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Abstract: Hashing has wide applications in image retrieval at large scales due to being an efficient
approach to approximate nearest neighbor calculation. It can squeeze complex high-dimensional
arrays via binarization while maintaining the semantic properties of the original samples. Currently,
most existing hashing methods always predetermine the stable length of hash code before training
the model. It is inevitable for these methods to increase the computing time, as the code length
converts, caused by the task requirements changing. A single hash code fails to reflect the semantic
relevance. Toward solving these issues, we put forward an attention-oriented deep multi-task hash
learning (ADMTH) method, in which multiple hash codes of varying length can be simultaneously
learned. Compared with the existing methods, ADMTH is one of the first attempts to apply multi-
task learning theory to the deep hashing framework to generate and explore multi-length hash
codes. Meanwhile, it embeds the attention mechanism in the backbone network to further extract
discriminative information. We utilize two common available large-scale datasets, proving its
effectiveness. The proposed method substantially improves retrieval efficiency and assures the image
characterizing quality.

Keywords: deep hashing; attention; multi-task learning; deep learning; image retrieval

1. Introduction

The approximate nearest neighbor search (ANNS) [1] serves as a crucial algorithm
applied in many computer fields, such as large image retrieval, computer vision, data
mining, etc. Actually, hashing is a typical ANNS algorithm. Depending on its low storage,
high performance and other advantages, various retrieval tasks can be efficiently performed
by it. Specifically, there are two categories of hash methods: data-independent methods [2]
and data-dependent methods [3]. Data-independent methods often generate hash functions
at random or artificially. For example, locality sensitive hashing (LSH) [4] adopts random
projection to generate hash codes of raw data, which mostly rely on relatively long hash
codes to obtain satisfactory accuracy. Alternatively, the data-dependent methods use the
original data to learn a hash function that maps the data into low-dimensional binary codes
to obtain a succinct representation.

According to the utilization of data labels, data-dependent hashing methods can be di-
vided into supervised hashing methods and unsupervised hashing methods. Unsupervised
methods include spectral hashing (SH) [5], iterative quantization (ITQ) [6], multi-matrix
factorization hashing (MFH) [7], etc. Specifically, unsupervised methods exclusively learn
hash functions and hash codes from the association among training data [8]. Compared to
data-independent hashing methods, the unsupervised data-dependent hashing methods
improve the retrieval performance. However, they ignore the label supervision, causing
lower performance. As opposed to unsupervised hashing methods, supervised hashing
methods use supervised information to increase retrieval accuracy. Early supervised
hash learning methods are mainly non-deep supervised methods, including supervised
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discrete hashing (SDH) [9], column sampling based discrete supervised hashing (COS-
DISH) [10], fast supervised discrete hashing (FSDH) [11], scalable supervised discrete hash-
ing (SSDH) [12], supervised discrete hashing for cross-linear regression (SDHMLR) [13],
and fast scalable supervised hashing (FSSH) [14].

Recently, the deep hashing method [15–20] has become a research hotspot, such as pair-
wise labels-based supervised deep hashing (DPSH) [15], deep Cauchy hashing (DCH) [16],
deep hashing network (DHN) [17], deep discrete supervised hashing (DDSH) [18], triplet
labels based deep supervised hashing (DTSH) [19], deep semantic sorting based hashing
(DSRH) [20], etc. In particular, pairwise label based supervised deep hashing (DPSH) [15]
introduces a pretrained CNN-F to learn hash codes end to end in a deep network using
the pairwise label similarity matrix as supervision information. Deep Cauchy hashing
(DCH) [16] introduces the Alexnet network and adopts the Cauchy algorithm to optimize
hash codes. Deep hashing network (DHN) [17] employs the stacking of multiple pooling
layers to generate binary codes. It designs corresponding cross-entropy layers to learn
similarity, and applies quantization items to reduce information loss. Triplet label-based
deep supervised hashing (DTSH) [19] adopts a parameter-sharing three-branch deep neural
network and combines the similarity of triple labels to obtain the binary codes with complex
semantics. Deep semantic ranking based hashing (DSRH) [20] also uses deep networks to
learn image representations, and further combines a ranking table encoded with multiple
semantic information to learn hash codes. These methods all use nonlinear deep architec-
ture for feature learning, and consequently, their model accuracy is significantly improved
than non-deep methods.

