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Abstract: The processing of underwater images can vastly ease the difficulty of underwater robots’
tasks and promote ocean exploration development. This paper proposes a fast and efficient un-
derwater image enhancement model based on conditional GAN with good generalization ability
using aggregation strategies and concatenate operations to take full advantage of the limited hier-
archical features. A sequential network can avoid frequently visiting additional nodes, which is
beneficial for speeding up inference and reducing memory consumption. Through the structural
re-parameterization approach, we design a dual residual block (DRB) and accordingly construct a
hierarchical attention encoder (HAE), which can extract sufficient feature and texture information
from different levels of an image, and with 11.52% promotion in GFLOPs. Extensive experiments were
carried out on real and artificially synthesized benchmark underwater image datasets, and qualitative
and quantitative comparisons with state-of-the-art methods were implemented. The results show that
our model produces better images, and has good generalization ability and real-time performance,
which is more conducive to the practical application of underwater robot tasks.

Keywords: underwater image enhancement; generative adversarial networks; real-time application

1. Introduction

With the research and application of AUVs (autonomous underwater vehicles) and
ROVs (remote operated vehicles), ocean exploration has achieved many breakthrough
results. Over the last several years, many AUVs and ROVs have been applied to ship
hull inspection, underwater target detection and tracking [1,2], pipeline leak detection [3],
underwater cable inspection [4], and mineral prospecting. The preeminent underwater
image contains a wealth of semantic and construction information, which can help the
AUV to complete tasks, such as classification and recognition, efficiently and accurately [5].
However, due to the nonlinear attenuation of light caused by underwater particles, it is
difficult to obtain high-resolution underwater images despite the use of high-pixel cameras.
Therefore, image enhancement algorithms that can effectively enhance image perception
and statistical quality have become an urgent need. Its application can vastly promote the
development of ocean exploration.

Natural light is absorbed and scattered when propagating in seawater. Usually, red
light with the longest wavelength is absorbed the fastest, and the propagation distance is
the shortest. The green and blue light with a shorter wavelength will travel farther [6] but
will be affected by the scattering and refraction of particles in the sea during the diffusion
process. Based on this situation, images taken in shallow waters with natural light usually
show a blue-green color. In the deeper sea (over 60 m), there is no natural light at all [7].
Limited by the characteristics of natural light spreading, underwater images have problems,
such as color distortion, deviation, and uneven brightness [8]. We use image enhancement
technology to meet these challenges. Specifically, the raw image needs to be defogged and
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deblurred to make the color hue consistent with the ground truth, thereby improving the
image quality and highlighting useful information.

Many scholars have carried out in-depth research on the scattering phenomenon of
light propagating in the medium. Through the inversion of this process, the distorted
images (fogging, blurring, color unevenness, etc.) captured are operated to obtain the clear
images as the desired output [9]. Some research groups have applied part of these models
to underwater image-processing tasks and have made some progress. However, the atten-
uation parameter changes nonlinearly during the propagation process, so it is tricky to
estimate [10]. Specific parameters set in the model limit it only to be used in given scenar-
ios, resulting in insufficient robustness, so they do not satisfy the expected performance.
The methods based on deep learning, especially the rapid development of CNN and GAN,
provide scholars with another research idea. Some underwater image enhancement models
based on CNN and GAN train paired and unpaired images, extract local and global image
features, and optimize transmission maps. These models complete the image enhancement
process by generating the target image output by the generator of the network, which im-
proves the image contrast and color. Significant results have been achieved in enhancement.
Nevertheless, since real underwater image datasets are difficult to obtain directly, many
models are trained on artificially synthesized datasets, which usually cannot cope with
different types and have insufficient generalization ability. Considering the requirements of
underwater equipment for computing power and real-time processing, there is still room
for a model with high efficiency and strong generalization performance.

This article proposed an underwater image enhancement model FE-GAN (fast and
efficient generative adversarial network) to solve these problems. A hierarchical attention
encoder (HAE) can extract deeper features and texture information, while preserving the
overall structure of the image. Different loss functions based on texture and content are
combined with weights to constrain the generator and discriminator. Through the learning
of paired images, FE-GAN achieved end-to-end underwater image enhancement, which
effectively improved the image quality. Results on different datasets prove that the model
also has good generalization ability. The main contributions of this paper are as follows:

• We present a hierarchical attention encoder (HAE) to fully extract texture detail
information, and a dual residual block (DRB) can more efficiently utilize residual
learning to accelerate network inference.

• Through structural re-parameterization, we equate complex modules to simple con-
volutional layers, which accelerates the model during inference while maintaining a
good enhancement effect.

