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Abstract: With the rapidly increasing demands of e-government systems in smart cities, a myriad of
challenges and issues are required to be addressed. Among them, security is one of the prime concerns.
To this end, we analyze different e-government systems and find that an e-government system built
with container-based technology is endowed with many features. In addition, overhauling the
architecture of container-technology-driven e-government systems, we observe that securing an
e-government system demands quantifying security issues (vulnerabilities, threats, attacks, and
risks) and the related countermeasures. Notably, we find that the Attack Tree and Attack–Defense
Tree methods are state-of-the-art approaches in these aspects. Consequently, in this paper, we
work on quantifying the security attributes, measures, and metrics of an e-government system
using Attack Trees and Attack–Defense Trees—in this context, we build a working prototype of an
e-government system aligned with the United Kingdom (UK) government portal, which is in line
with our research scope. In particular, we propose a novel measure to quantify the probability of
attack success using a risk matrix and normal distribution. The probabilistic analysis distinguishes
the attack and defense levels more intuitively in e-government systems. Moreover, it infers the
importance of enhancing security in e-government systems. In particular, the analysis shows that an
e-government system is fairly unsafe with a 99% probability of being subject to attacks, and even
with a defense mechanism, the probability of attack lies around 97%, which directs us to pay close
attention to e-government security. In sum, our implications can serve as a benchmark for evaluation
for governments to determine the next steps in consolidating e-government system security.

Keywords: e-government; security; quantification; container; Docker; Kubernetes; Attack Tree;
Attack–Defense Tree; risk matrix

1. Introduction

An electronic government or e-government is a crucial part of a smart city that makes
use of ICT to change the relationship between citizens and governing bodies, enterprises,
and other government departments, while focusing on improved government service
qualities, closer interactions, and more effective governmental operations. This helps to
improve the quality of public services and to enhance the security and privacy of data,
applications, and services [1,2].

We find that almost all the cities in the world currently support online services through
e-government portals. In particular, e-government portals provide online services to citi-
zens via different websites and mobile applications using modern technologies, such as the
internet, cloud computing on computers, and mobile devices (for example, Amsterdam

Electronics 2023, 12, 1238. https://doi.org/10.3390/electronics12051238 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12051238
https://doi.org/10.3390/electronics12051238
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0008-7797
https://orcid.org/0000-0002-2310-5468
https://doi.org/10.3390/electronics12051238
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12051238?type=check_update&version=2


Electronics 2023, 12, 1238 2 of 34

Smart City (https://amsterdamsmartcity.com/ (accessed on 16 January 2023)) [3,4], the UK
government portal (https://www.gov.uk/ (accessed on 16 January 2023)) [5,6], and Sin-
gapore government Citizen Connect portal (https://www.citizenconnectcentre.gov.sg/
(accessed on 16 January 2023))).

Particularly, the goal of a smart city and an e-government system [1,7–10] is to ensure
better quality of life for the stakeholders. As we observe, there is a wide-spread adoption
of e-government services; however, e-government systems and their services encounter
myriad challenges. Specifically, the challenges include accessibility, efficient responses,
reliability, availability, security, privacy, usability, maintainability, and reusability. They
also suffer from a low penetration of ICT, particularly in developing areas [1,2]. Therefore,
a good ICT infrastructure is important to have for effective and efficient facilitation of
government information flow.

On the other hand, the technical challenges encountered by e-governments include a
high availability of systems and services; the storing and processing of mammoth amounts
of data; the security of systems, applications and services; the privacy of data and services;
the scalability of applications and services; the load-balancing of applications and services;
high performance expectations; and disaster recovery. Therefore, we need to rise to the
aforementioned challenges of e-government and address the associated issues.

In this paper, we conduct our analysis on the enhancement of security of e-government
systems, applications, and services. We dive deeply into the underlying technologies of
e-government to understand the architectures and principles to achieve our goal. We
observe that the traditional computing architectures, strategies, and solutions are impotent
to fulfill the prevailing requirements and demands of smart governance.

Hence, the emerging technologies, such as containers (Docker [11–16], rkt [17,18],
and many others), container-orchestration tools (Docker Swarm [19–22], Kubernetes (also
known as K8S) [12,20,23], Nomad [20], and many others), and serverless computing [24,25]
(OpenFaaS [25,26], Kubeless [25,27], OpenWhisk [25,28,29], and many others), undertake
these challenges and overcome them by using this advanced approach for computing [8,9,30,31].

We found that the UK government portal was developed with Docker, Kubernetes,
and Amazon Web Services (AWS), and the experience is more stable and consistent than
its previous version (formerly developed with hypervisor-based technology) [30,31]. In
addition, we see that Docker can help build a secure, intelligent, privacy preserving, cost-
effective, and efficient e-government system [8,9,30,31]. Moreover, integrating Kubernetes
and Serverless with the system helps to stabilize the system [32].

We focus on the theoretical and practical perspectives of container-technology-driven
e-government systems. In addition, we deep-dive into identifying the issues attached
to different e-government systems and addressing them. As stated earlier, in this paper,
we exclusively pay attention to the security aspects. As such, we particularly work on
quantifying the security of e-government systems and services. Specifically, security (risk)
quantification is desired to be measured and reported—particularly in terms of financial
(loss) quantity.

In addition, it is essential to measure and report in terms of the quality of service, ser-
vice level agreement, privacy, integrity, safety, confidentiality, unreliability, unavailability,
downtime, vulnerability, threats, attacks, and more [33–39], which can help enhance the
quality of e-government systems and services end-to-end. To specify, among the various
aspects of security quantification, we carefully limit our discussion points to the quantifi-
cation of security attributes, measures, and metrics, i.e., the probability of attack success.
In achieving the goal, we explore the following specific areas in great detail:

• Analyzing and evaluating traditional and current e-government systems and services.
Understanding their underlying infrastructures and principles, and identifying the
challenges and issues attached with them (Section 3).

