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Abstract: In order to effectively utilize the large amount of high-dimensionality historical data
generated by energy meters during operation, this paper proposes a DBN-MLP fusion neural network
method for multi-dimensional analysis and fault-type diagnosis of smart energy meter fault data.
In this paper, we first use DBN to strengthen the feature extraction ability of the network and solve
the problem of many kinds of feature data and high dimensionality of historical data. After that,
the processed feature information is input into the MLP neural network, and the strong processing
ability of MLP for nonlinear numbers is used to solve the problem of weak correlation among data in
the historical data set and improve the accuracy rate of faults diagnosis. The final results show that
the DBN-MLP method used in this paper can effectively reduce the number of training iterations to
reduce the training time and improve the accuracy of diagnosis.

Keywords: multi-layer perceptions; deep belief network; faults diagnosis; smart energy meters

1. Introduction

In the event of a fault, the meter depends largely on the immediate attention of the
operation and maintenance personnel. When operations and maintenance personnel arrive,
it is often difficult to problem-solve the situation on-site and address the situation that
caused the fault—that is, it is easy to repair the faults but cannot know the cause of the
faults. The diagnosis of the faults often depends on the subjectivity and one-sidedness
of the operation and maintenance personnel. Design solutions, component selection, and
process flow vary from manufacturer to manufacturer. At the same time, coupled with the
installation location, weather, and other external factors, it may lead to smart energy meters
having a complex and diverse set of possible fault causes [1]. On the other hand, with the
development of technology, the functions of smart energy meters are becoming richer and
richer, which also adds more types of faults and increases the difficulty of fault diagnosis.
However, the abundance of functions also brings with it the abundance of data that can be
collected by the smart energy meter [2]. In order to effectively reproduce the environment
in which the faults occurred and to effectively and accurately diagnose the type of faults in
the energy meter, this paper makes full use of the wide variety of data generated during
the operation of smart energy meters for the analysis and diagnosis of fault types based on
these data.

In previous research on fault diagnosis based on power systems, there are generally
non-intrusive remote detection and location for fault diagnosis by using a super-state
hidden Markov model (SHM) as mentioned in the literature [3]. However, the method has
improved diagnostic accuracy for only a single fault type. In the literature [4], a modified
probabilistic Petri net theory is used to diagnose grid faults, which can effectively reduce
the unnecessary modeling process and diagnosis time and give correct diagnosis results
with incomplete information. However, the effectiveness of this method depends to a large
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extent on the appropriateness of the choice of weights, and there are certain difficulties in
its practical implementation.

With the development of deep learning technology, its application in the field of
fault diagnosis is also increasing. In the literature [5], a deep belief network-based faults
diagnosis model for metering devices is proposed to determine the cause of faults for
high-magnitude grid anomaly data. The literature [6] fuses all channel features and spatial
features to construct a channel-space attention mechanism, forming a feature enhancement
module embedded in a sequence model based on selective kernel convolution and deep
residual networks combined with multi-layer feature fusion information. Compared with
traditional deep learning methods, the model can extract fault features from vibration
signals more effectively and improve the recognition rate of faults. The paper shows
that reinforcing the features of the dataset before input into the classification neural net-
work is a proven method for fault recognition rate improvement. In the literature [7], an
adaptive deep confidence network based on particle swarm optimization is constructed;
principal component analysis (PCA) is embedded into the network to reduce the feature
dimensionality and is used for bearing fault diagnosis to promote faster convergence.
A multi-layer perceptron in a neural network can learn nonlinear relationships through
nonlinear hidden layers. This allows it to be applied to many complex datasets and to
handle high-dimensional datasets efficiently. The literature [8] used a multi-scale multi-
layer perceptron (MSMLO) to achieve the identification of faults in a noisy and small
sample train-bearing dataset. The literature [9] used three networks, namely, deep belief
network, convolutional neural network, and multi-layer perceptron, to select the network
with the best accuracy as a result. However, its essence only exploits the characteristics
of a single network and does not integrate the characteristics of multiple networks well.
A hybrid CNN-MLP model is proposed in the literature [10] to enhance the extraction of
multi-level features and abstract features in a dataset by exploiting the feature that a CNN
comprises multiple convolutional neural networks. However, CNN is more suitable for
processing image processing and target detection data. In the literature [11], a GRU-MLP
faults diagnosis model with an attention mechanism is proposed to enhance the faults
diagnosis capability based on time series data and improve the accuracy of MLP in diag-
nosing faults with correlated characteristics in time. However, DBN still maintains a strong
feature extraction capability for high dimensionality, has good compatibility with other
algorithms, and its excellent nonlinear mapping capability can better extract the faults
information hidden in the original signal [12,13]. The DBN-MLP method was introduced
in the literature [14], is applied to trend forecasting, and can be effectively applied to trend
forecasting in chaotic time series. The DBN-MLP method is applied in stock forecasting in
the literature [15], which shows that DBN can effectively extract hidden features in data,
while MLP is effective in processing dense numerical structures and is suitable for handling
high dimensional data. However, the DBN-MLP methods mentioned in the above papers
are only used in trend forecasting.