• Based on HAE and DRB, we construct a fast and efficient underwater image enhance-
ment network. Experiments on different datasets show that the enhanced image can
achieve higher PSNR and SSIM values, and the mAP value also achieved significant
results in the object detection task.

2. Related Work
2.1. Physical-Based Methods

As a crucial processing technology in the field of computer vision, image enhancement
can purposefully emphasize the holistic or partial characteristics of an image. It can also
expand the difference between the features of different objects in the image, improve the
image quality, enrich the amount of information, and strengthen the recognition effect.
The early underwater imaging model was presented by Ref. [11], where it is supposed
that the scattering coefficient of each color channel remains constant within the camera’s
sensitivity range. Later, the initial model was deeply simplified [12,13], thinking that the
attenuation coefficients in all color channels are consistent, and applying the simplified
model to underwater image restoration tasks. Inspired by these models, some researchers
assigned a value to the attenuation coefficient of each color channel, respectively, in the
model. Berman et al. [14] proposed a method to set different spectral profiles for relevant
water types. Spier et al. [15] adopted an approach for estimating the medium properties
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using only images of backscattered light from the system’s light sources. Their experimental
results show that the refined model can achieve a better effect.

Derya Akkaynak et al. [9] proposed the latest underwater imaging model; they at-
tributed the scattering of light to the direct transmission attenuation and the backscatter
attenuation. They are guided by scene reflectance and the spectrum of ambient light, which
is advantageous to color reconstruction and image enhancement. Combined with this new
model, the author of [16] proposed an underwater scene depth estimation method based on
image blur and light absorption, which can be used in image formation models to restore
and enhance underwater images. The refined imaging model will cause a vast increase
in the parameters that need to be estimated, and the computational complexity will also
increase sharply. Moreover, the physical-based method model is too singular to adapt to a
variety of complex underwater scenes. Thus, the generalization and real-time ability of the
application are greatly restricted.

2.2. Learning-Based Methods

In recent years, deep learning gradually occupied a leading position in the field of
computer vision with its high plasticity and universality. Inspired by this trend, some schol-
ars proposed to use the computing power of convolutional neural networks to calculate the
parameters that need to be estimated in the physical imaging model [16]. Then the deep
learning methods and physical models were combined for underwater image enhancement
research.Liu et al. [17] proposed an integration method based on the Akkaynak–Treibit
physical model [9]. Specifically, the physical model guides network learning and the net-
work model design for components and coefficients estimation. Liu et al. [18] introduced
VDSR (very-deep super-resolution reconstruction) into underwater resolution applications
and proposed an underwater ResNet model for enhancement tasks. This model made good
progress in automatic color enhancement, dehazing, and contrast adjustment. Qi et al. [19]
proposed UICoE-Net, which introduced correlation feature matching units to provide rich
complementary information for a mutual enhancement between images in the same scene.

The emergence of the GAN (generative adversarial network) opened up another
path for image enhancement issues. However, the training process of GAN is usually
unstable. Refs. [20–22] proposed different loss functions to constrain the discriminator,
which effectively alleviates this situation. The conditional GAN proposed by the author
of [23] is suitable for image-to-image translation tasks and achieves the mission of using
images as conditions and generating corresponding output images.

For the existing synthetic and real underwater image datasets, many GAN-based meth-
ods have been proven to have achieved good results in underwater image enhancement.
Cycle-GAN [24] and Dual-GAN [25] learn the mutual mapping between the two domains
through the “cycle consistency loss” from unpaired data, ensuring that the network can
complete the image generation task through unpaired image datasets. IPMGAN [17]
proposed a new physical model integration network framework for underwater image
enhancement. Through network training, the parameters and coefficients of the image
degradation model are learned to reconstruct clear underwater images. FUnIE-GAN [26]
proposed a real-time underwater image enhancement model based on fully convolutional
conditional GAN, and formulated a multi-modal objective function. Experiments proved
that the model achieved good results in both image enhancement and underwater human
posture estimation. Zhou et al. [27] proposed a domain-adaptive learning framework,
embedding a domain adaptive mechanism to eliminate the domain gap. UW-GAN [28]
processes the single input image with a coarse-level network, then concatenates the result
with the input image, and sends it to a fine-level network for a generation.

The application scenarios of most existing models are still very restricted, and it is rare
to achieve good results in both real and synthetic underwater image datasets. Considering
that image enhancement can be applied to the actual scene of underwater robots in the
future, real-time performance is an indispensable part of model testing. We will explain
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the results of our model in terms of generalization ability and real-time testing in the
following section.