Similarly, the attention mechanism has widely been studied as core content in deep
learning. The attention mechanism [21] was first proposed by describing the global de-
pendencies of input data and applying them to machine translation. The compression
and excitation network (SENET) [22] is the first network to implement attention learning
by weighting feature maps from the channel level. The convolutional block attention
module (CBAM) [23] utilizes convolutional attention modules to enrich attention maps
from channel and spatial dimensions. Recently, some deep hashing methods gradually
incorporated the idea of the attention mechanism. For instance, the attention-aware deep
adversarial hashing (AADAH) [24] pays attention to regional discriminative information
and word segments that generate binary codes based on attention and adversarial mech-
anisms. Object location aware hashing (OLAH) [25] learns masks based on the core of
attention mechanism to extract important image regions and generate corresponding hash
codes. Particularly, it [26] introduces a multi-head attention unit to generate impact factors
for each step output by LSTM, while paying attention to various conditions of spoken
segments to generate hash codes for speech search tasks. Numerous studies have shown
that it is effective to apply the attention mechanism to hash learning.

However, the majority of current hashing methods need to predefine the fixed length of
the hash code. Subsequently, the model needs to be retrained again, causing the significant
consumption of computing resources. Essentially, a hash code is a compact representation
of the original sample, and various lengths of hash codes can represent various samples,
which means that these multiple lengths binary codes will reflect different degrees of
semantic information of samples. It is just that the semantic richness of them is different,
but they still reveal overall semantic descriptions of the image. Possibly, there should
be a certain potential correlation among them. Using these potential complementarities
and correlations may strengthen the hash code quality. In our early work on supervised
discrete multiple-length hashing [27], we also showed that multi-length hash codes can
be considered correlated features. The goal of attention-oriented deep multi-task hash
learning (ADMTH) is to generate multi-lengths hash codes concurrently. Furthermore,
their contained semantic relevance can be fully utilized. Specifically, based on multi-task
learning theory, supposing that V(i) and V(j) are different conceptions of a sample, their
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possibility of expressing the original data error is denoted by Pf alse(·) , and the hypothetical
potential association between them is shown in Equation (1):

P(V(i) 6= V(j)) ≥ max{Pf alse(V(i)), Pf alse(V(j))}. (1)

It can be seen from the formula that the upper limit of the possibility of inconsis-
tency among two conceptions is the error possibility of any conception, so mining the
association of diverse conceptions can reduce the error rate of each conception representa-
tion. The above-mentioned multi-perspective theory has been extensively studied in some
works [28–30].

In a nutshell, this study devises a deep hashing framework for image retrieval, namely,
ADMTH. From the perspective of network architecture, it integrates a deep convolutional
neural network, a channel attention module, and a sub-network with multiple branches
sharing hard parameters into a joint framework that can concurrently learn various length
hash codes. This paper contributes threefold, mainly:

• To further extract discriminative fine-grained features, a channel attention module
(CAM) is introduced immediately after the convolutional neural network. The impor-
tant features are weighted at the channel level to enhance the expressive capability of
deep features.

• To solve some drawbacks of single hash code learning, the paper designs a sub-
network with multiple branches sharing hard parameters. The outputs of these
branches correspond to hash codes of various lengths for a image, which greatly
decreases the overhead of model computation.

• To explore the potential semantics involved in multiple hash codes, the paper designs
a consistency loss based on adjacent branch hash codes, causing the smaller semantic
gap among adjacent branches, which contributes to the representation capability of
binary codes.

By the way, the proposed method is an upgrade version of former work [31] published
in the 2021 ACM Multimedia Asia conference, which differs the conference paper in two
major ways: (1) The ADMTH adds a channel attention module (CAM) in the feature ex-
traction module to promote the expressive capability of deep features. (2) More extensive
experiments are conducted in this work. Specifically, we not only conduct new compari-
son and ablation experiments but also conduct training efficiency comparison and time
complexity analyses of ADMTH.

Research Statement: This study content is established on multi-task learning and
hashing theories, which utilizes the attention mechanism and deep neural network, coming
up with a deep supervised hashing method. Its purpose is enabling the deep model to learn
multi-length hash codes simultaneously, reducing the time cost and computing resources
caused by the repeated training of most existing single-task hashing methods. Meanwhile,
this study further explores and analyzes the potential semantic associations existing among
multiple hash codes, designing an objective function to optimize generated multiple hash
codes: pairwise similarity and consistency loss. While ensuring the training efficiency, it
also improves the characterization of query images.