The fault data of smart energy meters studied in this paper have 136 relevant charac-
teristic parameters such as manufacturer, device type, asset number, date of commissioning,
device status, date of faults discovery, source of the faults, and operating hours. Not only
are there multiple types of faults in the fault data, but the faults are also discrete and
weakly correlated, and it is troublesome to extract feature information manually. One
neural network alone is not a good solution to all the problems that exist in the presence of
data. Therefore, this paper proposes a smart energy meter fault diagnosis method based
on a DBN-improved multi-layer perceptron network (DBN-MLP) based on the historical
fault data of smart energy meters collected from a power system. The problem of high
dimensionality and sparse data in fault data is solved by using the powerful adaptive
feature extraction capability of DBN. It avoids the problem of too many features and too
much computation when using MLP because of the fully connected network, which is too
large for high-dimensionality data. It also improves the problem that the fully connected
layer of MLP leads to too many weights and complicated calculations under high dimen-
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sionality data. After that, the improved data of DBN is input into the MLP network, and
the advantages of the MLP network [16] are used to solve the problem of data dispersion
and multiple fault type classifications that occur in the historical fault dataset of smart
energy meters.

The general structure of this paper is as follows. Section 2 introduces the basic theory
of multi-layer perceptron and deep belief networks. In Section 3, the operation flow of
the smart energy meter fault diagnosis method based on a multi-layer perceptron with
an improved deep belief network and the preprocessing method of the data is described.
Section 4 uses the application of the model proposed in this paper to specific data to
verify the effectiveness of this paper’s method and to compare and analyze the learning
results with the other two neural networks to prove the superiority of this paper’s method.
Section 5 summarizes the research results of this paper and introduces future research
directions.

2. Basic Theory
2.1. Deep Belief Network

A DBN neural network is a deep learning algorithm [17]. It is clear that DBN neural
networks can theoretically map arbitrarily complex nonlinear relationships. As a result, the
network data do not need to consider the actual physical meaning of each data, and the
feature values only consist of numbers. Therefore, a DBN neural network can be selected
to classify the historical fault data of smart energy meters. A deep belief network consists
of several layers of neurons with a core stack of restricted Boltzmann machine (RBM)
layers [18]. The structure is shown in Figure 1.
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Its energy function can be expressed as

E(v, h|θ) = −
n

∑
i=1

aivi −
m

∑
j=1

bjhj−
n

∑
i=1

m

∑
j=1

viwijhj (1)

In Equation (1): θ =
(
wij, ai, bi

)
is the RBM parameter, n, m is the number of neurons

in the visible and hidden layers, respectively, v is the visible layer input unit vector, vi is the
state of the visible layer neuron i, and set its bias value to ai; h is the hidden layer output
unit vector, hj is the state of the hidden layer neuron j, and set its bias value to bj; neuron i
and connection weight j weight are defined as wij.

The updated formula for the joint probability distribution of vi and hj is

p(v, h|θ) = exp(−E(v, h|θ))/∑v,h exp(−E(v, h|θ)) (2)

The DBN feature extraction process is a layer-by-layer learning process with multiple
RBM overlays, including forward learning and reverse reconstruction, which can map
complex signals to the output and strengthen the features of the output data.
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2.2. Multi-Layer Perceptron

An MLP neural network is a kind of feedforward neural FFNN [19]. An MLP is
characterized by only one implicit layer, one-way connections between neurons, and that
data transfers in the MLP occur between three parallel levels: The number of nodes in the
input, hidden and output layers are equal to the number of features of the input data, and
the number of nodes in the output layer is equal to the number of categories of the output
data. Each node in the input layer is connected to all nodes in the hidden layer, and each
node in the hidden layer is connected to all nodes in the output layer. The structure is
shown in Figure 2 below.
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A connection between two nodes has a weight value that indicates the relationship
between these two nodes. The hierarchical connection has a weight property, and the node
function can perform both summation and activation functions. The summation function is

Sj =
n

∑
i=1

wi,j Ii + β j (3)

where n is the amount of input data, Ii is the input data, β j is the deviation, and wi,j is the
connection weight.