• Understanding the underlying architecture, principles, and applications of container
technologies (e.g., Docker and Kubernetes) toward the development of e-government
systems. In addition, empirically analyzing them toward the formation of the in-
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frastructure of e-government systems and deployment of applications and services
(Section 4).

• Understanding and analyzing the prominent and standard security quantification
mechanisms (for quantifying security attributes, measures, and metrics), such as
Attack Tree (ATree) [40,41] and Attack–Defense Tree (ADTree) [42–44]. In addi-
tion, carefully comparing and deciding on tools for modeling the Attack Tree and
Defense Tree (Section 2). Furthermore, introducing security risks, threats, attacks,
and vulnerabilities of Docker, Kubernetes, and serverless computing toward the
overall security of e-government systems and services (Section 4.6).

• Proposing a quantitative measure to logically compute the probability of risk (attack)
or countermeasures. Confining our analysis to be rational and rigorous in the context
(Section 5).

• Performing risk analysis for each layer of the e-government system (specifically, we
follow the architecture outlined in Section 4.1) and, thereafter, computing the risk
probability of the whole system. Finally, analyzing how the quantification can reflect
the end-to-end enhancement of e-government systems and services (Section 6).

The rest of this paper is structured as follows. In Section 2, we show our efforts in
analyzing the related work dedicating to Attack Trees and Attack–Defense Trees. Section 3
presents the architectures, principles, and underlying technologies of certain prominent
electronic government systems. In addition, we comparatively analyze them regarding
the addressing of challenges and issues. Section 4 presents a simplified architecture of a
container-technology-driven e-government system. Note that it is based on our study of
different container-based e-government systems and smart governance.

Section 4 briefly presents the possible/potential security risks, threats, and vulnerabili-
ties of container technologies toward the security flaw analysis of the container-technology-
based e-government systems. To this end, Section 5 demonstrates the proposition of a novel
probability quantification method toward security analysis. Section 6 explores the security
quantification of each layer in e-government systems. We calculate the risk probability of
the entire system and have a discussion about the results. In the last section, our conclusions
and future work are presented.

2. Related Work

As stated earlier, in this paper, we study the security quantification of e-government us-
ing viable mechanisms, and thus we begin with introducing the commonly used approaches
for analyzing security issues. We find that the notable approaches are Attack Trees
(ATrees) [40,41], Attack–Defense Trees (ADTrees) [42–44], Fault Trees [33,34,45],
Reliability Block Diagrams [33,34], Threat Models (Threat Models https://owasp.org/
www-community/Threat_Modeling (accessed on 16 January 2023)) [46], Risk Trees (Risk-
Trees https://risktree.2t-security.co.uk/) (accessed on 16 January 2023) [47], and Bayesian
Networks [48–51], among others.

We observe that the aforementioned approaches perform similar kind of analyses
dealing with security issues, threats, vulnerabilities, exploits, attacks, and risks. Notably, an
Attack Tree is used for modeling the possible attack scenarios or threats in a system [40,41],
and an Attack–Defense Tree [42–44] helps us to model the defense of those attacks or
threats. On the other hand, a Fault Tree helps us analyze the root causes of a failure while
computing the unavailability, downtime, and so on [33,34,45].

In contrast, a Reliability Block Diagram is specialized for analyzing component
reliability, which may lead to the success or failure of a system [33,34]. Similarly, a Threat
Model works on analyzing security threats and/or the absence of associated defensive
measures [46]. Likewise, a Risk Tree, built on the Attack-Tree method can help us monitor
security risks [47]. Similarly, a Bayesian Network can help us perform fault analysis, safety
analysis, reliability modeling, risk analysis, risk prediction, and more [48–51].

Among the methodologies illustrated above, we choose the Attack Tree and Attack–
Defense Tree modeling techniques, since these are quite in line with our scope and well-
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established compared with others. Furthermore, as stated earlier, we perform quantitative
and qualitative analyses concerned with security, such as Attack Tree and Attack–Defense
Tree, are prominent for measuring the probability of attack and minimum cost of
attack. Notably, in this context, our goal is to quantify the probability of attack
success as stated earlier.

To this end, in this section, we perform a literature review to perceive the principles of
Attack Tree and Attack–Defense Tree . In addition, we analyze the popular and commonly
used tools and frameworks for modeling Attack Tree and Attack–Defense Tree. Moreover,
we analyze how the tools are used by the community in security quantification. Finally,
based on the analysis, we perform our security quantification.

2.1. Principles of Attack Tree and Attack–Defense Tree

Mauw et al. [52], 2005 offered a formalization of the concepts with a grounding on
attack suites. The formalization helps us to learn the principles of Attack Tree and Attack–
Defense Tree. In addition, we see how to use this method to model risks so that we can
build a tree correctly. In addition, we learn a more formal interpretation of Attack Trees.

Similarly, Terrance R Ingoldsby [53] analyzed threats using an Attack Tree. The au-
thor introduced a large set of samples to build attack scenarios and precisely showed the
quantitative analysis with a table and line chart. In addition, the author discussed the coun-
termeasures and controls. From the work, we can obtain a comprehensive understanding
of the Attack Tree, including the origins, concepts, structures, analysis, and calculations.
Notably, we can learn how to model threats in the context of a certain situation. It im-
mensely helps us utilize the Attack Tree and Attack–Defense Tree methods in constructing
attack scenarios for an entire system or an application.

2.1.1. Attack Tree

In 1999, Schneier came up with the Attack Tree (ATree) [40,41] to represent and evaluate
potential security risks on systems. He used graphical, mathematical, and structured
decision tree symbols to model possible attacks and systematically classified the ways a
system can be attacked. The Attack Tree is constructed from the opponent’s perspective.
Note that we play the role of an attacker in creating a lucid Attack Tree.