The remainder of the article roughly includes four parts. Section 2 shows the technical
routes of ADMTH comprehensively. Section 3 describes the experimental results compre-
hensively. Section 4 discusses the related theories generally. Section 5 makes a summary
and gives prospects of the full paper briefly.

2. Proposed Method

In next subsections, we present notations and problem definitions firstly and further
elaborate the ADMTH in detail, including the architecture and objective function.
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2.1. Notations

In this paper, we apply bold lowercase letters (such as v) to denote vectors and bold
uppercase letters (such as V) to denote matrices. The symbol VT is the transpose of the
matrix; the symbol ‖ · ‖ is the F-Norm; and the rest of the variables are italicized. The
tanh(·) function can constrain the values of vector elements between −1 and 1. The pair-
wise label is provided as supervision information. Assuming that there are N sample points
in the database, the pairwise similarity matrix based on label information among samples
is defined as S={sij}N×N . For a dataset described by multiple labels, an image contains at
least multiple class labels, and the class label form is given in the form of one-hot encoding.
Specifically, if two samples are similar (the two images contain at least one same class label),
sij = 1; otherwise, (the two images do not have a common class label) sij = 0. Pairwise
labels here usually refer to human-provided semantic labels.

2.2. Problem Definitions

Additionally, supposing that the task goal is to obtain K hash codes, defining their
corresponding length is Lk (1 < k ≤ K). The hash matrix of all N sample points for the kth

hash code can be defined as Hk = {bk
i }

N
i=1, where bk

i is the kth hash code of the ith sample
point under the length Lk.

2.3. Architecture Structure of ADMTH

Figure 1 shows the overall framework of ADMTH. It consists of three modules: Feature
Extraction Module, Channel Attention Module and Hash Learning Module. All modules
are embedded end-to-end into a joint framework, concurrently learning multiple hash
codes.

Figure 1. The overview architecture of ADMTH.

2.3.1. Feature Extraction Module

The feature extraction module of the ADMTH is mainly constructed by fusing the
typical convolutional neural network (CNN) structure and attention mechanism, and a
sub-branch network in accordance with the concept of multi-task learning [32–36]. Gen-
erally, there are two types of multi-task learning: hard parameter sharing [37] and soft
parameter sharing [38]. The former method means that each task guarantees the consis-
tency of the bottom parameters learning, meanwhile, distinguishing top features learning
by multiple independent parameters. In contrast to the above, the latter method means
the independence of global feature learning. In other words, each task has its own set
of parameters and basically no parameter sharing among them. It can be found that the
hard parameter sharing method has fewer parameters, which contributes to efficiency.
Specifically, in ADMTH, the learning of hash codes of different lengths can be viewed
as multiple objective tasks. The part of parameter sharing occurs in the front five layers
of the feature extraction network. After that, each sub-network parameter is not shared
but iteratively converted in conformity with the corresponding target hash code. Based on
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differentiated learning, the model can generate the binary code representation to the same
image with different lengths very well.

2.3.2. Channel Attention Module

In addition, the ADMTH combines a streamlined SE-Net [22] immediately after the
deep convolutional pooling network named the channel attention module. It focuses on
weighting the important regional features of the image from the channel level, weakening
the unimportant features, adaptively adjusting the feature response value of each channel,
and modeling the internal dependencies between channels. It enriches the image features’
output by the deep convolutional pooling network. Firstly, the depth features are com-
pressed along the channel dimension by the average pooling operation, which reflects the
non-local semantics of the image, as shown in the following Equation (2):

Gc = F(Dc) =
1

W × H

W

∑
i=1

H

∑
j=1

Dc(i, j), (2)

where the symbol Dc represents the output features through the convolutional pooling
network, the symbol G ∈ RC×H×W represents the compressed features, the symbol Gc
represents the features of a certain channel dimension, and the symbol F stands for channel
compression operation.

Next, after the first fully connected layer, the feature dimension is reduced to 1/16 of
the input, and a ReLU is used to obtain non-linear features, which better fits the complex
features of different channels. Then, the activated features go through the second fully con-
nected layer, which aims to integrate each channel significance, restoring the dimension to
the original feature dimension, and produce a weighting factor for each channel as follows:

Ec = σ(W2ρ(W1G)), (3)

where the symbol Ec represents the features after two fully connected layers, the symbol G
represents the compressed features. The parameter W1 and W2 represents the weight of
the two fully connected layers, respectively. The ρ and σ represents the ReLU activation
function and sigmoid activation function, respectively.