The output is obtained in the hidden layer using the activation function as

fj(x) =
1

1 + e−sj
(4)

The output of the output layer cell in the MLP can be obtained by combining
Equations (3) and (4)

yi = f j

(
n

∑
i=1

wi,j Ii + β j

)
(5)

3. DBN-MLP Fault Diagnosis Method

The fault diagnosis process of the smart energy meter based on the DBN-MLP model
is shown in Figure 3:
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Step 1: Collect the historical fault data of smart energy meters and form the data set.
Step 2: Preprocessing of faulty sample data. Remove the faulty samples with missing

values and abnormal values; one-hot encoding of discrete and disordered feature attribute
values [20].

Step 3: Perform imbalanced data sampling and partitioning of the data set. Since
the historical data set of smart energy meters is unbalanced-like data, a hybrid sampling
method combining oversampling and undersampling is required. Random sampling is
performed for fault types that require undersampling, and SMOTE sampling is performed
for fault types that require oversampling, and the formula for determining the theoretical
sample size after sampling for each fault type is shown in Equation (6).

N_newi =

{
Ni − a ∗ (Ni − Nmean)(undersampling)
Ni + a ∗ (Nmean − Ni)(oversampling)

, i = 1, 2, . . . K (6)

Suppose there are K types of faults in the pre-processed smart energy meter fault data
set; N_newi denotes the number of samples after sampling for category i, Ni denotes the
number of samples before sampling for category i, and a denotes the sampling balance
coefficient. Here, we take a = 0.5, Nmed means the median number of samples of all
categories before sampling Ni; if greater than Nmed, takes the undersampling method and
vice versa takes the oversampling method.

The data set is divided into a training set and a test set for training the parameters of
the DBN-MLP model and the performance of the faults diagnosis model.

Step 4: Construct the DBN structure and set network parameters to achieve faults
feature extraction. The trained feature representation is passed from the upper-layer RBM
to the lower-layer RBM, and finally, the high-level abstract feature representation of the
input data is obtained.

Step 5: The DBN-MLP model is trained using a multi-layer neural network with a
nonlinear activation function in MLP to train the mapping between high-level abstract
feature representations and categories. In MLP, there is a set of weights and bias terms
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between each hidden layer, which perform linear transformations and nonlinear activation
function transformations on the input data. Finally, the MLP will use an output layer for
classification prediction. Calculate the loss function value (error) from the diagnostic results
and the actual results. In the reverse weight update process, the error is first passed from
the output layer to the intermediate layers using the chain rule, and then the weights of
each layer are updated by the gradient descent method. Training will be stopped when the
loss value changes below 0.001.

Step 6: Output the diagnostic results and evaluate the diagnostic performance of the
DBN-MLP model using the test set. The performance evaluation metrics are accuracy (A),
precision (P), recall (R), and F-value. Suppose there are k fault types and nij denotes the
number of samples that diagnose type i to type j. Then there are

A = ∑k
i=1 nii/∑k

i=1 ∑k
j=1 nij (7)

Pi = nii/∑k
j=1 nji (8)

Ri = nii/∑k
j=1 nij (9)

Fi = 2PiRi/ (P i + Ri) (10)

Macro F1 =
1
k ∑k

i=1 Fi (11)

From Equation (12), accuracy (A) is the ratio of the number of samples correctly
predicted by the classifier to the total number of samples, and the higher the accuracy,
the greater the ratio of the number of samples correctly predicted by the classifier to the
total number of samples. For multi-classification problems, accuracy itself may be affected
by the imbalance of the data set in practical applications. Therefore, the performance of
the classifier is usually also evaluated by considering the precision (P), recall (R), and
F-value metrics. Precision refers to how many of the samples predicted to be positive
are truly positive, and the higher the precision, the greater the proportion of samples
predicted to be positive by the classifier; recall is a measure of the coverage of a category
of diagnostic results by a classification model; F-value is a comprehensive metric for
classification models that includes precision and recall, and can effectively evaluate models
that have requirements for both precision and recall.