This is a multi-level tree composed of roots and leaves as shown in Figure 1 (no-
tably, the last node Countermeasure 1 is for defending against corresponding attacks—
particularly those not included in the Attack Tree). In an Attack Tree, the overall goal of
the attack is marked as the root node on the top of the tree. In contrast, leaf nodes are
sub-targets that an attacker may implement in order to execute an attack. Usually, when
we first create a model, we do not need to pay attention to how to protect the system.

Figure 1. Attack–Defense Tree structure.
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2.1.2. Attack–Defense Tree

The basic formalism of an Attack Tree does not consider the defense mechanism.
Therefore, the Attack–Defense Tree (ADTree) uses defense measures (also called counter-
measures) to expand the Attack Tree. This generates a graphical mathematical model of
multi-stage attacks with related countermeasures [42]. Note that a defense node is placed in
the Attack–Defense Tree, and an Attack–Defense Tree helps us study the effects of defense
mechanisms using measures, such as the attack/defense cost and attack probability. [43,44].

As such, each node belongs to an attacker (represented by a red ellipse) or a defender
(represented by a green square) as shown in Figure 1. A countermeasure is an action
to prevent an opponent from achieving the goal. This concept is used to explain the
relationship between an attacker who attempts to attack the system and a defender who
protects the system [42].

2.2. Tools for Modeling Attack Tree and Attack–Defense Tree

At the beginning of our research, we thoroughly investigated and carefully compared
some existing Attack Tree modeling tools. Then, we divided them into two categories:

• Commercial: One is commercial applications that require a fee, such as AttackTree+
from Isograph, SecurlTree from Amenaza Technologies, and RiskTree from 2T
Security.

• Open Source: The other is open source applications (for example, ADTool [54,55],
Ent [56], and SeaMonster [57]).

From these two sets of tools, we did not use the commercial tools since we would need
to pay for them. In our research, we decided to pick the best one from the open source
tools, and finally we selected the ADTool.

In Table 1, we show a comparison of the three aforementioned open-source tools so
that readers can more easily comprehend the differences among them. Principally, ADTool
is the most in line with our expectations and requirements.

Table 1. Attack Tree modeling tool comparison (open source).

Features
Names Ent SeaMonster ADTool

Last update
time May 2016 November 2016 November 2017

Operating
environment Only for Mac system No system limitations No system limitations

Functions of the
tool

1. Create tree with
text inputs
2. Saving and loading

1. Create tree by dragging
graphics in Palette
2. Saving and loading
3. Can set
countermeasures

1. Create tree with text
inputs
2. Saving and loading
3. Can set
countermeasures
4. Create tree by mouse
right clicks
5. Perform quantitative
analysis

2.3. Applications of Attack Tree and Attack–Defense Tree

Using the MyProxy system, a remote service that stores user proxy credentials, Saini
et al. built an Attack Tree to illustrate potential attacks to the system [58]. MyProxy is an
important security subsystem of Globus, a distributed computing paradigm. With their
practical, high-level guidance, we can understand how to attack a remote service system
and learn how to construct an Attack Tree in the context of cloud computing. Since our
study involves cloud technology, their work is very timely to help us build an Attack Tree
for breaching the security of distributed computing systems.
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Any internet application or system needs to ensure secured access, particularly for
binding government elections, which need to count every vote. To determine the precise
probability of a threat toward an internet voting system, Pardue et al. [59], built a threat
tree for the system. In their paper, they presented that there are three high-level threats for
voting systems: voting equipment attacks, voting process attacks, and insider threats.

According to these three types of threats, they modeled them as independent branches
in a threat tree and outlined the related threat sub-actions for each type of threat in a
numbered list format. The authors defined hierarchical subordination by indentation and
outline numbering. Most importantly, they used the OR and AND operations to indicate
whether the relationship between each threat was optional or not. Although their analysis
focused on a threat tree instead of an Attack Tree, it gives us inspiration for performing
an access attack on a system. From their work, we can also learn how to divide risks into
different classifications. This helps us to perform a similar analysis.

After analyzing several related works of Attack Trees in general applications or sys-
tems, we found that risk assessment quantification is also important for ICT systems with
cloud computing. Consequently, we observe that an Attack Tree can play a significant
role in this process. In this context, S Tanimoto et al. [60,61] performed an analysis. They
showed that, although cloud computing has been studied thoroughly in recent years, more
investigations have been focused on the services side rather than on the security side.

In their first study [60], they extracted the risk factors of the cloud based on the risk
breakdown structure (RBS) method [62,63] and proposed a group of measures. Based on the
results of a security risk investigation on cloud computing conducted by Jon Brodkin [64],
they conducted a risk analysis [60]. Their analysis helps us become aware of the risks of
cloud computing and comprehensively guides us in understanding cloud security from
a social viewpoint. However, in their first work, they did not provide a quantitative
evaluation of the risks.

To fill the gap, S Tanimoto et al. conducted further study [61] and proposed a risk
quantification matrix. In their extended study, they calculated a risk value for each risk
factor and its countermeasures with their risk formula. With the risk matrix method, they
simplified the quantification. The analysis helps us learn how to calculate a relatively
scientific and reasonable risk value for a risk in a quantification analysis. However, they
did not use an Attack–Defense Tree method to visualize the risks and measures.

We suggest that, in a sense, an Attack–Defense Tree can more intuitively help us
understand the ranks and relationships between various risks. In addition, it is essential to
have a fine granularity of the risk matrix. To extend this work, in our quantification, we
improve the risk matrix model from a 4-division to a 9-division cell.

Overall, we analyze a significant number of works in the context of modeling threats,
attacks, and vulnerabilities. The analysis helps us perform the security quantification of
e-government systems in an elegant manner.