Finally, we weighted the original features in the channel dimension. The fc is used as
an intermediate result, considered the input of the multi-branch network as shown in the
following Equation (4):

fc = Dc · Ec. (4)

2.3.3. Hash Learning Module

Theoretically, the continuous binary code is taken by quantizing the model output.
However, to avoid the complexity of optimizing the quantization loss, the element values
of outputs are often restricted to the real-valued continuous space by tanh(x) in a new hash
layer. In this way, it resolves the Np-Hard issue causing by optimizing the 0 and 1 directly,
which are commonly used in existing deep hashing methods. In most instances, the model’s
optimization is actually founded on a non-binary hash code. When the model is tested,
the real binary code is obtained through the symbolic function sgn. The kernel component
of the model is the optimization of the hash code, which mainly includes two components:
similarity-based loss and consistency-based loss. Making generated binary codes better
reflect the semantic association with the original sample is achieved by minimizing the two
loss items.Next, the above optimization is illustrate exhaustively in the Objective Function
section.

2.4. Objective Function

Preserving similarity is an essential property of hash codes [9–13]. Therefore, the pro-
posed method utilizes pairwise similarity matrix as supervision information to construct
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the similarity loss PLoss. This loss term is to establish the relevance between Hamming
space and original sample label space so that the data distribution of the Hamming space is
closer to the distribution of the original sample label space. More specifically, the larger the
similarity samples, the smaller the metric distance among the corresponding binary codes.
On the contrary, the lower the similarity samples, the larger the metric distance between
each other. Theoretically, PLoss adopts the maximum a posteriori estimation of the hash
code matrix H in accordance with the pairwise similarity label matrix S to construct the
loss function. As shown in Equation (5),

PLoss(S, H) = p(H|S ) ∝ p(S|H )p(H) = ∏
sij∈S

p
(
sij|H

)
p(H), (5)

where the p(S|H ) represents the similarity function, the p(H) represents prior distribution.
Moreover, the p

(
sij|H

)
reveals the resemblance between image pairs based on given images

hash matrix H. Then, we have

p
(
sij|H

)
=

{
ξ
(
φij
)
, sij = 1

1− ξ
(
φij
)
, sij = 0

, (6)

where the ξ(x) = 1/(1 + e−x) means the sigmoid function, and the
(
φij
)
= 1

2 < bi, bj >=
1
2 bT

i bj. Furthermore, Equation (7) can be obtained as follows:

PLoss(S, H) = − ∑
sij∈S

log p
(
sij|H

)
= − ∑

sij∈S
sijbib

T
j − log(1 + ebib

T
j ).

(7)

Among them, symbol H represents all samples’ binary matrix, symbol S denotes the
pairwise similarity matrix, and bi and bj represent the hash codes of the ith and jth sample,
respectively.

In addition, to further optimize the multiple hash codes of a sample, this paper designs
a consistency loss in accordance with the output of adjacent branches. The semantic gap
among these multiple hash codes is narrowed by the proximity of adjacent branches. Based
on the previous problem definition, the hash code matrix of all sample points of length Lk

and Lk+1 under the kth and (k + 1)th branch is obtained, which can be defined as Hk and
Hk+1 , respectively. The symbol Q represents the learned mapping matrix, mapping from
Hk+1 to Hk. The specific CLoss is shown in Equation (8):

CLoss(Hk, QT
k Hk+1) =

K

∑
k=1
‖ Hk+1QT

k −H k ‖2 . (8)

Finally, by combining Equation (5) to Equation (8), the total loss of ADMTH is written
as Equation (9). The α and β are the net-parameters.

min
bi ,bj ,QT

k ,Hk ,Hk+1

L = − ∑
sij∈S

αsijbib
T
j − log(1 + ebib

T
j )

+
K

∑
k=1

β‖ Hk+1QT
k −Hk ‖1

s.t. Hk ∈ {−1, 1}LK×N .