4. Example Verification
4.1. Fault Dataset Preparation of Smart Energy Meters

The data in this article were provided by Dr. Zhou, and we sincerely thank her for
providing the data [21]. The fault data of smart energy meters studied in this paper have
136 relevant characteristic parameters such as manufacturer, equipment type, asset number,
date of commissioning, equipment status, faults discovery date, faults source, operating
hours, operating time, power supply unit, equipment specification, and communication
method. In this paper, the fault diagnosis of smart energy meters is intended to restore
as much as possible all the potential factors affecting the electrical energy faults in order
to be able to increase the accuracy of the faults diagnosis. The faults of the meter may be
due to other non-environmental factors, such as the faults of a batch of the manufacturer’s
products, in addition to the prevailing weather conditions or the influence of electricity.
By combining the data sets under various factors, the accuracy and confidence of the fault
diagnosis can be improved more effectively. Six types of faults corresponding to the fault
data were obtained from the enterprise data, namely: overload burn meter, battery faults,
pulse sampling faults, clock faults, communication faults, and electromechanical faults.

The fault types are numbered 0–6 in ascending order of the number of samples. In the
sample data, there are discrete and disordered feature variables such as equipment type,
equipment status, manufacturer, etc. This paper uses one-hot coding to digitize the discrete
and disordered features for better deep learning.
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The histogram of the distribution of the number of faulty samples is plotted, as shown
in Figure 4.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 13 
 

 

battery faults, pulse sampling faults, clock faults, communication faults, and electrome-
chanical faults. 

The fault types are numbered 0–6 in ascending order of the number of samples. In 
the sample data, there are discrete and disordered feature variables such as equipment 
type, equipment status, manufacturer, etc. This paper uses one-hot coding to digitize the 
discrete and disordered features for better deep learning. 

The histogram of the distribution of the number of faulty samples is plotted, as 
shown in Figure 4. 

 
Figure 4. Histogram of the distribution of sample sizes for different fault types. 

As can be seen in Figure 4 above, the sample size of each fault type is unbalanced, 
with fault types 4 and 5 accounting for a larger proportion—nearly 92% combined—but 
fault types 0 to 3 accounting for only about 8%. According to Pareto’s law, when a classi-
fication accounts for more than 80% of the total classification, it is obvious that it will easily 
be considered the most dominant fault type, making the classification model ignore small 
sample types and greatly affecting the fault diagnosis results. 

Therefore, this paper uses a hybrid sampling method of oversampling and under-
sampling, i.e., random sampling for fault types that need to be undersampled and the 
SMOTE sampling method for fault types that need to be oversampled. 

New Sample 𝑋‘ = 𝑋 + 𝛼(𝑋௡ − 𝑋) (12)

For a minority class sample X, find its k nearest neighbor samples Xଵ,  Xଶ …, X୩. The 
larger the value of k, the less the sample is guaranteed to be true, so generally, set the 
value of k to X. For each minority class sample, Euclidean distance from the shortest dis-
tance randomly selects the nearest neighbor sample X୬, and then two samples X and X୬, 
using a uniform distribution randomly select a weight α ∈ [0,1], it is possible to increase 
the number of minority class samples by computing a new sample X’. 

The sample size after mixed sampling of unbalanced data is shown in Table 1 and 
Figure 5. 
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As can be seen in Figure 4 above, the sample size of each fault type is unbalanced, with
fault types 4 and 5 accounting for a larger proportion—nearly 92% combined—but fault
types 0 to 3 accounting for only about 8%. According to Pareto’s law, when a classification
accounts for more than 80% of the total classification, it is obvious that it will easily be
considered the most dominant fault type, making the classification model ignore small
sample types and greatly affecting the fault diagnosis results.

Therefore, this paper uses a hybrid sampling method of oversampling and undersam-
pling, i.e., random sampling for fault types that need to be undersampled and the SMOTE
sampling method for fault types that need to be oversampled.

New Sample X′ = X + α(Xn − X) (12)

For a minority class sample X, find its k nearest neighbor samples X1, X2 . . . , Xk. The
larger the value of k, the less the sample is guaranteed to be true, so generally, set the value
of k to X. For each minority class sample, Euclidean distance from the shortest distance
randomly selects the nearest neighbor sample Xn, and then two samples X and Xn, using
a uniform distribution randomly select a weight α ∈ [0,1], it is possible to increase the
number of minority class samples by computing a new sample X’.