3. Analysis of E-Government Systems

In this paper, we focus on analyzing the architecture of e-government systems of
different countries and cities, including Canada, the UK, the USA, China, Korea, and Ams-
terdam [3–6,65,66]. This helps us understand the architecture of real-world e-government
systems and helps us identify the challenges or issues associated with them. In addition,
we perform a literature review to realize the architecture of different e-government systems.
Consequently, we analyze the associated challenges and issues as well as how the systems
address them.

We find that the traditional e-government systems are attached to a myriad of chal-
lenges and issues, including single point of failure, poor availability, absence of disaster
recovery, inefficient deployment and scaling, expensive implementation, poor security
and privacy, and low performance. Now, we present two prominent e-government ar-
chitectures and explore how they help address the aforementioned challenges and issues.
The architectures are:
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• Container-technology-based e-government systems [8,30,31,67–72].
• Hypervisor-technology-based e-government systems [2,73,74].

3.1. Container-Technology-Based E-Government Systems

Our analysis over the real-world e-government systems shows that the UK government
portal was developed with container-based technology. Their tech blog states that Docker
is more stable and consistent than hypervisor-based technology [30,31]. We performed
a literature review to analyze the Docker-driven e-government systems and found that
it has better user experience, efficiency, cost-effectiveness, safety, privacy, security, and
more [8,67–72]. Most importantly, we found that container-orchestration frameworks, such
as Docker swarm, Kubernetes, and Mesos, are often used to monitor and manage the
underlying IT infrastructure and applications in smart cities and e-governments.

3.2. Hypervisor-Technology-Based E-Government Systems

We observe that some of the e-government systems have been built on top of hypervisor-
based technology, such as OpenStack (https://www.openstack.org/ (accessed on 16 Jan-
uary 2023)), a cloud management platform [75]. However, they are gradually migrating to
container-based platforms [8,30,31,67–72]. The OpenStack-based e-government architec-
ture is related to some of the aforementioned challenges. We know that hypervisor-based
virtualization has its drawbacks and limitations; therefore, OpenStack suffers the same.
To analyze this, we built an OpenStack cluster and found that it was tedious to deploy a
simple application. Most importantly, addressing the formerly stated challenges is complex,
not very efficient, and not optimal.

Our preliminary analysis shows that an e-government system can be designed and
built in a better way when adopting container-based virtualization. Therefore, we focus on
leveraging containerization and serverless computing to devise an e-government system.
Thereafter, we work on addressing the challenges and issues of the e-government systems.
All in all, we focus on building a secure, intelligent, privacy-preserving, cost-effective,
efficient e-government system using container-based technology since it provides better
support and ensures better quality of service.

4. Container-Technology-Driven E-Government Systems

In this section, we briefly demonstrate the architecture of container-technology-driven
e-government systems, deployment of a Kubernetes cluster (which helps us understand the
Kubernetes architecture freely), building a working prototype of an e-government system,
security quantification aspects, and security state and analysis in e-government.

4.1. Architecture of Container-Technology-Driven E-Government Systems

Our literature review on container-technology-driven e-governance finds that the
end-to-end architecture follows the bottom-up approach and can be divided into multiple
distinct layers [8,30,31,67–72,72] as shown in Figure 2.

Access Layer

E-Government Layer

Container Integration Layer

Core Infrastructure Layer

Figure 2. Architecture of a container-technology-driven e-government system.

• Core infrastructure layer: This is the first layer that manages and provides various in-
frastructural components. The component of this layer is an e-government data center.

https://www.openstack.org/
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• Container-integration layer: This is the second layer built on top-of the core infras-
tructure layer. In particular, the Docker container (Docker, rkt, and many others) is
integrated with the infrastructural systems, and the Docker cluster is built. Usually,
container-orchestration platforms, such as Docker swarm and Kubernetes, are used
to form a cluster. Further, serverless computing frameworks are also deployed in the
cluster to deliver services with minimal management effort.

• E-government layer: This is the third layer built on top of the cluster. This layer is in
charge of providing e-government services through various government portals and
websites. Docker images are built for the services and deployed following the features
of Docker. In addition, different data-persistent features are used for data storage and
processing. In addition, different databases can be integrated with the Docker image
for data processing.

• Access layer: This is the top layer of architecture of the e-government system. Users
can access the government services seamlessly with all platform support provided by
this layer. Since the containerized applications are light-weight, they can be readily
accessed from a thin client.

We found that, when using container technology, we can better address the challenges
and issues associated with availability, disaster recovery, deployment, scaling, rolling
update, expensive implementation, security, privacy, performance, and others. In addition,
we can manage and monitor the e-government systems and services efficiently. To evaluate,
validate, and consolidate our analysis, we built a Kubernetes cluster as discussed in the
following section and consequently performed the analysis.

As we know, Kubernetes is an open-source system by Google. It performs automated
deployment, scaling and managing containerized applications within and across computer
clusters. It is a production-grade container-orchestration platform that can easily manage
containers [12,23,76]. Kubernetes is the most popular and dominant container-orchestration
platform in the community [32]. In addition, we observe that Kubernetes has been used for
e-governance [67,68,70–72]. In this paper, we use the Kubernetes container-orchestration
framework for our analysis.

4.2. Building a Kubernetes Cluster with Kubeadm

Kubeadm is the official default installation method, which is for high-availability clus-
ter installation [77]. We observe that a cluster with Kubeadm can be used in a production
environment. For our analysis, we deployed a single master and two worker nodes in a
Kubernetes cluster using Kubeadm. Note that we can add as many nodes as we want (if
more nodes are required). We installed Kubernetes on top of Ubuntu VMs.

We built the Kubernetes cluster to empirically analyze the issues and the underlying
infrastructure of e-government systems and services. In the following section, we present
the Kubernetes architecture, which is the container-integration layer on top of the core
infrastructure of the e-government system. We deployed one of the most popular serverless
computing frameworks, OpenFaaS, with the Kubernetes cluster.