3. Proposed Model
3.1. Overall Architecture

In image-related tasks, the generator of GAN receives a random noise z, then gener-
ates an image G(z); the discriminator accepts G(z) to determine if the image is authentic
(D(x) = 1) or not (D(x) = 0) [29]. Therefore, in the training process of GAN, the goal of gen-
erator G is to generate images as real as possible to deceive discriminator D, and the target
of D is to distinguish whether the images generated by G are real or not. In the optimal state,
G generates a picture G(z) that is sufficient to “make it fake”, that is, D(G(z)) = 0.5 [30].
When the model converges, the images, both generated and real, have the same distribution.

As shown in Figure 1, we proposed a generative network G, which bypasses the
output of each encoder ei to the input of its mirror decoder di. This aggregated connection
can fuse limited hierarchical feature information, making the decoder use fewer parameters
to ensure the efficiency of the network. The encoder is preceded by an initial module
which consists of a convolutional layer with a kernel size of 4× 4, and a spatial maximum
pooling in a 3× 3 area with a stride of 2. This initial module can effectively remove some
redundant information by reducing the dimension, maintaining the invariance of features,
and also ensuring the integrity of the generated image. The decoder is followed by a final
module, which performs zero padding and upsampling operation on the 64× 64 images
twice. After that, the final output image is transferred to the discriminator along with the
ground truth image. The Markov discriminator [23] is adopted in our model.

Figure 1. Generator of the FE-GAN.

3.1.1. Generator

The generator adopts the information multi-distillation module method to fuse the
information of the encoder and its mirror decoder, improve the feature representation
via the attention mechanism, and aggregate the hierarchical features. The details of the
hierarchical attention encoder (HAE) are shown in Figure 2. Each encoder contains two
basic modules composed of the ERB and residual block. To construct the relationship
between local signals, we stack the ERB and ReLU operator. Batch normalization (BN) can
capture the global context during training while incorporating it into convolutions during
inference [31]. Although the dense residual block will help the generator to capture global
information in the spatial dimension and adaptively focus on discriminative information,
the skip connection introduces additional memory consumption and slows down inference.
The enhanced residual block (ERB) [31,32] based on structural re-parameterization can
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effectively solve this problem. As shown in Figure 3, ERB is composed of two dual residual
blocks (DRB) in series, which are applied for deep feature learning. The residual module
can provide a more stable gradient during the backpropagation of the training and avoid
gradient disappearance. During inference, we equate DRB to a 3× 3 convolution layer
to reduce memory consumption and accelerate the model. Ultimately, the encoder learns
512 feature maps of size 8× 8. The decoder (d1, d2, d3, and d4) uses a convolution and
deconvolution structure in series, as shown in Figure 4. This Conv-Deconv module has
been proven to be effective in super-resolution tasks [33], which can minimize the potential
artifacts generated during the upsampling process. Meanwhile, to reduce the computational
complexity and increase the weight of discriminant information, the number of channels in
B is reduced to 1/4 of the original. This multi-stage convolutional connection facilitates
gradient propagation and assists in training deeper networks. Features from multiple levels
can be integrated using cascading mechanisms at local and global levels. The hierarchical
pyramid structure can reconstruct residuals of different resolutions, and the local and global
cascading mechanism also contributes to boosting expressive ability.

Figure 2. The overall structure of the HAE. (a) The connection structure of the HAE, which consists
of two basic blocks in series. (b) The specific connection of each network layer in basic block.

Figure 3. (a) The structure of the basic block in the encoder. (b) Structure of DRB, which consists of
three convolutional layers, equivalent to a 3× 3 convolutional layer during inference; (c) ERB, which
consists of two DRBs.
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Figure 4. The overall structure of the decoder is composed of the connection of conv and deconv
structures. The processing result is added with the output of the mirrored encoder.

3.1.2. Discriminator

For the discriminator, we use a Markov discriminator [23], which is similar to that in
the literature [26]. This discriminator can distinguish the true and false of the N × N block
in the image, and the N here can be much smaller than the real size of the image so that
the network has fewer parameters, runs faster, and can be applied to images of any size.
Moreover, the three consecutive discriminator blocks maintain a certain high resolution
and high detail for ultra-high resolution and image clarity in style transfer. The details of
the discriminator are shown in Figure 5, and the input is set to 256× 256× 6. There are a
total of four modules, each of which performs convolution operations with a kernel size of
4× 4 and a stride of 2 on the image, followed by the BN and LeakyReLU layers. The final
output is 16× 16× 1, representing the average effective response of the discriminator.

