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Abstract: This manuscript presents a fully differential difference transconductance amplifier (FDDTA)
architecture based on CMOS inverters. Designed in a 130-nm CMOS process it operates in weak
inversion when supplied with 0.25 V. In addition, the FDDTA requires no supplementary external
calibration circuit, like tail current or bias voltage sources, since it relies on the distributed layout
technique that intrinsically matches the CMOS inverters. For analytical purposes, we carried out
a detailed investigation that describes all the concepts and the whole operation of the FDDTA
architecture. Furthermore, a comparison between the modeling equations and measured data assures
high performance.

Keywords: fully differential difference transconductance amplifier; CMOS inverters; differential
buffer configuration; weak inversion region; low-power circuits

1. Introduction

As CMOS processes continue to develop, the demand for power reduction and lower
supply voltage becomes more apparent. In some instances, such reductions may provide
smaller devices like implantable chips, mobile phones, IoT electronic sensors, portable
medical devices, etc.

Furthermore, since a majority of this equipment is made up of analog and digital
blocks [1], which are embedded by the MOS transistor, shrinking the transistor’s size also
lowers supply voltage. This reduction is mainly due to the transistor’s operating region [2],
and, therefore, enables mobile devices to become more independent from recharging
sources for a longer time and allows for more effective and safe use of the battery.

Power supply reduction can help to lower energy consumption according to recent
literature [3–6], but analog block degradation of dynamic range (DR) occurs [7]. A good
alternative is to use electronic blocks that alter differential signals to mitigate the loss in
DR. Differential signal processing is superior, in terms of dynamic range and power supply
rejection, when compared with single-ended processes, and differential signals can, thereby,
eliminate common-mode noises and disturbances [8].

In our previous work, we studied the topology of Nauta OTA [9] adapted to operate
in ultra-low power and low displacement voltage, using arrays of halo-implanted tran-
sistors [10]. Based on this work, we developed an FDDTA that was used in a fifth-order
Butterworth low-pass filter [11]. As a complement to this research, this paper carries out a
complete characterization of the FDDTA used in [11].

The analog building block widely employed to handle differential signals is the
differential voltage amplifier, the output of which is proportional to the difference between
two voltage inputs. Operational transconductance amplifiers (OTAs) usually consist of
three stages: a common mode rejection stage, that rejects input variations; a gain stage,
that amplifies the signal; and a driver stage, that provides output resistive load [12]. They
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are also capable of manipulating differential signals. However, they output a differential
current signal.

Among the possible applications of OTAs include Gm-C filters, in which biomedical
applications, having frequency ranges which vary below 100 Hz, can be highlighted [13].
In a similar application area, the fully differential DIGOTA [14] is a biomedical application,
which combines a Muller C-element with a tri-state buffer to allow FD operation.

Another class of differential amplifiers is the differential difference amplifier (DDA).
Proposed by Säckinger and Guggenbuhl [15], the DDA is an extension of the operational
amplifier concept. Differing from the op-amp idea, the DDA compares two differential
signals, and its fully-differential version requires a common-mode control circuit, similar to
single-ended amplifiers.

The availability of multiple inputs makes this amp attractive for many applications,
such as the following: filters, for example, ref. [16] presented a Gm-C filter application em-
ploying low-power DDA; transconductance amplifiers, utilizing a common-mode feedback
circuit suitable for fully balanced analog MOS structures, as displayed in the work by [17];
self-adaptive power consumption microphone preamplifiers, as proposed in [18]. DDA
circuits have been highly studied in the past. In 1987, ref. [15] published a paper concerning
a DDA implemented in a double-poly CMOS technology, featuring two differential inputs.
In 1994, ref. [19] presented a DDA amplifier utilizing the body effect to improve linearity.
In 2001, a low-power wide input range was presented in the work of [20]. Despite all this
research, nowadays. little attention is dedicated to the architectural level.

Herein, we designed a fully differential difference transconductance amplifier (FDDTA)
to reduce noise and power consumption at the system architectural level. This amplification
technique translates into voltage supply reduction.

The FDDTA was designed in a 130 nm CMOS and operated efficiently in weak in-
version when supplied with 0.25 V. The FDDTA did not require an external calibration
circuit, like a tail current or bias voltage source, since it was based on the distributed layout
technique, which inherently matched the CMOS inverters. Furthermore, we constructed a
completely-differential buffer configuration for validation purposes.

The remainder of this manuscript is organized as follows. Section 2 elucidates the
background theory. Section 3 provides the proposed FDDTA topology and concepts. The
measurements are presented in Section 4. Finally, Section 5 concludes our contributions.