4.3. Kubernetes Architecture

After deploying the Kubernetes, we found a cluster. The cluster is composed of
multiple nodes and can be divided into two groups—master nodes and worker nodes.
Figure 3 is a holistic structure of Kubernetes.

The master node is the control unit of the cluster; it works with worker nodes, in-
cluding the sub modules, such as APIServer, Scheduler, Controller Manager, ETCD, and
Kubectl.Worker nodes are used to deploy applications in containers called pods. The com-
ponents of a worker node include Kubelet, Kube-proxy, Pod, ReplicaSet, Deployment,
and Secret.
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Figure 3. Kubernetes cluster architecture [78].

There are many other important components in Kubernetes that are useful for appli-
cation development, deployment, and maintenance. We refer to official documentation
of Kubernetes (https://kubernetes.io/docs/home/ (accessed on 16 January 2023)) for
the details.

4.4. Working Prototype of an E-Government System

As stated earlier, we analyze a set of current and prominent of e-government systems
to perceive their underlying structures and technologies. In sum, we observe that UK
government portal developed with Docker, Kubernetes, and Amazon Web Services (AWS)
is in line with our research scope. Notably, our Kubernetes cluster integrated with serverless
OpenFaaS is aligned with the UK Government portal, so we take it as our working e-
government prototype and perform security analysis on it.

4.5. Security Quantification Aspects

We found that, without adequate security measures, there can be huge revenue losses.
In addition, quality of service, service level agreements, privacy, integrity, security, confiden-
tiality, reliability, availability, downtime, vulnerabilities, threats, attacks, and many other
aspects are reduced [33–35,37,38,45]. Therefore, security (risk) quantification is important.
In particular, it is to be measured and reported in terms of:

• Financial (loss) quantity.
• Service level agreement, quality of service, privacy, confidentiality, integrity, safety,

reliability, availability, unavailability, downtime, vulnerability, threat, attack, and many
more.

To this end, security quantification is the defining, structuring, and quantifying security
toward measuring the effectiveness of security-related deployments. In particular, it is
the process of identifying security vulnerabilities, attacks, threats, and risks; assessing
them; and then validating them using mathematical modeling techniques to measure and
analyze the available security data. this is a mechanism to accurately represent the security
environment that can be used to infer informed security investments and viable measures
for risk mitigation [33–35,37,38,45,53,79]. Therefore, in our analysis, we focus on the factors
mentioned herewith. Notably, as stated earlier, in this paper, we work to quantify the
probability of attack success as demonstrated in the following sections.

4.6. Security in E-Government

E-government security is a prime concern in numerous aspects, including data, service,
and functions. Security flaws are associated with data leakage, denial-of-service attacks,
vulnerabilities in legacy functions, risks in over-privileged functions, and more. Therefore,

https://kubernetes.io/docs/home/
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security analysis is crucial in e-government. To preserve the security of the system (e-
government applications, services, and associated data), we should first analyze the security
vulnerabilities, threats, attacks, and risks of underlying technologies, such as Docker and
Kubernetes.

From the security structure of Docker and Kubernetes, we found that they provide fine-
grained security and strong physical isolation of containers. In addition, our study finds
that Docker containers are fairly secure and that they can defend themselves from different
external security attacks and internal security vulnerabilities, such as kernel exploitation,
poisoned images, compromised secrets, denial of service (DoS) attacks, man-in-the-middle
(MITM), ARP spoofing, leaky system calls, sharing roots, and file systems that are not
isolated [80–82].

However, we need to perform a thorough analysis, since new security threats and
vulnerabilities are reported every year. Note that the security vulnerabilities with a vul-
nerability score can be traced from the repository of CVE Details (The Ultimate Security
Vulnerability Datasource https://www.cvedetails.com/index.php (accessed on 16 January
2023)). A vulnerability score helps us compute the risk matrix for computing the probability
of attack or countermeasures as proposed in Section 5.1. The computation of the risk matrix
is shown in Section 6 while analyzing the probability of attack with an Attack Tree and
Attack–Defense Tree, specifically following the architecture, deployment, and principles
outlined in this section.

5. Measures for Security Analysis

As stated earlier, our research aim is to quantify security for the container-technology-
driven e-government systems, and thus our top priority is to obtain a measure to model and
quantify the risks or attacks. We need to extract or find potential risks or attacks through
vulnerabilities, and then we show them vividly and make them visible for our readers.
Finally, we chose to use the Attack–Defense Tree method because of its unique advantages
and ADTool for modeling as stated earlier.

Now, we need to consider how to quantify the risks or attacks when we construct the
tree. Specifically, we need calculate a risk value of a selected attribute domain, such as
the probability of success and minimal cost for the proponent. Therefore, a key
question is how to assign an appropriate value to a risk. Here, we propose a novel measure
to calculate a risk value in the probability of success attribute domain, in which the
value represents the probability of a risk as well as a successful attack. As far as we know,
we are the first to propose this quantitative measure and we elaborate it in the following.

5.1. Proposed Quantifying Measure

In our security quantitative analysis, we advance a new quantifying measure combin-
ing risk matrix, standard normal distribution, and probability density function,
to assess possibility of risks reasonably and scientifically. Our measure focuses on estimat-
ing possibilities, so among various attribute domains of Attack–Defense Tree method, we
narrow down our security quantification analysis to the probability of success domain.
The proposed quantification measure mainly consists of three steps:

1. Calculate the matrix value with respect to evaluation factors.
2. Normalize the matrix values into the standard normal distribution.
3. Find the probability according to the probability density function.