Figure 5. Discriminator, each discriminator block consists of conv, BN, LeakyReLU in series, where A
is the original image and B is the result produced by the generator.

3.2. Objective Function Formulation

The conditional generative adversarial network introduces additional auxiliary infor-
mation and can learn the mapping G : {X, Z} → Y. The objective function expresses as

LcGAN =EX,Y[logD(Y)] + EX,Y[log(1− D(X, G(X, Z)))] (1)

where the generator G tries to minimize LcGAN , and the discriminator D tries to maximize
it [34]. Therefore, a game state is formed, which is

GS = argminGmaxDLcGAN(G, D) (2)
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To further improve the quality of the generated image, we introduce the pixel-level
and image-level loss functions into the objective function formulation.

Pixel-level: Existing research shows that the L1 loss can efficiently capture high-frequency
information in images. On the one hand, measure the pixel value between the real and
generated image, ignoring the difference between the adjacent pixel values; on the other hand,
the introduction of blur can be avoided, making G focus more on the color distortion of the
image, and produce more realistic results. The water medium absorbs different wavelengths
of light disparity, and the suspended particles have the effect of absorbing and scattering light,
so most of the underwater images appear blue-green. Therefore, to make the enhanced image
have a similar color style to the natural image, we add the L1 loss to the objective function:

L1 =
1
N

N

∑
i=1
|Yi − G(Xi)| (3)

where Y represents the real image, and G(X) represents the image generated by G.
Image level: Inspired by [35,36], according to the activation function generated by the

ReLU layer of the pre-trained VGG-19 network, we define the content loss at the image
level. This loss ignores the differences between per-pixels, encourages them to have similar
feature representations in terms of content and perceived quality, and ensures that the
image generated by the G and the real image have similar content. The formula for this
loss function is as follows:

Lcon(G) = EX,Y,Z[‖Φ(Y)−Φ(G(X, Z))‖2] (4)

The model we proposed uses paired image training, and an objective function is
constructed for this purpose to guide G to generate an enhanced image that is highly
similar to the real image in color and overall content. D filters out and discards images
with different local textures and styles. Specifically, our model uses the following objective
function for paired image training:

Ltotal = argminGmaxDLcGAN + λ1L1 + λ2Lcon (5)

where λ1 = 0.7, λ2 = 0.3 respectively represent pixel-level and content-level loss function
factors obtained based on experience.

4. Experiment
4.1. Dataset

In this section, we chose a relatively complete set of real and artificial synthetic
underwater images to test the enhancement effect of the proposed model.

4.1.1. EUVP Dataset

In this dataset, part of the images are collected by seven different camera equip-
ment; the other part comes from images captured in YouTube videos. It was proposed by
Ref. [26], which contains three different categories: underwater_dark (5550 pairs), under-
water_imagenet (3700 pairs), underwater_scenes (2185 pairs). The ground truth used for
reference is generated by the trained CycleGAN [24]. Here, we use 3 different classifications
of image pairs for training, another 515 images, and their corresponding reference images
for testing.

4.1.2. ImageNet Dataset

This dataset uses the images with good brightness and visibility collected from Im-
agenet as ground truth. Similar to the EUVP dataset, using the trained CycleGAN [24]
to degrade the ground truth images to generate distorted images, a total of 6128 pairs of
images makes this dataset. In this experiment, we randomly selected 5500 pairs of images
for training and the remaining 628 pairs for testing.
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4.1.3. Mixed Dataset

Due to the lack of real underwater images, Silberman et al. in [37] proposed a synthetic
underwater image dataset NYU-v2. The distorted images are generated based on the
underwater image model and image synthesis algorithm. This dataset has generated
the ocean (I, IA, IB, II, III, where Type I is the clearest, Type III is the most turbid) and
coastal (1, 3, 5, 7, 9, where Type 1 is the clearest and Type 9 is the most turbid) types of
images. In addition, UIEBD is a dataset composed of 890 real underwater images with
their corresponding reference images [38]. In this experiment, we randomly selected 1250
pairs of images from the NYU-v2 dataset, and 800 pairs from the UIEBD dataset, then
mixed them for training. The remaining 90 pairs of images from UIEBD were used as
the test set Test-R90. There are 60 real underwater images without reference in UIEBD,
which are severely distorted and difficult to restore. We also named them Test-C60 for
this experiment.

4.2. Implement Details

We used Pytorch 1.8.0 to implement the FE-GAN model. Due to the limitation of
memory, all pictures were resized to 256× 256 before training, which can also preserve
global information better. For each dataset, 200 epochs with a batch_size of 8 were trained
on an NVIDIA GeForce RTX 2060 graphics card. In the training process, we used Adam
as the optimizer. Now, we will analyze the experimental results in both qualitative and
quantitative aspects.