(9)

3. Experiments

To prove the superiority of ADMTH, we deliberate the evaluation of this method on
two benchmark datasets, NUS-WIDE [39] and MS-COCO [40].
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3.1. Datasets

Both NUS-WIDE and MS-COCO are large-scale image datasets annotated by profes-
sionals. These images are defined by multiple semantic tags and generally collected from
the Internet, including landscapes, people, activities etc. Practically for the NUS-WIDE
dataset, when used in image retrieval tasks, it takes into account the incomplete labeling of
some classes, missing images and other disadvantages. In basically all research on hashing,
the common 21 classes of image subsets are selected by default. As for the MS-COCO,
we typically use the common 81 categories for image retrieval. The specific datasets in-
formation and division are shown in Table 1 below. For the fairness of the experiment,
the comparison methods also adopt the same method.

Table 1. Datasets composition and partition way.

Dataset
Details

Labels Total Numbers Training Set Test Set

NUS-WIDE Multiple (21) 195 K 10.5 k 2.1 K
MS-COCO Multiple (81) 122 K 10 k 5 K

3.2. Experimental Settings

Firstly, all input images sizes are generally adjusted to 224 × 224 pixels. The proposed
method is initialized by using a pretrained CNN-F model. Other deep hashing methods [15–20]
also adopt similar initialization strategies. As for the channel attention mechanism, we
adopt empirical settings and multiple cross-experiment verifications, and the number of
c (channel) is set as 16 to perform channel-level operations on the feature map. Other
pivotal settings are listed as follows: The programming implementation schema adopts
Pytorch, meanwhile, the total loss is iterated with built-in SGD optimizer. The selected
batch size is set as 128, and the periodic learning rate decay is adopted. The initial learning
rate is set as 0.15, and during the iterative process, it is set to be 1% of the previous one
every 30 iterations. The symbols α and β are the parameters set as 20 and 1, respectively.
Specifically, we will study in the parameter sensitivity experiment later. Furthermore, we
use a common metric in retrieval called mean average precision (MAP) to evaluate the
experimental performance, which is defined as follows:

MAP =
1
N

N

∑
n=1

AP(i), (10)

where the symbol N represents the number of samples to be retrieved. AP(i) denotes the
average precision of the ith retrieved sample.

3.3. Ablation Study

As shown in Figure 2, the single hash code learning network (a) can be further sub-
divided to part (b) and part (c) sub-networks, based on the parameter sharing theory of
multi-task learning. The turning point of the parameter sharing pattern can be in the differ-
ent convolutional layer or the fully connected layer, causing various multi-task learning
styles. When other experimental settings are the same, in order to simplify the training,
we remove the CAM and choose the best model results in both categories for compar-
ison. Taking the dataset NUS-WIDE as an example, DMTH-Conv and DMTH-Fullcnt
represent the optimal model split at the convolutional and fully connected layers, respec-
tively, taking the retrieval accuracy on the collection of hash codes {16, 32, 48, 64} after the
model convergence.
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Figure 2. Different ways of parameters sharing. The subfigure (a–c) represents three types of struc-
tures respectively: single-task networks, networks split at the convolutional layers, and networks
split at the fully connected layers.

In Table 2, the bolded value indicates the optimal performance, and observations
demonstrate that the optimal of splitting at the fully connected layer is enormously better
than that at the convolutional layer. One possible reason is that the shared learning of
more detailed shallow features contributes to learning the last high-level representations.
Therefore, we choose to split the architecture at the first fully connected layer to form a
multi-branch structure.

Table 2. Multi-task learning split validation experiments on NUS-WIDE.

Split Method
NUS-WIDE

16 bits 32 bits 48 bits 64 bits

DMTH-Conv 0.610 0.684 0.725 0.768
DMTH-Fullcnt 0.740 0.771 0.793 0.801

Multi-task learning and attention module are the core components of the ADMTH.
To verify its effectiveness, we conduct multi-task learning and attention module ablation
experiments. It should be noted that to simplify training for the effective experiment of
multi-task learning, we only compare the multi-branch network (with the attention module
removed) and the single-branch network (with the multi-branch network and consistency
loss and attention mechanism removed), respectively, taking the retrieval accuracy on
the collection of hash codes {16, 32, 48, 64} after the model convergence similarly. Both
experiments are performed on NUS-WIDE dataset.