2. Materials and Methods
2.1. The Conceptual FDDTA

The FDDTA, illustrated in Figure 1, is a six-terminal device that comprises two dif-
ferential voltage input ports, (Vpp −Vpn) and (Vnp −Vnn), and a differential output stage
(Iop − Ion). Operating in the linear range, the output is:

Iod = Iop − Ion = Gm[(Vpp −Vpn)− (Vnp −Vnn)] , (1)

where Gm states the small signal transconductance of the FDDTA.

Figure 1. The FDDTA symbol, comprised of two differential voltage input ports and a differential
output stage.
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Figure 2 illustrates the FDDTA buffer configuration. comparing it to a single-ended
OTA buffer configuration, and, thereby, showing that both follow the same feedback
principle.

Figure 2. A fundamental application case: (a) OTA buffer configuration (single-ended). (b) FDDTA
buffer configuration (fully-differential).

2.2. Weak Inversion Operation

The drain current IDS of a long channel MOS transistor operating in weak inversion is
based on the channel diffusion current according to:

IDS = ID0

(
W
L

)
exp

(
q

VGS
nkT

)[
1− exp

(
−q

VDS
kT

)]
, (2)

where ID0 (physical and process parameters) is the minimum drain current and n the slope
factor in weak inversion. All the other symbols have their usual meanings. In addition, the
transistor is saturated when (VDS ≥ 3kT/q) [2], which translates into lower supply voltage.

2.3. CMOS Inverter

The weak inversion operation is an effective way to reduce power consumption,
something that, given [21], suits our design specifications well, since the proposed FDDTA
contains a number of inverter blocks. Consequently, it was essential to study the CMOS
inverter functioning in weak inversion prior to expanding these ideas to the entire circuit.

2.3.1. Transconductance of the CMOS Inverter

The circuit of Figure 3 illustrates the schematic of a CMOS inverter’s basic cell. Con-
sidering all transistors saturated in weak inversion (VDS ≥ 3kT/q), and applying (2), we
obtain Ip and In [10]

Ip = ID0p

(
W
L

)
p

exp
(

q
VDD −Vi

nkT

)
(3a)

and

In = ID0n

(
W
L

)
n

exp
(

q
Vi

nkT

)
. (3b)

Assuming Vi = Vo, both pMOS and nMOS transistors conduct the same short circuit
current, ISC. This current charges the inverter up to operate at its threshold voltage, VSP [9].
Since a single inverter works as an amplifier when biased around the point Vi = Vo [8], we
calculate ISC for VSP = VDD/2, according to:

ISC
4
= ID0p

(
W
L

)
p

exp
(

q
VTH
nkT

)
= ID0n

(
W
L

)
n

exp
(

q
VTH
nkT

)
. (4)
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Figure 3. CMOS inverter basic cell: schematic and symbols.

Note that we can establish the threshold voltage by choosing appropriate transistor
geometries and also design the ISC current [10]. In addition, from Figure 3, the output
current is calculated as Io = Ip − In, and by invoking (4), we have:

Io = 2ISC sinh
(

q
VTH −Vin

nkT

)
. (5)

Consequently, differentiating Io should then give the effective transconductance of the
CMOS inverter at the bias point Vi = VTH , according to:

∂Io

∂Vi

∣∣∣∣
Vi=VTH

= −2q
ISC
nkT

= −(gmp + gmn) , (6)

where gmp and gmn are the transconductances of the pMOS and nMOS transistors, respec-
tively. At this point, we define Gm , gmn + gmp and Go is the sum gop + gon to simplify
further equations. In other words, they neither depend on biasing nor geometry parameters,
since they are functions of physical parameters [2,10].

2.3.2. Small-Signal AC Model

The small-signal AC equivalent circuit model of the CMOS inverter has the following
transfer function:

vo(s)
vi(s)

= −
gmp + gmn

sCL + gop + gon

=
−Gm

(sCL + Go)
, (7)

where sCL incorporates the parasitic capacitances inherent to the circuit and the capacitive
load. In addition, gop and gon are the output conductances of the pMOS and nMOS
transistors, respectively.

3. Results

As illustrated in Figure 4, the proposed FDDTA was comprised of eight CMOS invert-
ers. When both pMOS and nMOS transistors were intrinsically matched, a more linear
CMOS V-I conversion was achieved [10], thus reducing distortion effects.

