMC. Owing to the steady state error, the convergence time of the other three con-

trollers is about 1 s. Thus, the proposed control strategy has a good convergence time, 

which is settled before 0.5 s. The error tracking results in Figure 3b depict that our pro-

posed control strategy has a good convergence as compared to NFTSMC, LSMC, and 

PID control. 

 

 

(a) (b) 

Figure 3. (a) Comparative step tracking performance of displacement for all control laws. (b) The 

corresponding step tracking error of displacement. 

To analyze the effectiveness of our proposed PreDSMC controller, we can compare 

the results of the derivative of the error signal as well as the control input. Figure 4a 

shows that the derivative error of our proposed controller is much less than that of 

LSMC, PID, and NFTSMC. Figure 4b depicts that our proposed controller needs less 

control effort as compared to NFTSMC, while NFTSMC has a chattering effect in the 

control input. It can clearly be seen that our proposed control does not have any chatter-

ing effect. The overall error convergence time and control response shows that the 

PreDSMC has priority over the PID, LSMC, and NFTSMC. To this end, we can summa-

rize that the proposed PreDSMC control law has less steady state error, and the control 

effect is very impressive. It can precisely and accurately track the desired step signal, so 

we can conclude that the proposed controller is more robust as compared to the other 

three control algorithms. 

Figure 3. (a) Comparative step tracking performance of displacement for all control laws. (b) The
corresponding step tracking error of displacement.

To analyze the effectiveness of our proposed PreDSMC controller, we can compare the
results of the derivative of the error signal as well as the control input. Figure 4a shows
that the derivative error of our proposed controller is much less than that of LSMC, PID,
and NFTSMC. Figure 4b depicts that our proposed controller needs less control effort as
compared to NFTSMC, while NFTSMC has a chattering effect in the control input. It can
clearly be seen that our proposed control does not have any chattering effect. The overall
error convergence time and control response shows that the PreDSMC has priority over the
PID, LSMC, and NFTSMC. To this end, we can summarize that the proposed PreDSMC
control law has less steady state error, and the control effect is very impressive. It can
precisely and accurately track the desired step signal, so we can conclude that the proposed
controller is more robust as compared to the other three control algorithms.
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5.3. Sinusoidal Tracking Response of PMLM Displacement

A sinusoidal displacement signal is taken as a reference, i.e., xr = 5 sin(t), with an
amplitude of 5 mm and frequency of π rad/s. Like the previous case of step response, dload
is taken as 0 N. In the same manner, the predefined settling time PreDSMC in the sinusoidal
case for the proposed controller is set to Ts = 0.5 s. It means we want the controller to
settle before 0.5 s. It can be clearly observed from Figure 5a that our proposed controller
convergence is very fast as compared to PID, LSMC, and NFTSMC. Moreover, the tracking
accuracy of PreDSMC in the case of predefined time control is very high. The respective
steady state error of the four controllers can be seen in Figure 5b. The steady state error
in the case of PID is very large, about −0.3 to 0.3 mm, while for LSMC and NFTSMC
it is almost −0.2 to 0.2 mm. Our proposed controller has a steady state error of almost
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0.01 mm. It depicts that our proposed PreDSMC is more robust as compared to the simple
PID, LSMC, and NFTSMC.
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Figure 6a,b depict the derivative of the tracking error displacement and the control
effort of the four control algorithms. It is clear from Figure 6a that the tracking error
derivative in the case of PID and NFTSMC is much larger as compared to LSMC and the
proposed PreDSMC control strategy. Moreover, we can analyze that the tracking error in
the case of the proposed PreDSMC is less as compared to the other control laws. Figure 6b
shows the control effort of these four control algorithms. The control effort of our proposed
controller is much higher, and it is quite astonishing that PID has almost the same control
effort but with a large steady state error.
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To recapitulate, the proposed PreDSMC is robust and has the capability of high
precision displacement tracking of PMLM. Furthermore, the proposed model can converge
the error within the prescribed time. It is obvious from the simulation results given above
that the proposed PreDSMC method is robust and able to obtain the fastest convergence
within the predefined time and has smallest tracking errors. It also possesses preferable
control features when compared with the PID, LSMC, and NFTSMC control laws.

6. Conclusions

In this article, a robust predefined time SMC control algorithm has been designed which
has predefined convergent time characteristics. Predefined feature means its convergence time
can be chosen in advance, which is especially designed for a PMLM with external compound
disturbances, bounded state, and control saturation constraints. The designed predefined
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time SMC algorithm described in this paper not only ensures the position tracking error con-
vergence of the PMLM within the predefined time, but also verifies that the velocity tracking
error is bounded, and the control input meets the predefined boundedness requirements.
Furthermore, the motor position can be tracked with high accuracy within the predefined
performance function. The desired position is tracked with 10−4 order-of-magnitude accuracy
within the chosen time to achieve a balance between the motor tracking accuracy and the
tracking velocity. To recapitulate from the robustness point of view and the scope of appli-
cation, it can also be used in future work for high-precision trajectory tracking control of
nonlinear systems such as piezoelectric positioning, robotic arms, and other second-order
nonlinear models. Future study may take into account other nonlinearities as PMLM servo
system parameter uncertainty, gear backlash, and coupled frictional nonlinearity with external
load variations.
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Nomenclature

Notation Description
x1(t), x2(t) Position and speed of PMLM
y(t) Output of system
u(t) Input voltage
R Resistance
m Motor mass
k f Force constant
ke Back electromotive force
Ffriction(t) Friction force
Fripple(t) Ripple force
FL(t) Load
fv Viscous friction coefficient
x2s Lubrication parameters
fc Minimum value of Coulomb friction
fs Static friction
ωi, Ai Angular velocity and amplitude of ripple force
M, N, F Intermediate variable of system
yd(t) Reference trajectory
e1(t), e2(t) Position error and speed error
S Sliding mode surface
Ts1, Ts2 Predefined time
q Parameter of sliding mode surface
ts Convergence time
V(t) Lyapunov function
p, a, b Parameters of Lyapunov function
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