4.3. Qualitative Evaluation

We apply the FE-GAN model to real and artificially synthesized underwater image
datasets, process paired and unpaired distorted images, and compare them with the
corresponding ground truth images. Figure 6 shows some examples of the FE-GAN model
in the EUVP dataset. It can be seen that our model effectively improves the contrast of the
distorted image and makes the overall color more vivid. Moreover, it also improves the
sharpness, so the image appears clearer. Here, we selected several state-of-the-art models.
Among them, pix2pix [23], ResGAN [39], UGAN [40], FUnIE-GAN [26] are models based
on the learning method, Mband-En [41] and Uw-HL [42] are physical-based models. As can
be seen from Figure 7, the images generated by the physical-based models (Mband-En and
Uw-HL) have over-saturated brightness and over-exposure, simultaneously, and the whole
image presents red and yellow hues. The background of the image generated by ResGAN
is too dark, and the contrast is not distinct; UGAN and FUnIE-GAN are not thorough
enough to deal with the blue-green hues of the distorted image, so the background is still
light green.

Figure 6. Several generated results of the EUVP dataset.
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Figure 7. Comparison results with Mband-En, Uw-HL, Pix2Pix, ResGAN, UGAN, FUnIE-GAN on
the EUVP dataset.

For the ImageNet dataset, we randomly selected 628 pairs of real underwater images
for testing. Figure 8 shows a part of the test results. Through the processing of our FE-GAN
model, the generated image effectively repairs the overall blue-green hue, and the entire
brightness of the image is improved. The enhanced image effectively restores the red light,
which is absorbed fastest, better distinguishes the background and foreground, and the
overall image is clearer. We also selected several state-of-the-art learning-based models,
UWCNN [43], CycleGAN [24], UGAN [40], IPMGAN [17], and compared them with our
experimental results. As can be seen from Figure 9, the image generated by UWCNN is dark
overall, but some areas are too bright to highlight the pivotal areas in the image. CycleGAN
and UGAN have poor repair effects on green hues, and obvious traces of the original
image can still be seen in the background. The sharpening effect of the image generated by
IPMGAN is not good, and the holistic image is pale yellow and not clear enough.

Figure 8. Generated results of the ImageNet test set.

Figure 9. Comparison results with UWCNN, CycleGAN, UGAN, IPMGAN on the ImageNet dataset.
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To further verify the generalization ability of FE-GAN, we selected 990 images from
the artificially synthesized dataset for testing and compared them with the corresponding
ground truth images. Figure 10 shows the effect of partially generated images. The overall
hue of the image generated by FE-GAN is close to the ground truth. At the same time,
the repair effect of some overexposed areas in the distorted image is also better. We can
see more texture information from the restored image. Considering the complex layout of
the images in the dataset, the holistic effect of the enhanced image can meet the practical
applications. However, it has to be mentioned that whether it is a real or artificial dataset,
our model does not perform well for images with insufficient light. It cannot restore the
brightness and details of the image very well, and the enhanced image is still relatively dark.

Figure 10. Generated results of the synthetic dataset.

4.4. Quantitative Evaluation

To quantitatively analyze the enhancement effect of the FE-GAN model on the paired
underwater image, we choose PSNR (peak signal-to-noise ratio) and SSIM (structural
similarity) as reference indicators. PSNR is an index used in the image field to measure the
quality of reconstructed images, which is defined by taking the logarithm of MSE (mean
squared error). Given a generated image I of size m× n and its corresponding ground
truth image K, their MSE is expressed as

MSE =
1

mn

m−1

∑
i=1

n−1

∑
j=1

[I(i, j)− K(i, j)]2 (6)

Since we resized the image before the experiment, the values of m and n are both 256.
The definition of PSNR is as follows:

PSNR = 10log10
MAX2

I
MSE

(7)

where MAXI represents the maximum possible pixel value of the image, where each pixel
is represented by 8 in binary, so MAXI = 28 − 1 = 255.