5.1.1. Risk Matrix

A risk matrix [83] is designed to analyze and quantify certain factors, such as risk, in
enterprise and it is used as a general method [84]. Referring to the means of risk matrix
formulation in [61], we attempt to utilize the method in our analysis. Essentially, a risk
matrix helps us visualize a depiction of risks and we can use it to assess risk levels. Here,
to improve the granularity, we adopt a 9 division model (3× 3) as a risk matrix for the
quantification. Since we have to quantify both attacks and countermeasures, we create two

https://www.cvedetails.com/index.php
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kinds of risk matrices with four different evaluation factors [38]. For risks, we create our
matrix in keeping with the degree of danger and the frequency of occurrence shown in
Table 2. In Table 3, for countermeasures, the matrix is built based on the cost level and the
degree of effectiveness, which show the level of a defense method.

Table 2. Risk matrix of attacks.

Matrix Value
Occurrence Frequency

Low (1) Mid (2) High (3)

Danger Degree

Low (1)

Mid (2)

High (3)

Table 3. Risk matrix with countermeasures.

Matrix Value
Effectiveness Degree

Low (1) Mid (2) High (3)

Cost Level

Low (1)

Mid (2)

High (3)

Next, the evaluation factors are divided into three levels including High (3), Medium/
Mid (2), and Low (1). We assign the values to them based on our knowledge and under-
standing. It is worth pointing out that there is no need to assign a fixed value (3, 2, 1) to
every risk or countermeasure. Instead, the values of the evaluation factors can be assigned
in a continuous domain from 1 to 3. Thus, it is apparent to understand that the domain of
the final evaluation result in matrix is from 1 to 9 and we call this result the matrix value.
The matrix value of a attack or countermeasure is calculated by different formulas, which
are determined by the corresponding evaluation factors.

Accordingly, the matrix value for attack expressed in Equation (1):

Value = Danger Degree×Occurrence Frequency (1)

Similarly, the matrix value for defense expressed in Equation (2):

Value = Cost Level× Effectiveness Degree (2)

In our quantification measure, after getting the matrix value, to deduce the approxi-
mate value as a probability, we need to perform the following steps.

5.1.2. Normal Distribution

In probability theory, a normal distribution, also called Gaussian distribution [85],
in a variate X with mean µ and variance σ2 is a continuous probability distribution with
identically distributed random variables. The parameter σ is the standard deviation and
when the µ = 0 and σ = 1, it is the simplest form called the standard normal distribution.
The shape of normal curve takes the mean as the symmetry axis shaped like a bell and both
ends of the curve gradually and evenly drop to the left and right sides but never intersect
the horizontal axis. The area between the curve and the horizontal axis is always equal to 1.
We can use a function to represent this curve. Then, it means the integral of this function
from negative infinity to positive infinity is 1 (shown in Figure 4).
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Figure 4. Normal distribution [85,86].

From the risk matrix method, we can calculate the degree of a risk or countermeasure.
Specifically, by multiplying evaluation factors, we find the matrix value. Note that, for
countermeasures, the value indicates the level of the defense, which means that the higher
the value, the greater the defense. For example, there are some high-level defense measures
whose defense performance is fantastic and can almost eliminate most risks; however, the
cost is also extremely expensive.

This defensive measure will not be adopted by most companies because it is not
cost-effective and vice versa. If a countermeasure has extremely low effectiveness, even
if it is quite cheap, there are still few companies that will adopt it. It is the same for a
risk. In addition, limiting the value on integer, we can exhaust all situations shown in
Table 4. We can easily find that the two extreme values (Minimal and Maximal) have the
least number of occurrences.

Table 4. The matrix of defense with all situations (for an integer).

Matrix Value
Effectiveness Degree

Low (1) Mid (2) High (3)

Cost Level
Low (1) 1 2 3

Mid (2) 2 4 6

High (3) 3 6 9

Combining our knowledge in practice and real world, it is reasonable for us to assume
that the distribution of the matrix values, which are continuous random numbers in the
domain 1 to 9, conforms to the characteristics of a normal distribution with the mean µ = 5
in the case of a large number of data samples.

5.1.3. Probability Density Function

After illustrating that the distribution of matrix values is a normal distribution, now we
begin to explain how to calculate the probability of each feasible matrix value. We need to
use the probability density function to find the possibility. In mathematics, the probability
density function [87] of a continuous random variable is a function that describes the
probability of the output value of a random variable near a certain value point. In short,
this function can calculate the probability of a certain value in a continuous random variable
domain. A function meeting the following conditions can be regarded as a probability
density function.

f (x) >= 0
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We can easily obtain the probability density function of normal distribution from
mathematics papers as shown in Equation (3).

P(x) =
1

σ
√

2π
e
−(x−µ)2

2σ2 (3)

In order to facilitate the probability calculation for standard normal distribution (µ = 0,
σ = 1), the statistician developed a statistical table named standard normal distribution
table. From it, we can quickly find the probability of any certain value that we desire.

Thus, we are required to normalize the normal distribution of our matrix values to a
standard normal distribution and there are some steps we need to take for standardization.
If a random variable X obeys a normal distribution with a mathematical expectation (mean)
of µ and a variance of σ2, it would be recorded as X ∼ N(µ, σ2). If we attempt to calculate
the probability of variable X in a traditional method, we need to integrate the function
shown in Equation (3), then we can obtain the probability P(x) even though it is a taxing
process.

However, if this distribution is standardized, the probability is much easier to calculate.
First, we perform a calculation as follows in Equation (4). As the retrieval of this table is
only applicable to data accurate to two decimal places, we will only keep two decimal
places in calculations. In addition, we list the formulas to calculate mean (µ) in Equation (5)
and standard deviation (σ) in Equation (6) as shown.

Y =
X− µ

σ
(4)

µ =
1
N

N

∑
i=1

Xi (5)

σ =

√
∑N

i=1(Xi − µ)2

N
(6)

After this, we convert the variable X that conforms to the general normal distribution
into the variable Y in the standard normal distribution recorded as Y ∼ N(0, 1). Then, we
only need to look in the standard normal distribution table, according to its absolute value
of Y, to get the corresponding probability.