The input stage is characterized by inverters INV1-INV4. All others, INV5 to INV8,
are responsible for controlling Iop and Ion outputs. The cross-connected inverters, INV7
and INV8, inject currents in the impedances represented by the self-connected inverters,
INV5 and INV6, respectively. This proposed schematic was based on previous work
developed by [9], employed for integrated analog filters at very high frequencies, based on
transconductance-C integrators. This architecture requires no auxiliary external calibration
circuit, such as tail current or bias voltage, sources.
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Figure 4. The proposed fully-differential difference amplifier schematic.

3.1. The FDDTA

In this subsection, we describe the modeling of the entire FDDTA circuit based on
the previous concepts. In addition, we cover the overall design and the small-signal AC
inherent model.

3.1.1. Transconductance of the FDDTA

Taking into account the circuit shown in Figure 4, where two differential signals (Vid1,
Vid2) are applied to the FDDTA inputs, we can write:

Vpp = VSP +
Vid1

2
, Vpn = VSP −

Vid1
2

; (8a)

and
Vnp = VSP +

Vid2
2

, Vnn = VSP −
Vid2

2
. (8b)

Regarding the fact that all transistors are similar, we obtain the differential output
current, Iod = Iop − Ion, by invoking (5). Regarding the switching point, VSP = VDD/2, for
all CMOS inverters [9], we obtain:

Iod = 4ISC

[
sinh

(
q

Vid1
2nkT

)
− sinh

(
q

Vid2
2nkT

)]
. (9)

Expanding (9) into Taylor series, around VSP, leads to:

Iod = 2q
ISC
nkT

(Vid1 −Vid2) = Gm[(Vpp −Vpn)− (Vnp −Vnn)] , (10)

as required by (1) to be a FDDTA.

3.1.2. Small-Signal AC Model

We establish that gmi = gmpi
+ gmni

and goi = gopi
+ goni

; leading to the small-signal
model depicted in Figure 5, having output voltages (vop ) and (von ):

von(s) = −
gm1 vpp(s) + gm2 vnn(s) + gm8 vop(s)
sCL + (go1 + go2 + go5 + go8 + gm5)

(11a)
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and

vop(s) = −
gm3 vpn(s) + gm4 vnp(s) + gm7 von(s)
sCL + (go3 + go4 + go6 + go7 + gm6)

. (11b)

Manipulating (11a) and (11b), and regarding the same gm and go for all transistors,
results in a differential output signal according to:

[vop(s)− von(s)]
[vpp(s)− vpn(s)]− [vnp(s)− vnn(s)]

=
Gm

sCL + 4Go
, (12)

Figure 5. The small-signal AC model of the FDDTA.

4. Discussion

Since the overall design follows prior work developed in [10] we used a similar (8 × 8)
array of unity halo-implanted transistors to mitigate the reduction in output impedance in
a single transistor, which was inherent to the halo-implants. Furthermore, a more detailed
discussion about an array of unity halo-implanted transistors can be found in [10,21,22].

All unity pMOS and nMOS transistors inside the distributed layout had their aspect
ratio (W/L) equal to (2.0-µm/2.0-µm) and (0.4-µm/0.6-µm), enabling threshold voltages of
230-mV and 190-mV, respectively.

In addition, we performed a parallel association of six p-MOS and three nMOS to
maintain a weak inversion operation, matching the CMOS inverter threshold to VDD/2 for
a 0.25-V power supply, and accomplishing an overall reduction of the random offset.

The basic CMOS inverter cell had a threshold voltage (VTH) of 125-mV and a 35-nA
short circuit current (ISC), as discussed in Section 2.3, and illustrated in Figure 3.

4.1. Simulated Results

The proposed FDDTA was simulated in the Spectre simulator with BSIM models
and implemented in the GF 130-nm CMOS process. Table 1 contains the values extracted
through computer simulation for pMOS and nMOS transistors inside the distributed layout.
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Table 1. Parameter for pMOS and nMOS transistors inside the distributed layout.

Parameter Value

gop 9.46-nΩ−1

gon 9.45-nΩ−1

n 1.26

The Figures 6 and 7, display the results of slew-rate response, simulated for a 0.5-mV
differential input within a buffer configuration, using three different load capacitances CL
of 15 pF, 30 pF and 60 pF on each output. As can be observed in the figure, the delay of the
output stayed under 10% and, hence, it could be concluded that the circuit provided a fast
response to AC signals.
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Figure 6. Slew rate.
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Figure 7. Slew rate with zoom.

Figure 8 presents the simulation of the FDDTA step response by applying a differential
pulse Vin of 10 mVpk, with an output load CL of 15 pF, in both outputs, and evaluating
the FDDTA response. We could observe the response behavior of a first-order circuit, as
depicted in Equation (12), with a time constant τ = (CL + Cp)/(4Go) and a rise time equal
to Trise(90%) = 4.57 ms.
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Figure 8. Step response for the FDDTA.

