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Abstract: As an ecosystem in transition from land to sea, mangroves play a vital role in wind
and wave protection and biodiversity maintenance. However, the invasion of Spartina alterniflora
Loisel seriously damages the mangrove wetland ecosystem. To protect mangroves scientifically
and dynamically, a semantic segmentation model for mangroves and Spartina alterniflora Loise
was proposed based on UperNet (Swin-UperNet). In the proposed Swin-UperNet model, a data
concatenation module was proposed to make full use of the multispectral information of remote
sensing images, the backbone network was replaced with a Swin transformer to improve the feature
extraction capability, and a boundary optimization module was designed to optimize the rough
segmentation results. Additionally, a linear combination of cross-entropy loss and Lovasz-Softmax
loss was taken as the loss function of Swin-UperNet, which could address the problem of unbalanced
sample distribution. Taking GF-1 and GF-6 images as the experiment data, the performance of
the Swin-UperNet model was compared against that of other segmentation models in terms of
pixel accuracy (PA), mean intersection over union (mIoU), and frames per second (FPS), including
PSPNet, PSANet, DeepLabv3, DANet, FCN, OCRNet, and DeepLabv3+. The results showed that
the Swin-UperNet model achieved the best PA of 98.87% and mIoU of 90.0%, and the efficiency of
the Swin-UperNet model was higher than that of most models. In conclusion, Swin-UperNet is an
efficient and accurate model for mangrove and Spartina alterniflora Loise segmentation synchronously,
which will provide a scientific basis for Spartina alterniflora Loise monitoring and mangrove resource
conservation and management.

Keywords: mangrove; Spartina alterniflora Loise; deep learning; sematic segmentation; multispectral
remote sensing images

1. Introduction

Mangroves and Spartina alterniflora Loise are the primary vegetation communities
in coastal wetlands. Mangroves grow at the junction of land and sea and play a vital
role in purifying seawater, preventing wind and waves, storing carbon, and maintaining
biodiversity [1]. The invasion of Spartina alterniflora Loise species has changed the eco-
logical structure of mangrove wetlands and seriously affected the function and stability
of the mangrove wetland ecosystem. Therefore, knowledge of the spatial distribution of
mangroves and Spartina alterniflora Loise is important for the conservation and restoration
of mangrove resources [2,3].
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Remote sensing technology has the advantages of image-spectrum merging, wide
detection range, less restriction by ground conditions, and fast information acquisition
and has been widely used in practical applications, such as urban planning [4,5], traffic
monitoring [6,7], land cover classification [8,9], and change detection [10,11]. Using remote
sensing images, several methods have been proposed to segment the mangroves and the
Spartina alterniflora Loise [12–14], such as characteristics-based methods and deep learning
methods. Characteristics-based methods are designed based on the spectral reflectance or
shape features of objects and each pixel is analyzed. For example, Pham et al. [15] modeled,
mapped, and analyzed the biomass change between 2000 and 2011 of mangrove forests
in the Cangio region in Vietnam with characteristics-based image analysis and machine
learning algorithms. Hermon et al. [16] developed a model of mangrove land cover change
to analyze the change in mangroves. Pham et al. [17] used a characteristics-based approach
for segmentation of the different LANDSAT sensors (TM, ETM+, and OLI) and used a
geographic information system (GIS) to study the changes in mangroves during different
periods from 1989 to 2013. Characteristics-based methods are a highly accurate but time-
consuming method for segmenting mangroves or Spartina alterniflora Loise. Motivated by
the success of deep learning, different deep learning models have been used to segment
objects in remote sensing images.