In the following security quantification analysis, we apply the Attack–Defense Tree
method to model the attack scenario and perform the quantification with our proposed
measure. Therefore, we can analyze the probability of attacks and countermeasures in a
more rigorous and precise way.

6. Security Quantification of E-Government Systems

In this section, we thoroughly demonstrate the security quantification of e-government
systems. Notably, we begin with demonstrating the architecture of e-government systems
and then we dive into security quantification as following.

6.1. Architecture of E-Government Systems

Based on our literature review, an architecture of a container-technology-driven e-
government system is presented in Section 4. Referring to the architecture, we observe that
the architecture is divided into multiples distinct layers [8,30,31,67–72,72]:

• Core Infrastructure layer.
• Container Integration layer.
• E-government layer.
• Access layer.

Now, in the following subsections, we show the security quantification of each layer.
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6.2. Security Quantification of Core Infrastructure Layer

Cloud Computing is a state-of-the-art technology to improve the ability of scaling,
flexible, high availability computing infrastructures [88]. Thanks to its advantages, promi-
nent ICT systems have been developed to introduce cloud computing as a technology to
alter their infrastructures, such as electronic government system. For example, the Ministry
of Internal Affairs and Communications in Japan has a smart cloud study progressing. [60].
In addition, as early as 2000, Maria and Roland proposed that distributed knowledge
management is the development trend of electronic government management [89]. Most
importantly, we observe that cloud computing helps address the challenges and issues of
e-government [90–94]

Therefore, cloud computing, as a technology of distributed information management
in e-government system’s core infrastructure layer, its security is of paramount importance.
In this section, we perform our efforts to quantify the e-government cloud computing
system with the Attack–Defense Tree method.

Attack Scenario One

As stated earlier, cloud-based technology is used to build the infrastructure layer of the
e-government, so we construct the attack scenario of the layer concerning cloud computing.
Expecting to make the research more complete and rigorous, the main subjects of security
analysis toward cloud computing are divided into two categories: cloud service provider
and the user of the e-government system. Then, we perform a security quantification
analysis including modeling and quantifying as follows.

Attack Tree Modeling and Quantification

Attack Tree Modeling: We built an Attack Tree to model the potential threats from
the perspective of government with cloud computing—the whole procedure is shown
in Figure 5. The Attack Tree diagram clearly indicates three directions of our analysis.
Systemic threats mainly focus on the risks that may be provided by the cloud service
provider, such as Amazon EC2 and Alibaba Cloud. The second analysis direction is the
actions threats of users who work in the government and the last one is some risks from
outside of these two.

Figure 5. Attack Tree for e-government infrastructure with cloud computing.

When the government utilizes cloud computing, there may be an incompatibility risk,
such as operating system incompatibility. For example, the platforms of cloud service
providers are usually incompatible with certain applications, which makes the migration
of data between various platforms difficult. In addition, each cloud system uses different
protocols, and some service providers have their own unique specifications, which leads to
low compatibility. Moreover, for some business interests, some cloud service providers will
have some problems with regulatory non-compliance, which means that they are beyond
the scope of their rights.
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Another concern is the risk of data security including both unexpected and malicious
operations. As for unexpected operations, it is likely to occur the situation of removing
data or data deletion after using cloud service. Theoretically, the data saved in the cloud
is safe and is replicated on different machines. Hence, the possibility of data loss is low,
consequently and most likely, we may not consider to backup at local machine. That means
if the cloud occurs accidental faults, users relying on the cloud have some risks.

Since the cloud is an open platform, it may be subject to malicious operations from
insiders and outsiders. For insiders, both service providers and users from the government
may leak, alter and wrongly use the data. In particular, some of users have strong impact
on security who are at the administrator level. In contrast, there also some threats from
outsiders, such as competitor’s attack and human-made physical damage to the facility.

Now, it comes to the threats caused by user’s actions—data in the cloud usually exists
in a shared environment, so owners of data should be in charge of who has the right to use
the data and which part of data they can use after they obtain access. Access management
is one of the most serious issues in cloud computing security [95]. However, a user without
specialist knowledge may not proficient in the detailed operation management method, so
sometimes, a user may ignore the importance of authentication requirement. Accidentally,
strangers may access to some mission critical resources.

Similarly, managing confidential information also needs to be taken into account. It is
required to restrict access to only approved users, and protect sensitive data, even if unau-
thorized personnel coincidentally acquire the possession of some confidential information,
it needs to ensure that the data cannot be read immediately. In addition, there is a risk of
environmental impact, such as data center destruction by a disaster. In addition, it may
also happen that the device is damaged through physical violence or stolen.

In cloud computing, communication is performed via the internet, and this is the
backbone of the cloud environment [96]. Thus, internet problems are equally serious,
because if we cannot connect to the internet, we cannot perform cloud computing, which
means that we cannot access anything, not even our own files. Unfortunately, internet
connections are inherently unreliable areas. Apart from that an attacker may perform
deauthentication attack to refrain users from accessing a cloud [97].

Quantification with an Attack Tree: Now, we attempt to quantify the security risks
from the standpoint of probability, which indicates the likelihood of a threat occurring.
We chose the probability of success attribute domain. It is apparently evident that
the probability of success is congruent with the probability of a risk occurring because, in
this context, regarding the risk, the success implies the presence of the risk instead of
avoiding it.

According to our quantitative evaluation method, we chose the risk matrix of attacks.
We assigned the values for those two evaluation factors (occurrence frequency and danger
degree) first and perform the multiplication to obtain the matrix value. Next, we needed to
normalize these matrix values into the standard normal distribution; thus, we calculated
the mean and the standard deviation of them. Based on Equation (4), we found the standard
value (Y) of each matrix value (X). Then, we derived the probability with respect to the
absolute value of Y. Note that we show all the data in Table 5.