Figure 9 presents the simulation of the differential transconductance of the FDDTA
structure by sweeping the Vid1 and Vid2 from −125 mV to 125 mv (Vid/2) and evaluating
the output current ∂Iod/∂Vid when Vid1 = Vid2 = 0.

Vid/2 [mV]
-125 -100 -75 -50 -25 0 25 50 75 100 125

∂
I o

d
/∂

V
id
[µ
S
]

0

2

4

6

8

10

12

14

16

18

20

Figure 9. Differential transconductance ∂Iod/∂Vid.

By invoking (9), and using the definitions presented in [10] we can obtain

∂Iod
∂Vid

= q
ISC
kT

[
1

np
cosh

(
q

Vid
2npkT

)
+

1
nn

cosh
(

q
Vid

2nnkT

)]
. (13a)

and transconductance of FDDTA, GFDDTA
m , when Vid1 = 0 and Vid2 = 0, is defined by

GFDDTA
m = q

2ISC
nkT

=
70n

1.26× 25.9m
= 2.22µS, (13b)

which was very close to the simulated value of 2.26 µS, as shown in Figure 9.
Figure 10 shows the open-loop magnitude and phase characteristics of the FDDTA

with a load capacitance of 30 pF in each output. The proposed circuit offered a gain
magnitude around 28 dB, with a cut-off frequency of around 480 Hz, and the gain A0 was
highly sensitive to the transistors’ mismatch. As expressed in (7), and also in Figure 11,
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we can see the results of a Monte Carlo simulation with 1000 samples that followed a
normal distribution and µ of 27.78 dB and which, moreover, shows that the distributed
layout/schematic technique intrinsically matches the CMOS inverters, maintaining the
circuit under accurate control.
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Figure 10. Open loop gain and phase.

Figure 11. Monte Carlo simulation of open loop gain.

Taking (12), we obtain the analytical open loop gain, and compare the result with
Figure 10

AFDDTA
o =

[vop(s)− von(s)]
[vpp(s)− vpn(s)]− [vnp(s)− vnn(s)]

=
1
4

gmp + gmn

gop + gon

(14a)

AFDDTA
o =

1
4

gmp + gmn

gop + gon

=
1
4

2.26µ

9.46n + 9.45n
= 29.80, (14b)

this can be expressed in decibels as 29.4 dB, which was very close to the simulated value of
28.2 dB.
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The CMRR and PSRR at low frequencies were 54.98 dB and 37.52 dB, respectively,
shown in Figures 12 and 13, followed by their respective Monte Carlo simulations
(Figures 14 and 15), also show the circuit was under accurate control, provided by the
distributed layout/schematic technique. The simulated THD was 1.09% with 0.5-Hz reso-
lution output spectrum for a common mode level of 125-mV, with a differential sinusoidal
wave of 175-mVpp@100-Hz. For this configuration the dynamic range was 40.52 dB.

In Tables 2–4 the PVT corners of the proposed circuit are, respectively, shown. The
MOS transistor corners were slow–slow (SS), slow–fast (SF), fast–slow (FS) and fast–fast
(FF),the voltage corners were ±10% and the temperature corners were −20 ◦C and 100 ◦C.
Therefore, we could conclude that the proposed circuit had acceptable on-chip integration.
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Figure 12. CMRR.
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Figure 13. PSRR.
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Figure 14. Monte Carlo simulation of CMRR.

Figure 15. Monte Carlo simulation of PSRR.

Table 2. Process Corners.

SS SF TT FS FF

Gain (dB) 22.11 24.89 28.20 27.08 29.31

GBW (Hz) 308.40 401.19 479.75 298.57 515.62

CMRR (dB) 51.97 56.12 54.98 53.43 58.07

PSRR (dB) 34.85 21.97 37.52 42.22 38.09

Table 3. Temp. Corners.

SS TT FF

Temp −20 27 100 −20 27 100 −20 27 100

Gain (dB) 29.43 29.33 28.34 19.33 28.20 25.34 26.15 27.31 25.99

GBW (Hz) 479.19 480.15 481.20 451.19 479.75 471.20 430.28 464.42 480.00

CMRR (dB) 54.20 55.01 56.96 51.28 54.98 58.36 55.28 52.57 58.36

PSRR (dB) 35.96 34.85 27.27 39.24 37.52 26.52 41.23 38.09 24.21
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Table 4. Voltage Corners.