Figure 3 shows a comparative experiment of simultaneous generation of multiple
lengths hash codes via multi-task and decentralized generation of a set of corresponding
hash codes via single-task, respectively. The results indicate that simultaneously learning
multiple length hash codes with the optimization of PLoss and CLoss could better excavate the
potential semantic relationship among these, further enhancing the image representation
capability. Figure 4 demonstrates the significance of introducing the channel attention
module, which manifests that the learning of shallow features is directly related to that
of the final high-level representation, making the module better emphasize fine-grained
information among image categories.
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Figure 3. Multi-task learning ablation experiment on NUS-WIDE.

Figure 4. Attention mechanism ablation experiment on NUS-WIDE.

3.4. Time Complexity and Training Efficiency

We also introduce the time complexity analysis and training efficiency comparison
experiments to certify the time efficiency of multi-task learning. We use TC(·) to re-
veal the time complexity of the method. Accordingly, given a maximum length Lmax
of the hash code, the TC(ADMTH) for obtaining it is O(ncL2

max), where c and n are the
number of labels and samples, respectively. The TC(ADMTH) for learning the projec-
tion Q is O(ndLmax + nd2), where d denotes the input dimension. In summary, the final
TC(ADMTH) for training multi-hash codes is O(ncL2

max + nd2).
Furthermore, based on the above-mentioned multi-task ablation experiments, we

respectively record the time of training 16 bits, 32 bits, 48 bits, and 64 bits hash codes for
single-task learning. Correspondingly, recording the time of multi-task trains a set of hash
codes (16 bit, 32 bits, 48 bits, and 64 bits). It is worth noting that both of them converge
within 150 epochs. For the fairness of comparison, we use 150 epochs as a node and record
the training time every 10 epochs, calculating the average training time within 150 epochs.
As shown in Table 3, the bolded value indicates the optimal performance, and the average
duration of multi-task learning to train multiple lengths binary codes is more time saving
than the total average duration of single-task learning. Hence, the time complexity analysis
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of multi-task learning and the comparison of training efficiency experiments show the
efficiency of multi-task learning, which greatly moderates computing power and time costs.

Table 3. Performance of training efficiency among the multi-lengths and the single-length hash codes.

Method Average Training Time (s)

Single-16 155.52
Single-32 158.66
Single-48 157.27
Single-64 158.34

Sum 629.79
Multiple-[16,32,48,64] 209.60

3.5. Comparison to Baselines

We chose nine deep hashing methods to evaluate our method on two datasets, in-
cluding CNNH [41], DNNH [42], DHN [17], HASHNET [43], DCH [16], MMHH [44],
ADSH [45], AMVH [46], and DMLH [31]. By adding a channel attention module and
extra experiments, ADMTH may be considered an upgrade to DMLH. Actually, DMLH
and ADMTH are multi-task learning methods, and the rest of the methods are single-task.
For two different learning methods, we compare their performance experiments on four
hash code lengths. The bolded value indicates the optimal performance, whereas the
underlined value indicates the suboptimal performance in Tables 4 and 5. The table values
are in percentage count units.

The results demonstrate that ADMTH achieves the optimum in most cases. On the
one hand, given that the ADMTH better learns the fine-grained information among image
categories by integrating the channel attention module, the contained semantic information
can be further enriched. On the other hand, the generated multi-length binary codes are
optimized by combining the two proposed losses to better mine the semantic relevance
involved in these hash codes, which contributes to the promotion of the single hash code
characterization capability. Interestingly, we have to admit that the ADMTH generally
achieves the optimal performance under the longer length condition. However, it is inferior
to a certain method when the number of bits is low. The most likely cause is that the
longer length hash code bits can guarantee the model to fully mine and train semantic
relationships among hash codes of multiple lengths.

Table 4. Retrieval precision compared with baselines presented in MAP on NUS-WIDE.

Method
NUS-WIDE

16 Bits 32 Bits 48 Bits 64 Bits

CNNH 59.0 60.0 63.5 67.0
DNNH 68.0 70.0 71.3 71.5
DHN 67.1 69.7 73.3 76.1

HASHNET 69.5 71.5 73.8 78.0
DCH 74.0 77.2 76.9 79.3

MMHH 77.2 78.4 78.0 82.1
ADSH 75.8 74.0 73.3 72.0
AMVH 72.3 74.7 75.5 77.3
DMLH 75.0 78.2 79.4 80.3

ADMTH 76.2 79.5 80.4 83.7
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Table 5. Retrieval precision compared with baselines presented in MAP on MS-COCO.