SSIM is a metric used to measure the similarity of images, and it can also be used
to judge the quality of images after compression. It is mainly composed of three parts:
luminance, contrast, and structure contrast. These are expressed as follows:

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
(8)

c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2
(9)
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s(x, y) =
σxy + c3

σxσy + c3
(10)

where, the µx, µy represent the mean value of x, y; σ2
x , σ2

y represent the variance of x, y;
and σxy represent the covariance of x, y. c1 = (k1L)2, c2 = (k2L)2 are two constants, and L
represents the range of pixel values [0, 255]. The definition of SSIM is as follows:

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(11)

UIQM is a non-referenced underwater image quality evaluation metric based on
the human visual system excitation, mainly for the degradation mechanism and imaging
characteristics of underwater images. Using UICM (color measurement index), UISM
(sharpness measurement index), UIConM (contrast measurement index) as the evaluation
basis. UIQM is expressed as a linear combination of these three indexes. The larger the
value, the better the color balance, clarity, and color of the image. UIQM expresses as
follows:

UIQM = c1UICM + c2UISM + c3UIConM (12)

where c1 = 0.0282, c2 = 0.2953, c3 = 3.5753 [44].
Table 1 shows the quantitative comparison results of our model and state-of-the-

art models on the EUVP dataset. We chose 1k paired images and tested PSNR, SSIM,
and UIQM, respectively. As can be seen from the table, our model achieved better results
in the two measurement indicators of PSNR and UIQM. SSIM achieves second place after
FUnIE-GAN among the learning-based methods. In general, after comparing with ground
truth images, the generated images of our model are better.

Table 1. Quantitative comparison results with the state-of-the-art methods in the EUVP dataset.

Model PSNR SSIM UIQM

Mband-EN [41] 12.11 0.4565 2.28
Uw-HL [42] 18.85 0.7722 2.62
Pix2Pix [23] 20.27 0.7081 2.65

ResGAN [39] 14.75 0.4685 2.62
UGAN [40] 19.59 0.6685 2.72

FUnIE-GAN [26] 21.92 0.8876 2.78
MFFN [45] 24.73 0.8456 2.32
FE-GAN 26.83 0.8779 2.87

In the ImageNet dataset, we randomly selected 5500 pairs of images for training
and the remaining 628 pairs for testing. Table 2 shows the test results of our model
with UWCNN [43], CycleGAN [24], UGAN [40], FUnIE-GAN [26], IPMGAN [17] on the
ImageNet dataset test set. Similarly, the PSNR value of the image generated by our model
reached the highest results.

Table 2. Quantitative comparison results with the state-of-the-art methods in the ImageNet dataset.

Model PSNR SSIM

UWCNN [43] 15.4190 0.6127
CyCleGAN [24] 22.3160 0.7464

UGAN [40] 18.6562 0.5702
FUnIE-GAN [26] 24.3204 0.8193

IPMGAN [17] 23.5439 0.8142
FE-GAN 24.5396 0.8106
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For the Mixed dataset, we selected Test-R90 (90 paired images) and Test-C60 (60 un-
paired images) as the test sets of paired and unpaired images respectively and compared
them with the same methods in qualitative evaluation. Both of these test sets are from
the UIEBD dataset, which is more challenging. These images were taken in a poor light
environment, and the overall number of this dataset is small, which brings a certain degree
of difficulty to training. Here, we selected UCycleGAN [46], WaterNet [38], UWCNN [43],
Unet-U [47], Ucolor [48], and FUnIE-GAN [26] models for comparison. Table 3 shows the
PSNR test results of Test-R90. Our model achieved the best value. Figure 11a shows some of
the test results. The image generated by our model can improve the clarity and brightness
of the image while retaining the overall layout, effectively improving the yellow-green hue
problem. Table 4 shows the test results of Test-C60. Since there is no reference image in
this dataset, we only chose UIQM as a comparison indicator. Similarly, our model achieved
better results. Figure 11b shows part of the generated image of Test-C60. The overall
brightness of the image is significantly improved, which will be helpful for the recognition
of underwater images and resource exploration.

Table 3. PSNR test results of Test-R90. FE-GAN achieved the highest value.

Model PSNR

UCyCleGAN [46] 16.61
Water-Net [38] 19.81
UWCNN [43] 16.69
Unet-U [47] 18.14
Ucolor [48] 20.63

FUnIE-GAN [26] 20.27
FE-GAN 20.68

Table 4. UIQM test results of Test-C60. FE-GAN achieved the highest value.