The sample size after mixed sampling of unbalanced data is shown in Table 1 and
Figure 5.

Table 1. Change in sample proportion after mixed sampling method.

Fault Type
Number Fault Type Sample Size

before Sampling
Sample Size

after Sampling
Proportion before

Sampling
Proportion after

Sampling

0 Overload burn-out meter 267 1865 1.28% 8.97%
1 Battery faults 307 1885 1.48% 9.07%
2 Pulse sampling faults 330 1897 1.59% 9.13%
3 Clock out of order 863 2163 4.15% 10.41%
4 Communication faults 3879 3671 18.66% 17.66%
5 Electromechanical faults 15,142 9303 72.84% 44.76%
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15,142 9303 72.84% 44.76% 
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The results of the sample data after the hybrid sampling method processing are shown
in Table 1 above. The sample data after processing are more balanced in terms of the
number of samples on the six faults than before processing. The direct size reduction of
the sample size can effectively increase the training efficiency of the subsequent neural
network model for training to avoid overfitting.

4.2. Performance Verification of DBN-MLP Faults Diagnosis

In the training process, 80% of the smart energy meters fault dataset is used as the
training dataset and 20% is used as the test dataset. After data preprocessing, the data are
input into the DBN, and the number of DBN neurons is equal to the number of feature
dimensions of the dataset, and the number of hidden layers is 1.5 times the number of input
layers in order to learn more features. Finally, a multi-layer perceptron neural network is
built, and the number of hidden layers corresponds to the number of output layers of the
DBN neural network, and the maximum number of iterations is chosen as 500.

In this paper, the robustness of the model is verified by the cross-validation method,
which estimates the robustness of the model by performing multiple random splits on the
dataset before training the model. The dataset is partitioned five times, and each partition
generates a training set for training and a test set for testing. After each segmentation, the
model is trained on the training set and evaluated on the test set. Since the method in this
paper is based on a fully connected layer, each of its nodes is connected to the nodes in
the next layer. Therefore, in case of noise, the fully connected layer feels more sensitive
than the convolutional layer. Figure 6 shows the average performance of each model on
different data sets, indicating that the noise is effectively removed in the pre-processing of
this paper. The new data adaptation ability is also strong.

From Figure 7 below, it can be seen that both DBN-MLP and DBN-CapsNet enter
convergence quickly, and their post-convergence loss values are lower than those of CNN
and MLP. However, the post-convergence loss of DBN-CapsNet is 0.113 is 1.67 times
that of DBN-MLP. This shows that the faults diagnosis result of DBN-MLP is better than
DBN-CapsNet because its predicted result is closer to the real value.

It is shown that the MLP model with DBN enhanced feature extraction capability can
better fit the training data during the training process, and its training performance is better
than the other three models. Next, the generalization ability of the model is evaluated by a
test set. Figure 7 below shows the confusion matrix of the test set faults diagnosis results.

According to Figure 8, three model precision (P), recall (R), and F-values can be further
calculated to evaluate the goodness of the model training results, and their specific data are
shown in Table 2.
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Table 2. The precision rate, recall rate, and F value of MLP, CNN, and DBN-MLP.

Fault Type
Number

MLP CNN DBN-MLP DBN-CapsNet
Precision Recall F Value Precision Recall F Value Precision Recall F Value Precision Recall F Value

0 0.86 0.84 0.84 0.58 0.80 0.67 0.9 0.89 0.9 0.80 0.85 0.83
1 0.85 0.87 0.87 0.78 0.63 0.70 0.91 0.92 0.91 0.88 0.85 0.86
2 0.83 0.83 0.83 0.42 0.75 0.53 0.9 0.89 0.9 0.83 0.82 0.82
3 0.76 0.79 0.79 0.63 0.69 0.66 0.83 0.87 0.85 0.79 0.80 0.79
4 0.71 0.68 0.68 0.45 0.52 0.48 0.74 0.75 0.74 0.67 0.66 0.66
5 0.83 0.84 0.84 0.83 0.71 0.76 0.88 0.86 0.87 0.83 0.83 0.83