With the development of convolutional neural networks (CNNs) in computer vision,
“deep learning” has opened up new research ideas for semantic segmentation [18], and
AlexNet [19], VGGNet [20], and GoogLeNet [21] have been proposed for semantic segmen-
tation successfully. For remote sensing images, fully convolutional network (FCN) [22],
U-Net [23], SegNet [24], pyramid scene parsing network (PSPNet) [25], DeepLab [26],
and unified perceptual parsing network (UperNet) [27] have been proposed for semantic
segmentation. Kampffmeyer et al. [28] proposed a deep convolutional neural network
(CNN) for land cover mapping in remote sensing images with a focus on urban areas.
Hamaguchi et al. [29] introduced a local feature extraction module to a CNN and acquired
remarkably good results, especially for small objects. Gao et al. [30] developed a semantic
segmentation model for extracting mangroves in remote sensing images by using pixel clas-
sification. Several deep learning methods have been proposed for mangrove segmentation.
However, in many cases, small areas of mangroves are often missed in the remote sensing
images. Spartina alterniflora Loise segmentation is also critical for the analysis of remote
sensing data. Currently, the segmentation methods of Spartina alterniflora Loise are rarely
reported, especially synchronous segmentation of mangroves and Spartina alterniflora Loise
in remote sensing images.

UperNet is a multivision task model; it can perform scene recognition, target detection,
and region segmentation simultaneously. Thus, the hierarchical structure of UperNet can
contribute to object differentiation with a low computation cost. However, when UperNet
is applied to segment objects in remote sensing images, the multiband remote sensing
images also present a challenge for feature extraction. On the issue of feature extraction,
the application of a transformer in computer vision provides a new research direction for
this purpose. Different from a CNN, a transformer with self-attentiveness establishes the
connection between image locations at the first layer of information processing. Vision
transformer (ViT) [31], transformer in transformer (TNT) [32], pyramid vision transformer
(PVT) [33], tokens-to-token ViT (T2T-ViT) [34], and Swin transformer [35] have also grad-
ually been proposed for extracting image features. In addition, the Swin transformer
can solve the problems of large variations in scale of visual entities and the high reso-
lution of pixels (Figure 1). The patch merging layer is designed to build a hierarchical
structure (Figure 1a). The shifted windowing scheme brings greater efficiency by limiting
self-attention computation to non-overlapping local windows while also allowing for cross-
window connection (Figure 1b). M-MSA and SW-MSA attention mechanisms are applied
in the shifted windowing scheme to handle two consecutive feature maps (Figure 1c).
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Figure 1. Flowchart of Swin transformer. (a) Patch merging. (b) Shifted window. (c) Two successive
Swin transformer blocks.

Mangroves and Spartina alterniflora Loise have similar spectral and textural characteristics
to other vegetation; therefore, it is difficult to segment mangroves and Spartina alterniflora Loise
from other vegetation. Mangroves and Spartina alterniflora Loise also coexist; it is, therefore,
a challenge for the semantic segmentation model to distinguish between the mangroves
and the Spartina alterniflora Loise. However, the size and distribution of mangroves and
Spartina alterniflora Loise are not uniform. Therefore, it is still worth researching a design for
a novel model to improve the accuracy of segmenting mangroves and Spartina alterniflora
Loise in remote sensing.To achieve high efficiency and high accuracy of mangrove and
Spartina alterniflora Loise segmentation synchronously, a semantic segmentation model
based on UperNet was proposed (Swin-UperNet), which was inspired by the hierarchical
structure of UperNet and the Swin transformer’s method of handling image-encoded data.
In the proposed model, a data concatenation module was proposed to make full use of the
spectral information of images, which could distinguish between the mangroves and the
Spartina alterniflora Loise. The backbone network was replaced with a Swin transformer
to improve the feature extraction ability, especially for small areas of mangroves and
Spartina alterniflora Loise. A boundary optimization module was designed to optimize the
rough segmentation results, which could further improve the accuracy of segmentation of
mangroves and Spartina alterniflora Loise. In addition, the loss function was substituted with
a linear combination of cross-entropy loss and Lovasz-Softmax loss to solve the unbalanced
sample distribution problem. Swin-UperNet can be an efficient semantic segmentation
model for mangrove and Spartina alterniflora Loise segmentation synchronously.

2. Data and Preprocessing
2.1. Data

The experimental datasets were acquired by GF-1 and GF-6 from 23 August 2016 to 18
December 2021, along the northeastern coast of Beibu Gulf, Guangxi, China, with a cloud
coverage of less than 5% and spatial resolution of 8 m. Figure 2 shows the location of the
study region. Table 1 shows the information of the studied remote sensing images.
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Table 1. Information on GF-1 and GF-6 remote sensing images.