Method
MS-COCO

16 Bits 32 Bits 48 Bits 64 Bits

CNNH 56.0 56.9 53.7 50.6
DNNH 57.7 60.2 52.3 50.1
DHN 67.5 66.8 60.0 59.8

HASHNET 68.5 69.0 66.4 67.8
DCH 69.6 75.7 72.5 70.4

ADSH 57.8 63.7 60.0 56.7
AMVH 66.7 70.0 70.3 72.8
DMLH 65.7 70.6 70.0 72.2

ADMTH 67.7 72.8 73.0 74.2

3.6. Parameter Sensitivity

Figures 5 and 6 illustrate the tendency among precision and parameters α, β on NUS-
WIDE. Within a certain range, the model accuracy is proportional to the parameter value.
Once this stability interval is exceeded, the model accuracy is inversely proportional to the
parameter value. Eventually, the precision tends to be stable under the suitable range [1,50]
to α and range [0.1,10] to β ,respectively.

Figure 5. Parameter sensitivity curves of ADMTH to α.
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Figure 6. Parameter sensitivity curves of ADMTH to β .

4. Discussion

Generally speaking, by integrating all results of the above experiments, it is novel
and effective to cut into hashing from multi-task learning. Firstly, with the help of multi-
view theory to explore the potential correlation between different hash codes, the design
consistency loss narrows the semantic gap within a set of binary codes and fully improves
their representation ability. Secondly, a channel attention network is exploited which
enhances and renders image features from channel level, making them more discriminative.
Both constitute a good baseline for the ADMTH.

From a technical standpoint, the ADMTH needs some improvements to be consid-
ered in the future study. Specifically, the consistency loss is designed based on adjacent
branches,which describes a linear pairwise similarity relationship. Although this relation-
ship is concise and effective, it may also ignore some nonlinear topological relationships.
If we start from the relationship of graph theory, we can use the relationship of forest or
graph to describe the information interaction between multi-length hash codes. Secondly,
the fusion of CNN and attention mechanism makes up for the lack of learning of local
important information by CNN. Nevertheless, due to the increasing number of multimedia
data, this fusion way will inevitably lead to an increase in the parameters amounts. Further-
more, we may consider directly patching images and adapting the Transformer backbone
architecture. Meanwhile, the learned multi-length hash codes will be directly reflected in
the regional semantic information of the image instead of the entire image.

From the overall framework innovation of view, hashing methods can also be inte-
grated with other thinking methods more than just multitask learning. Under the condition
of making full use of the low-storage and high-performance characteristics of hashing,
absorbing more other mainstream advanced ideas, such as few-shot learning [47,48], re-
inforcement learning [49,50], transfer learning [51,52], contrastive learning [53,54], etc., so
that hashing can be more efficient and adapt quickly downstream tasks, this is undoubtedly
a major research direction in the future.

5. Conclusions

This paper develops a deep hashing method for image similarity retrieval, namely,
ADMTH (attention-oriented deep multi-task hash learning). Specifically, it is directed
by the channel attention module and multi-task learning-based hard-parameter-sharing
multi-branch network, simultaneously learning multiple lengths hash codes as image
representations. Among them, the introduction of channel attention module enriches the
fine-grained information in binary codes through implicit operations at the channel level.
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The application of multi-task learning makes the model generate multiple hash codes
simultaneously and mine associations among these by minimizing consistency loss and
pairwise similarity loss. Furthermore, the ADMTH is an end-to-end deep architecture, all
modules are embedded in a joint framework, and the parts are interrelated and provide
feedback to each other. The ADMTH was experimentally performed on two widely used
datasets, demonstrating its efficiency.

Discovered from this study, there is indeed a certain implicit correlation between hash
codes of different lengths, and multi-length hashing can be understood as a theoretical
application of multi-task learning. Then these hash codes can be regarded as relevant
features, which contributes to studying the precise characterization of the hash code from
complex semantic scenarios, thereby improving the efficiency and performance of retrieval
with hash code.

However, the proposed method still has two restrictions that should be explored
gradually in the next work: (1) Enable ADMTH to conduct more detailed study on the
relationship among multiple hash codes in a sample, and mine deeper semantic associations.
(2) Enable ADMTH to continue to explore the short-length hash code enhancement strategy
to promote images’ representational ability.
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