From Table 2, it can be seen that the MLP neural network, with further feature enhance-
ment by DBN, has further improved the classification effect for each fault. Unlike CNNs,
CNNs obtained precision similar to that of MLP neural networks only in type 5, which
has the largest amount of data, because the dataset studied in this paper is an unbalanced
dataset. From this, it can be seen that MLP neural network is more suitable than CNN
for the classification task in this paper. Precision’s better performance indicates that the
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paper’s treatment of the data sample is reasonable, and the proportion of both positive and
negative samples of the data sample is in balance.
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While the performance of DBN-CapsNet is similar to that of MLP, overall, it is inferior
to that of DBN-MLP. Next, we process the data to see the results of the model’s combined
performance. The data in Table 2 above were averaged for each classification of faults
diagnosis, and the corresponding accuracy and training time were calculated to obtain
Table 3 to further evaluate the excellence of the model.

Table 3. Comparison of evaluation parameters of three models.

Model DBN-MLP MLP CNN DBN-CapsNet

Accuracy 0.85 0.81 0.68 0.77

Mean F value 0.86 0.81 0.63 0.80

Train time 150 s 160 s 669 s 2400 s

The data studied in this paper are historical fault data of smart energy meters, which
have high requirements on both precision and recall of the model at the same time, so
the classification effect of the model can be evaluated directly by the mean F value. From
Table 3 above, we can see that the mean F value of DBN-MLP is 4%, 17%, and 6% higher
than that of MLP, CNN, and DBN-CapsNet, respectively. The accuracy of DBN-MLP is 5%,
15%, and 8% higher than that of MLP and CNN and DBN-CapsNet, respectively. Train time
is 10 s and 519 s faster than MLP and CNN. It can be seen that the fully connected layer is
better than the convolutional layer in terms of both efficiency and accuracy in processing
high-dimensional numerical data. Again, the fully connected layer can be trained faster
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than the capsule network structures. The comparison of the evaluation parameters shows
that the diagnostic results of DBN-CapsNet and MLP are similar, but the training time is
much longer than that of MLP. On the other hand, the training time of DBN-MLP proposed
in this paper is about the same as that of MLP, but its accuracy and mean F-value are
improved compared with both the MLP and the DBN-CapsNet. It also takes into account
the training efficiency and the accuracy of the diagnostic results.

The model in this paper is trained using CPU, the specific hardware used is 11th Gen
Intel(R) Core(TM) i7-11800H@2.3GHz with 16 GB of RAM and a speed of 3200 MHz. The
model occupies the CPU and RAM during training is shown in Table 4 below.

Table 4. Computational cost comparison.

Model DBN-MLP MLP CNN DBN-CapsNet

CPU Occupancy 65% 62% 100% 100%

RAM 11.4 GB 11.2 11.7 GB 11.3 GB

The CPU usage of MLP is smaller than that of CNN and capsule networks because
MLP does not have convolutional and pooling layers; it only has fully connected layers and
thus needs to compute fewer parameters. The computation of MLP during training and
prediction depends mainly on its input data size and the number of hidden layers rather
than on its model structure itself. In contrast, CNN and capsule networks both contain
convolutional and pooling layers and need to compute more parameters, so they are more
computationally intensive than MLP.

5. Conclusions

In this paper, a smart energy meter fault diagnosis model based on the DBN-improved
multi-layer perceptron (DBN-MLP) is proposed. The main work and results are as follows.

(1) This paper solves the problem of uneven distribution of faults sample data in the
dataset and improves the accuracy of faults classification by using a hybrid sampling
method combining under-sampling and over-sampling.

(2) Compared with MLP, this paper improves the faults diagnosis capability by using
MLP for faults classification after enhancing the features of input data by DBN. At
the same time, DBN also solves the problem of too many features and sparse data
brought by the high dimensionality, realizes the automatic acquisition of features, and
improves the problem that MLP is prone to overfitting under the construction of its
fully connected layer. Accuracy and macro F1 improved by 5% and 15%, respectively.
The training time and computational cost of DBN-MLP are even less than that of
DBN-CapsNet. Overall, DBN-MLP is superior to MLP, CNN, and DBN-CapsNet in
terms of training performance and generalization ability for the goal of classifying
smart energy meter fault data.

In summary, the DBN-MLP method proposed in this paper provides better improve-
ments in training speed, computational cost, and accuracy than previous faults diagnosis
research methods based on historical fault data of smart energy meters. The next step can
be to improve the generalizability of the method in this paper and extend the method to
more fields of smart energy meters.
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