VDD (mV) 225 250 275

Gain (dB) 27.45 28.20 31.36

GBW (Hz) 469.32 479.75 480.98

CMRR (dB) 53.01 54.98 55.30

PSRR (dB) 28.98 37.52 38.35

4.2. Measured Results

We performed the measurements in a fully differential buffer configuration of the
proposed FDDTA. This configuration enabled us to analyze the compatibility between
input and output swing, according to Figure 2.

The measurement setup included a Semiconductor Analyzer B1500A and a Dynamic
Signal Analyzer DSA35670A, both operating at room temperature (27 ◦C). In addition, the
load capacitance was 30-pF to each output pin. Figure 16 shows the micrography of the
test chip.

Figure 16. Circuit micrograph overlayed with the layout.

Figure 17 shows the measured output, and the input signals, for a differential sinu-
soidal wave of 100-Hz with an amplitude of 175-mV peak-to-peak, applied to the FDDTA
inputs. It shows that the FDDTA differential output replied to the differential input signal
with some reduction in the output range.

Furthermore, Figure 18 shows the measured Bode plot for the proposed FDDTA buffer
configuration with a cut-off frequency of 3.2-kHz, and. therefore, highlights the first-order
system behavior of the fully-differential buffer configuration.

We measured the harmonic distortion, depicted in Figure 19, using the DSA35670A
Dynamic Signal Analyzer. For instance, we applied, to the FDDTA inputs, a common
mode level of 125-mV with a differential sinusoidal wave of 175-mVpp@100-Hz, while the
DSA35670A was set up with a 100-kHz sample frequency that resulted in a 0.5-Hz FFT
resolution. For this scenario, we expected a 1% HD3 and a HD2 with a small and controlled
amplitude, leading to a THD ≈ HD3, exactly as depicted in Figure 19. In summary, all
those measurements led us to endorse the proposed FDDTA as being fully functional in
accordance with the developed models.
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Figure 17. Fully-differential buffer configuration: measured input and output signals, for a differential
sinusoidal wave of 100-Hz with an amplitude of 175-mV peak-to-peak, applied to the FDDTA inputs.

Figure 18. Fully-differential buffer configuration: measured frequency response with a cut-off
frequency of 3.2-kHz.

Table 5 shows a performance comparison between this work and other low-voltage
and low-power FDDTAs, where our proposed architecture featured the smallest supply
voltage of 0.25V and the linearity of the proposed circuit was consistent with the other
works.
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Figure 19. Fully-differential buffer configuration: measured harmonic distortion. The 0.5-Hz reso-
lution output spectrum for a common mode level of 125-mV with a differential sinusoidal wave of
175-mVpp@100-Hz, leading to a THD ≈ HD3.

Table 5. Performance comparison between proposed FDDTA and other low-voltage low-pass FD-
DTAs architectures.

Parameters This Work IEEE Access
2022 [23]

Sensors 2022
[24]

IEEE TCAS I
2018 [25] IEEE 2015 [26] IEEE 2015 [27]

Technology 0.13 µm 0.18 µm 0.18 µm 0.18 µm 0.18 µm 0.5 µm
Supply voltage 0.25 V 0.5 V 1.2 V (±0.6 V) 0.3 V ±0.4 V ±2 V
Gain 28.20 dB 93 dB - 60 dB 1-20 dB -
Transconductance 2.26 µS 10.7 nS 66 µS 67.7 nS - 24 µS to 468 µS
−3 dB bandwidth 480 Hz <1 Hz 6.4 MHz <10 Hz 23 MHz 1 GHz
Output conductance 18.91 nS - - - 111 nS -
Power consumption 75.30 nW 205.5 nW 6 µW 22 nW 20 µW l.66 mW
CMRR 54.98 dB 67.19 dB - 82 dB - -
PSRR 37.52 dB 81.52 dB - 57 dB - -
GBW 479.75 Hz 18.02 kHz - 1.85 kHz - -
DR 40.52 dB 49.7 dB 63.59 dB 57 dB - -

5. Conclusions

This paper introduced a fully-differential difference transconductance amplifier archi-
tecture, based on CMOS inverters. This design employed an array of halo-implanted MOS
transistors to reduce the negative effects of halo implants on output impedance and better
match the CMOS inverters.

The circuit was implemented in a 130-nm CMOS process and operated in weak
inversion for a 0.25-V power supply; thereby accomplishing specifications suitable for
low-frequency applications.

The measurement results. in accordance with the developed theory, endorsed our
proposed architecture, based on CMOS inverters. In fact, it spared supplementary external
calibration circuits, while keeping performance.
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