Study Area Satellite Number of Images Date

Northeastern coast of Beibu
Gulf, Guangxi, China

GF-1 20 23 August 2016–18 December 2021
GF-6 7 23 November 2019–4 December 2021

2.1.1. GF-1

The GF-1 satellite carries a 2 m panchromatic camera, an 8 m multispectral camera, and
four 16 m wide field view (WFV) cameras and was launched by China on 26 April 2013. To
segment mangroves and Spartina alterniflora Loise, GF-1 multispectral images with 8 m res-
olution were chosen. The multispectral bands of this image consist of blue (0.45~0.52 µm),
green (0.52~0.59 µm), red (0.63~0.69 µm), and near infrared (NIR) (0.77~0.89 µm) bands
(Table 2).

Table 2. Characteristics of GF-1 remote sensing image.

Band Band Name Wavelength (µm) Spatial
Resolution (m)

Temporal
Resolution (Days) Swath Width (km)

B1 Blue 0.45–0.52

8 4 60
B2 Green 0.52–0.59
B3 Red 0.63–0.69
B4 Near infrared 0.77–0.89

2.1.2. GF-6

The GF-6 satellite is configured with a 2 m panchromatic/8 m multispectral high-
resolution camera and a 16 m multispectral medium-resolution wide-field-view camera.
The 2 m panchromatic/8 m multispectral camera has an observation width of 90 km, and
the 16 m multispectral camera has an observation width of 800 km. The GF-6 satellite was
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successfully launched at Jiuquan Satellite Launch Center on 2 June 2018. Similar to the
case for the GF-1 images, GF-6 multispectral images with 8 m resolution were chosen. The
multispectral bands of this image consist of blue (0.45~0.52 µm), green (0.52~0.60 µm), red
(0.63~0.69 µm), and near infrared (NIR) (0.76~0.90 µm) bands (Table 3).

Table 3. Characteristics of GF-6 remote sensing images.

Band Band Name Wavelength (µm) Spatial
Resolution (m)

Temporal
Resolution (Days) Swath Width (km)

B1 Blue 0.45–0.52

8 4 90
B2 Green 0.52–0.60
B3 Red 0.63–0.69
B4 Near infrared 0.77–0.90

2.2. Data Preprocessing

The size of the GF-1 and GF-6 original images is larger than the area of mangrove
or Spartina alterniflora Loise. However, the large size of remote sensing images leads to
large amounts of computation. Therefore, smaller images containing the mangrove or
Spartina alterniflora Loise were cropped manually. Figure 3 shows a schematic diagram
of the original image and the cropped images; 14 smaller images were cropped from the
original image.
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In the cropped images, the area of the mangrove and Spartina alterniflora Loise was
still small, which would lead to the unbalanced sample distribution problem. Hence, the
mangrove and Spartina alterniflora Loise data were expanded. Figure 4 shows the flow
and examples of the expansion. A smaller image of 80 × 80 was randomly selected in the
cropped image, and if the percentage of the area of mangrove and Spartina alterniflora Loise
was greater than 60%, the selected smaller image was saved. Finally, the saved images were
randomly embedded into the cropped image, and a new image was generated.
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3. Methods

Figure 5 shows the workflow of Swin-UperNet. Taking UperNet as the framework,
the backbone network was replaced with a Swin transformer to improve the feature
extraction capability (Figure 5B). In the Swin-UperNet model, a data concatenation mod-
ule was proposed to make full use of the multispectral information of remote sensing
images (Figure 5A); a boundary optimization module was designed to refine the rough
segmentation results (Figure 5C); and a linear combination of cross-entropy loss and
Lovasz-Softmax loss was taken as the loss function to address the problem of unbalanced
sample distribution.
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3.1. Data Concatenation Module

In the data concatenation module, 8 channels were used to enhance the spectral infor-
mation for mangrove and Spartina alterniflora Loise segmentation, including blue, green, red,
and NIR bands, normalized-difference vegetation index (NDVI), forest discrimination index
(FDI), difference vegetation index (DVI), and normalized-difference water index (NDWI),
wherein NDVI, FDI, DVI, and NDWI were spectral vegetation or water indexes [36–39]
(Figure 5A).