Model UIQM

UCyCleGAN [46] 0.91
Water-Net [38] 0.97
UWCNN [43] 0.84
Unet-U [47] 0.94
Ucolor [48] 0.88

FUnIE-GAN [26] 0.98
Framework [27] 0.99

MDP Framework [49] 0.97
FE-GAN 1.01

Figure 11. Generated results of Test-R90 (a), Test-C60 (b).
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The application of underwater image enhancement technology to underwater detec-
tion equipment is an important research direction. Several aspects should be taken into
consideration, such as FLOPs, number of parameters, and inference time during deploying
on resource-limited devices. We chose fps as a metric to measure inference time, which
expresses as

f ps =
f ramNum

elapsedTime
(13)

Table 5 shows the comparison results among FE-GAN, UGAN, and the more lightweight
network FUnIE-GAN. The amount of parameters of the FE-GAN model is much fewer
than that of UGAN. However, since the FE-GAN encoder is deeper than the FUnIE-GAN
network, the amount of parameters is slightly larger than FUnIE-GAN. Furthermore, due
to the structural re-parameterization module’s ability to speed up network inference and
reduce memory consumption, our model has the lowest FLOPs, which means that the
real-time performance is better. The fps indicators of FE-GAN and FUnIE-GAN both
exceed 200. In summary, the FE-GAN model can meet the current real-time requirements
of underwater detection.

Table 5. Real-time comparison results with UGAN and FUnIE-GAN.

Model FLOPs (G) Paramaters (M) fps (Hz)

UGAN [40] 18.143 54.4 93.1
FUnIE-GAN [26] 7.834 7.02 217.9

FE-GAN 2.84 11.476 204.1

For AUVs and ROVs, during underwater exploration activities, the purpose of im-
proving the image quality is to improve the accuracy of tasks such as object detection and
classification. We chose the pre-trained YOLOv5 as the object detection model and tested
the images before and after enhancement on the EUVP dataset. Part of the test results is
shown in Figure 12.

Figure 12. Object detection results on EUVP dataset.

The first line is the unprocessed original distorted images, and the second line is the
FE-GAN processed images. Compared with the original distorted image, the processed
image has a more natural tone and increased brightness, so the target in the image is clearer
and easier to identify. The results in the second, fifth, and last columns show that the fuzzy
target can be detected in the processed image. Other examples show that the recognition
error of the processed image is alleviated.

In addition, we downloaded the Aquarium Combined dataset, then trained and tested
this dataset on the same hardware environment as the FE-GAN enhancement experiment.
The object detection test was performed before and after the FE-GAN processing. Here, we
chose YOLOv5 as the object detector. Figure 13 shows part of the test results. The overall
blue tone of the original image is obvious, and the processed image effectively repairs this
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problem, making the image closer to the ground truth situation. Figures 14–16 are the
precision curve and confusion matrix trained on YOLOv5 for this dataset.

Figure 13. Object detection results on Aquarium Combined dataset.

Figure 14. PR-curve and R-curve.

Figure 15. F1-curve and P-curve.
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Figure 16. Confusion matrix on Aquarium Combined dataset; the darker the color, the higher the
detection accuracy.

In the Aquarium Combined dataset, there are seven types of targets to be detected: fish,
jellyfish, penguin, puffin, shark, starfish, and stingray. Here we used mAP (mean average
precision) as a reference metric. Table 6 shows FUnIE-GAN, UGAN, Pix2Pix, and FE-GAN
in the above different types of mAP, and the average mAP of all classes. FE-GAN obtained
the highest mAP value in the five categories of detection, and the average mAP of all classes
also reached 0.672, which is the highest value among the above models.

Table 6. The mAP comparison results of object detection with the state-of-the-art methods in the
Aquarium Combined dataset.

Model Fish Jellyfish Penguin Puffin Shark Starfish Stingray All Classes

FUnIE-GAN [26] 0.587 0.631 0.664 0.406 0.657 0.799 0.674 0.631
UGAN [40] 0.599 0.588 0.683 0.411 0.709 0.738 0.707 0.634
Pix2Pix [23] 0.580 0.587 0.662 0.416 0.697 0.775 0.652 0.624

FE-GAN 0.622 0.601 0.720 0.498 0.740 0.780 0.747 0.672

In the case of insufficient natural light, the image obtained with the artificial light
source itself is extremely distorted. Although the brightness and details of the image
enhanced by FE-GAN were restored partially, there is still a large gap from the image style
under natural light, which is also the focus of future research.

5. Ablation Study

We conducted feature fusion experiments between the encoder and decoder utilizing
concatenate and aggregation, respectively. Isola et al. [23] used concatenate in the con-
nection of encoder and decoder in U-Net, achieving encouraging results in the task of
generating images of conditional GAN. In [26,50], concatenate is further proven to have
better results in underwater image enhancement tasks. The aggregation method increases
the amount of information describing the characteristics of the image, which means only
the amount of information in one dimension is increasing [51]. In this case, Equations
(14) and (15) (Xi, Yi represent the two input channels respectively) show that the aggre-
gation method can greatly reduce the amount of computation, which is very beneficial
for FE-GAN. We used the concatenate and aggregation methods to carry out information
fusion experiments between the encoder and decoder. Table 7 shows the impact of the two
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methods on the inference speed with 44.31% promotion in GFLOPs and 3.19%reduction in
number of parameters, and fps also increased 19.3%. To further verify the effectiveness of
this choice, we tested the comparison network on the test set of the ImageNet dataset (628
paired images) and Test-R90 (90 paired images) of the Mixed dataset. The experimental
results are shown in Tables 8 and 9 below.