The NIR and red bands are useful for extracting information on different vegetation [40].
The spectral vegetation and water indexes are spectral measures of canopy greenness [41],
which could better reflect the difference between vegetation cover and growth conditions,
especially suitable for vegetation monitoring. The normalized-difference vegetation index
(NDVI) reflects the growth status and spatial distribution density of vegetation, which is
widely used for vegetation assessment. The forest discrimination index (FDI) reflects the
level of vegetation density classification in forest monitoring, which is frequently applied in
mangrove distribution research. The difference vegetation index (DVI) reflects the change
in soil background, which is used for vegetation ecology monitoring. The normalized-
difference water index (NDWI) reflects information on water bodies, which contributes
to distinguishing between mangroves and water bodies. Table 4 shows the calculation
method of several spectral vegetation or water indexes.

Table 4. Several spectral vegetation/water indexes.

Index Calculation Method Calculation in GF-1/GF-6

NDVI NDVI = (NIR − R)/(NIR + R) (B4 − B3)/(B4 + B3)
FDI FDI = NIR − (Red + Green) B4 − (B3 + B2)
DVI DVI = NIR − R B4 − B3

NDWI NDWI = (Green − NIR)/(Green + NIR) (B2 − B4)/(B2 + B4)

3.2. Boundary Optimization Module

The boundary optimization module (BOM) was designed with inspiration from a
residual block in ResNet (Figure 5C). The BOM avoided the problem of low-level feature
vanishing caused by convolution operations and adjusted the rough segmentation results
using a low-level feature map. The BOM added the output of two consecutive conv blocks
using a skip connection. The conv block contained conv3×3, batch normalization, and
ReLu activation function operations.

3.3. Loss Function

Linear combination of cross-entropy loss and Lovasz-Softmax loss was taken as the
loss function to address the problem of unbalanced sample distribution [42]. The cross-
entropy loss function is a pixel-wise loss function used in semantic segmentation tasks to
measure the variability of pixels between the predicted value and the ground truth value,
which is defined as follows:

LossCE = − 1
N

N

∑
I=1

yi ∗ log ŷi (1)

where N is the number of pixels, yi is the ground truth class vector of a pixel i, and ŷi
is the output of the model of a pixel i. The cross-entropy loss function considers the
probability that the prediction is correctly labeled, but when the number of samples in
different categories is unbalanced, it will ignore the learning of the foreground class and
affect the efficiency of the algorithm. For example, when the number of samples in the
background class is much larger than the number of samples in the foreground class, the
background class will be used as the dominant factor to learn. In this study, the number
of samples of Spartina alterniflora Loise was smaller compared to other classes, and the
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unbalanced sample distribution is a serious problem for the segmentation of mangroves and
Spartina alterniflora Loise. Hence, Lovasz-Softmax loss was selected to solve the unbalanced
sample distribution problem and to optimize the accuracy of segmentation.

Lovasz-Softmax loss is proposed by Berman et al. for the Jaccard index (also called the
intersection over union). The Jaccard index of class c is defined as

Jc(y, ỹ) =
|{y = c} ∩ {ỹ = c}|
|{y = c} ∪ {ỹ = c}| (2)

where y is a vector of the ground truth labels and ỹ is a vector of the predicted labels. Then,
Jaccard index loss can be defined as

∆Jc(y, ỹ) = 1− Jc(y, ỹ) (3)

and we can define the set of mispredicted pixels for class c as

Mc(y, ỹ) = {y = c, ỹ 6= c} ∪ {y 6= c, ỹ = c} (4)

Equation (4) can be rewritten with Mc as

∆Jc(y, ỹ) =
|Mc|

|{y = c} ∪Mc|
(5)

However, this loss function is not derivable. In order to optimize the Jaccard index
for the training model, the discrete loss was smoothly extended based on a submodular
analysis of the set function. The smooth extension is named the Lovasz extension, which is
a set function ∆ and is defined as

∆Jc(mi) =
p

∑
i=1

migi(m) (6)

where p is the number of pixels in an image, m is the vector of pixel errors for class c, and
the gi(m) is defined as

gi(m) = ∆Jc({π1, . . . ,πi})− ∆Jc({π1, . . . ,πi−1}) (7)

where {π1, . . . ,πi}means a permutation ordering the components of m in decreasing order,
such as mπ1 ≥ mπ2 ≥ mπ3 . . . ≥ mπp .

In a multiclass segmentation task, the pixel errors vector of class c can be defined as

mi(c) =
{

1− fi(c), if c = yi
fi(c), otherwise

(8)

where fi(c) ∈ [0, 1] is the predicted class of pixel I for class c. Then, the Lovasz-Softmax
loss can be defined as

LossLS =
1
C ∑

c∈C
∆Jc(m(c)) (9)

where C is the number of classes.
Therefore, to achieve sample distribution balance and excellent segmentation accuracy,

the loss function of Swin-UperNet was defined as

loss =∝ LossCE + (1− ∝)LossLS (10)

where ∝ is a weight parameter to balance the cross-entropy loss and Lovasz-Softmax
loss functions.
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4. Result and Discussion

To evaluate the segmentation performance of the Swin-UperNet model, two compari-
son experiments were designed. In the ablation experiment, each improved component
was analyzed. In the comparison experiment, the segmentation efficiency and accuracy of
the Swin-UperNet model were compared against those of other models, including PSPNet,
PSANet [43], DeepLabv3 [44], DANet [45], FCN, OCRNet [46], and DeepLabv3+ [47].

4.1. Experimental Data

Based on 27 GF-1/GF-6 remotes sensing images, 200 images with a size of
480 × 480 pixels were cropped. These 200 images were then flipped horizontally, vertically,
and diagonally, and 800 remote sensing images were generated. Therefore, the experi-
mental dataset consisted of 800 remote sensing images with a size of 480 × 480 pixels and
8 channels. The 800 remote sensing images were then divided into three sets: 640 images
for training, 60 images for testing, and 100 images for validation. To ensure the reliability
and validity of the segmentation results, the training and testing data were independent.
Before training, the dataset was scaled in range of 0.5–1.5 with random multiplicity. Figure 6
shows the different input channels of the image and the ground truth, wherein the ground
truth was labeled by experts.
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4.2. Experimental Setups

The batch size was set to 2; the optimizer was “AdamW”; the weight decay was
0.01; the initial learning rate was 6 × 10−5; the learning rate strategy was “poly”; and the
number of training iterations was 160,000. The segmentation models were implemented
using PyTorch 1.7.1+cu101 with the MMSegmentation 0.11.0+ framework and executed on
the Windows 10 platform with an NVIDIA Quadro RTX 3000 GPU.

4.3. Evaluation Metrics

Three evaluation metrics: pixel accuracy (PA), mean intersection over union (mIoU),
and frames per second (FPS) [48] were used to evaluate the segmentation performance of
the different models.

Pixel accuracy represents the ratio of pixels properly classified, divided by the total
number of pixels. For K classes, PA is defined by

PA =
∑K+1

i=1 pii

∑K+1
i=1 ∑K+1

j=1 pij
(11)
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where K + 1 classes include K foreground classes and 1 background class, and pij is the
number of class i predicted as class j.

Mean intersection over union represents the average IoU over all classes, and IoU is
the area of intersection between the predicted result and the label. mIoU is defined by

mIoU =
∑K+1

i=1
|Ai∩Bi|
|Ai∪Bi|

K + 1
(12)

where A and B denote the label and the predicted results, respectively.
FPS represents frames processed per second, which is used to evaluate the computation

efficiency of methods. FPS is defined by

FPS =
1
t

(13)

where t represents the time taken to process an image.