Zconcat =
c

∑
i=1

(Xi ∗ Ki) +
c

∑
i=1

(Yi ∗ Ki) (14)

Zadd =
c

∑
i=1

[(Xi + Yi) ∗ Ki] (15)

Here, we also chose PSNR and SSIM as the evaluation indicators that regard aggre-
gation and concatenate as the connection mode between the encoder and the decoder.
Under the same experimental conditions, the test results using the aggregation operation
method perform better in both PSNR and SSIM values. It should be pointed out that be-
cause the training set and test set of the Mixed dataset are relatively small, the experimental
gap here is not very large.

Table 7. Experimental results of information fusion on model inference speed using concatenate
and aggregation.

Fusion Method GFLOPs Parameters fps

add 2.84 11.476 204.1
concatenate 5.1 11.854 171.0

Table 8. Test results of the ImageNet dataset. Using aggregation and concatenate connection between
encoder and decoder.

ImageNet Add Concatenate

PSNR 24.5396 22.8863
SSIM 0.8106 0.7178

Table 9. Test results of the Mixed dataset. Using aggregation and concatenate connection between
encoder and decoder.

Test-R90 Add Concatenate

PSNR 20.6837 20.2470
SSIM 0.8074 0.6804

In recent years, many learning-based methods used L1, L2, and smooth L1 loss to
design the objective function. All of these loss functions have been proven to achieve
significant results in different tasks. We used these three different loss functions to design
the objective function of the entire model from the pixel level. Similarly, we conducted
experiments on two different datasets, and the results are shown in Tables 10 and 11.
Smooth L1 loss solves the problem that the derivative is not unique at 0 and optimizes the
convergence ability of the model, and it avoids the shortcomings of L2 loss increasing with
the square error. For low-level tasks, such as image enhancement, the stable gradient of L1
loss is more conducive to the convergence of the model and the optimization of training.
Smooth L1 loss is more suitable for tasks such as object detection.
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Table 10. Results of different loss functions under the ImageNet dataset.

ImageNet L1 loss L2 loss smooth L1 loss

PSNR 24.5396 24.1444 24.4511
SSIM 0.8106 0.7249 0.7095

Table 11. Results of different loss functions under the Mixed dataset.

Test-R90 L1 loss L2 loss smooth L1 loss

PSNR 20.6837 19.6374 20.3014
SSIM 0.8074 0.6411 0.7859

Structural reparameterization is used in our encoder to speed up inference. As shown
in Figure 3, we equate DRB to a 3× 3 convolutional layer during inference, for which we test
the performance of the model on different datasets, respectively. Table 12 lists the results of
the comparative experiments. The method using structural reparameterization performs
better on two datasets, and its inference speed does increase, with 11.52% promotion in
GFLOPs and 0.78% reduction in number of parameters.

Table 12. FE-GAN (without-re) represents the model used in the inference stage. The metrics under
the dataset represent PSNR and SSIM, respectively.

- FE-GAN (Training) FE-GAN (Inference)

EUVP 25.78/0.7568 26.83/0.8779
ImageNet 24.67/0.7538 24.54/0.8106
Test-R90 20.31/0.7196 20.68/0.8074
GFLOPs 3.21 2.84

parameters(M) 11.566 11.476

6. Conclusions

In this paper, we proposed an underwater image enhancement model based on a con-
ditional generative adversarial network. Structural reparameterization methods improved
the ability of the model to extract features while also speeding up inference. The color,
brightness, and contrast of the generated image were distinctly improved. Simultaneously,
our model conducted qualitative and quantitative analysis experiments on real underwater
images and artificial synthetic image datasets respectively, which effectively demonstrates
the generalization ability of the model. Compared with the state-of-the-art methods, our
model achieved better results. Nevertheless, our model does not perform well in enhancing
darker images, especially in recovering details and textures, which means that it is still
challenging in deeper waters, where artificial light sources are needed. Next, we will try
to optimize more network modules with structural reparameterization to improve the
enhancement effect of the model on images with insufficient brightness, and focus on the
practical application in underwater object detection and scene analysis.
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