4.4. Ablation Experiment

Table 5 shows the comparison of evaluation metrics between models with different
settings, including with different loss functions, data processing (DP), data concatenation
module (DCM), Swin transformer tiny (ST-Tiny), and boundary optimization module
(BOM), respectively.

Table 5. Evaluation metrics comparison between models with different setting.

Loss Function
DP DCM

Backbone
BOM mIoU (%) PA (%)

Cross-Entropy Lovasz-Softmax Ours ResNet-50 ST-Tiny
√ √

47.39 93.46√ √
55.05 89.71√ √
56.26 94.29√ √ √
81.06 97.05√ √ √ √
89.91 98.86√ √ √ √
82.87 94.44√ √ √ √ √
90.0 98.87

Compared to the models with a different loss function, the Swin-UperNet model
achieved the best mIoU of 56.36% and PA of 94.29%, which illustrated that the linear
combination of cross-entropy loss and Lovasz-Softmax loss was effective for mangrove
and Spartina alterniflora Loise segmentation. Compared to the model without the data
processing operation, the mIoU and PA of the Swin-UperNet model increased 29.8%
and 2.76%, respectively. Compared to the model with a ResNet backbone network, the
mIoU and PA of the Swin-UperNet model increased by 7.04% and 4.52%, respectively,
which indicated that the Swin transformer was able to better extract object features for
dealing with multichannel data. Compared to the model without a boundary optimization
module, the Swin-UperNet model achieved the best mIoU and PA of 90.0% and 98.87%,
respectively, which showed that the boundary optimization module could adjust the
boundary segmentation and eliminate some misclassifications. These results denote that
the Swin-UperNet model could improve the segmentation accuracy of mangroves and
Spartina alterniflora Loise.

Table 6 shows the comparison of evaluation metrics between models with different
input channels. The Swin-UperNet model achieved the best mIoU and PA. Furthermore,
the mIoU and PA for mangrove segmentation increased from 83.0% to 91.03% and 87.37%
to 98.35%, respectively. The mIoU and PA for Spartina alterniflora Loise segmentation
increased from 63.18% to 79.65% and 69.65% to 89.15%, respectively. These results denote
that adding spectral vegetation or water indexes to the data concatenation module of the
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Swin-UperNet model could improve the accuracy of mangrove and Spartina alterniflora
Loise segmentation.

Table 6. Evaluation metrics comparison between different input channels.

Input Channel
Mangrove Spartina alterniflora Loisel

mIoU (%) PA (%)
IoU (%) PA (%) IoU (%) PA (%)

NIR + R + G 83.0 87.37 63.18 69.65 81.06 97.05
NIR + R + G + NDVI 89.59 92.57 73.89 81.38 87.19 98.10

NIR + R + G + NDVI + FDI 90.0 93.06 74.68 81.49 87.62 98.18
NIR + R + G + NDVI + FDI + DVI 90.15 93.11 75.28 82.38 87.88 98.21

NIR + R + G + NDVI + FDI + DVI + NDWI 90.21 93.24 75.45 82.78 87.95 98.22
NIR + R + G + B + NDVI + FDI + DVI + NDWI (Ours) 91.03 98.35 79.65 89.15 89.91 98.86

4.5. Comparison Experiment

We compared the proposed Swin-UperNet model against other models, including
PSPNet, PSANet, DeepLabv3, DANet, FCN, OCRNet, and DeepLabv3+ to evaluate the
segmentation performance for mangroves and Spartina alterniflora Loise. The segmentation
results for mangroves and Spartina alterniflora Loise are shown in Figure 7, where red
area, yellow area, and blue area denote mangrove, Spartina alterniflora Loise, and other,
respectively. In the first and second rows, we see that the segmentation results obtained
with the Swin-UperNet model were more accurate and the segmentation boundaries were
closer to the ground truth. The third row shows that only the segmentation results of
the Swin-UperNet model did not misclassify other categories as Spartina alterniflora Loise.
From the fourth row, only the segmentation results of the Swin-UperNet model contained
the small Spartina alterniflora Loise regions. Figure 7 shows that the segmentation results of
the Swin-UperNet model were more consistent with ground truth.
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Table 7 shows the results of the evaluation metrics. The Swin-UperNet model achieved
the highest mIoU and PA, which were 90.0% and 98.87%, respectively. As for FPS, the Swin-
UperNet model substantially exceeded PSPNet, PSANet, DeepLabv3, DANet, OCRNet,
and DeepLabv3+.
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Table 7. Performance comparison between different segmentation models.

Model Backbone
Mangrove Spartina alterniflora Loisel

mIoU (%) PA (%) FPS
IoU (%) PA (%) IoU (%) PA (%)

PSPNet ResNet50 82.28 ± 1.85 87.83 ± 2.15 58.59 ± 2.03 70.35 ± 3.38 77.23 ± 2.98 96.36 ± 0.34 5
PSANet ResNet50 82.11 ± 0.97 87.78 ± 1.76 56.75 ± 2.51 65.85 ± 4.01 76.49 ± 3.27 96.16 ± 0.75 4

DeepLabv3 ResNet50 82.0 ± 0.55 87.82 ± 1.08 56.31 ± 2.58 62.0 ± 4.37 75.93 ± 3.08 96.59 ± 0.32 3
DANet ResNet50 79.53 ± 3.74 86.78 ± 2.20 53.69 ± 3.37 61.74 ± 4.53 75.53 ± 3.61 95.86 ± 2.14 5

FCN HRNet18 84.74 ± 1.54 89.43 ± 1.87 62.98 ± 2.33 74.24 ± 1.89 81.68 ± 1.43 96.31 ± 1.33 12
OCRNet HRNet18 83.04 ± 3.05 86.98 ± 3.6 60.45 ± 5.14 67.44 ± 7.55 80.77 ± 2.31 96.94 ± 0.54 8

DeepLabv3+ ResNet50 69.80 ± 3.33 73.33 ± 13.41 52.47 ± 8.53 60.44 ± 11.72 72.51 ± 1.94 95.30 ± 1.68 5
Ours Swin transformer tiny 91.10 ± 0.15 96.64 ± 0.51 79.89 ± 1.26 89.50 ± 1.42 90.0 ± 0.43 98.87 ± 0.07 10

5. Conclusions

Changes in the growth and distribution of mangroves and Spartina alterniflora Loise
affect the security of ecological systems. Due to tides and silt, field observation is difficult
and ineffective. Here, we proposed a Swin-UperNet model for highly efficient and accurate
segmentation of mangroves and Spartina alterniflora Loise in remote sensing images.

In the Swin-UperNet model, the mangrove and Spartina alterniflora Loise datasets
were built, which provided data support for the deep learning models. The data pro-
cessing method was designed, which increased the diversity of data and the size of
Spartina alterniflora Loise samples. The data concatenation module was proposed, which se-
lected some multispectral bands and indexes and was beneficial for segmenting mangroves
and Spartina alterniflora Loise. The Swin transformer was chosen as the backbone network,
which improved the accuracy of segmentation. The boundary optimization module was
proposed, which optimized the rough segmentation result and resolved the misclassifica-
tion problem. A linear combination of cross-entropy loss and the Lovasz-Softmax loss was
chosen as the loss function, which solved the problem of unbalanced sample distribution.

Three metrics were used to evaluate the accuracy and efficiency of the Swin-UperNet
model, including pixel accuracy (PA), mean intersection over union (mIoU), and frames
per second (FPS), which achieved results of 90.0%, 98.87%, and 10, respectively. The experi-
ment results demonstrated that the proposed Swin-UperNet model could achieve higher
efficiency and accuracy of segmentation results for mangroves and Spartina alterniflora
Loise synchronously in remote sensing images. Moreover, the combination of remote
sensing technology and deep learning could overcome the difficulty in field observation.
However, there are still several challenges for the segmentation of mangroves and Spartina
alterniflora Loise: How to use multisource remote sensing data to improve the accuracy of
Spartina alterniflora Loise segmentation? How to predict the changing trends of distribution
of mangroves and Spartina alterniflora Loise in time?
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