• Mean:

µ =
30.53

9
= 3.39

• Standard Deviation:

σ =

√
13.11

9
=
√

1.46 = 1.21
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Table 5. Risk matrix value for the Attack Tree of a cloud.

Risks
Factors Occurrence Danger Matrix Standard ProbabilityFrequency Degree Value Value

Incompatibility threat 2 1 2 −1.15 0.13

Non-compliance regulatory 2.6 1 2.6 −0.65 0.26

Remove and delete data 1.2 2.5 3 −0.32 0.37

Misuse data 3 1.7 5.1 1.41 0.92

Authentication requirement 1.6 2.7 4.32 0.77 0.78

Confidential data 2 2.5 5 1.33 0.91

Environment impact 1.5 2.4 3.6 0.17 0.57

Physical destruction 1 1.4 1.4 −1.64 0.05

Internet problem 2.7 1.3 3.51 0.10 0.54

After finding the probabilities, we can assign these values into the Attack Tree leaf
nodes, and then it will automatically calculate the whole probability of successful attack for
the e-government system built on cloud computing. The Attack Tree is displayed in Figure 6.
Attacking the infrastructure of the e-government system (e-government infrastructure with
cloud computing), we can see that the probability of success is 99%.
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Figure 6. Probabilities in an Attack Tree for e-government infrastructure with cloud computing.

Attack–Defense Tree Modeling and Quantification

Attack–Defense Tree Modeling: Using an Attack Tree, we indicate the possible se-
curity risks in the e-government infrastructure. We need to find attack-related measures
to avoid or mitigate them. Consequently, we model an Attack–Defense Tree as shown in
Figure 7.

First, if there is an incompatibility threat, it can be resolved easily through the ad-
justment of users. For example, they can simply change the application so that it cannot
cooperate with cloud computing or choose a cloud service provider with high compatibility.
In short, the user has the right to choose or adjust. When the government decides to sign
a contract with the cloud service provider, the specifications of service should be clearly
explained in detail in advance so that the power of the service provider can be constrained
and inspected.

If the service provider has some violations, such as non-compliance regulatory, the in-
surance and compensation are prepared after contracting and obtaining the guarantee of
the service provider. Users can back up the data in time or perform a distributed storage
of data to reduce losses of removing or deleting data accidentally. In addition, third party
surveillance is an effective countermeasure for leaking or misusing data on purpose.
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Figure 7. Attack–Defense Tree for e-government infrastructure with cloud computing.

It is more safe and convenient to monitor data movement through a third party rather
than staff within the government. For insiders, the users can formulate a set of strict rules
and regulations to deter those who attempt to endanger security. Furthermore, the users
are demanded to comply with service specification, which specifies the correct operations
in the cloud, such as the authentication requirements.

Equally, the government can make a cloud instruction manual or let staff learn some
corresponding courses to ensure that users can operate correctly in the cloud and have more
methods to manage confidential data. However, in the context of security, it is difficult
to predict or control the impact of the environment and internet. In fact, human-made
physical destruction is also difficult to deal with; however, we can attempt our best to
prevent and protect through manpower.

Quantification with an Attack–Defense Tree: Here, we take the countermeasures into
consideration and make an analysis using the proposed quantification measure, within the
same attribute domain as the analysis of the Attack Tree. After assigning the evaluation
values (effectiveness degree and cost level) based on our knowledge, we determine the µ
and σ of matrix values with the following computation. From Table 6, it is easier for us to
know the whole calculation process.

• Mean:

µ =
31.47

7
= 4.50

• Standard Deviation:

σ =

√
23.11

7
=
√

3.30 = 1.82

In this way, as shown in Figure 8, we objectively display the risk reduction after giving
the proposed countermeasures. It is worth noting that, although the probability after
adding our countermeasures is still somewhat high, which is around 95%, this does not
mean that our analysis is wrong. First, we can see that, in the Attack Tree, the probabilities
of environmental impact and internet problems as obtained by the proposed measure are
both around fifty percent.

This is a general probability, which is the same as the probability of many things in
real life, and it is even somewhat low in the context of risk. These two probabilities are
reasonable and in line with expectations. However, since these two risks are both difficult
to predict and they are extremely uncontrollable, it is too difficult for us to provide efficient
countermeasures for them. As such, we do not set defensive measures for these two in the
Attack–Defense Tree—we do not consider these two risks.
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Table 6. Defense matrix value for the Attack–Defense Tree of a cloud.

Defenses
Factors Effectiveness Cost Matrix Standard ProbabilityDegree Level Value Value

Useradjustment 3 1.2 3.6 −0.49 0.31

Providerguarantee 2.7 1 2.7 −0.99 0.16

Databackup 2.8 1.5 4.2 −0.16 0.44

Third partysurveillance 2.9 2.7 7.83 1.83 0.97

Obeyspecification 2.3 2 4.6 0.05 0.52

Utilizeencryption 2.6 2.4 6.24 0.96 0.83

Manpowerprotect 1 2.3 2.3 −1.21 0.11

Therefore, we assign zero to them in calculation and regard the probability under
ideal conditions as the final probability of this attack scenario. The eventual result is about
72% as shown in Figure 9. Therefore, in ideal conditions, ruling out the influence of the
environment and network connection, we found that the probability of a successful attack
to the e-government system utilizing cloud computing technology was around 72%.
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Figure 8. Probabilities in an Attack–Defense Tree for e-government infrastructure with cloud computing.
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Figure 9. Ideal probabilities in the ADTree for e-government introducing cloud computing.



Electronics 2023, 12, 1238 19 of 34

6.3. Security Quantification of Container Integration Layer

As stated earlier, the core infrastructure is built on top of Kubernetes. Therefore, we
performed analysis of the Kubernetes cluster and its components.

6.3.1. Attack Tree of Kubernetes Cluster

Kubernetes is a fast-growing project and is the most popular container-orchestration
framework [32]. Many developers move their services forward to Kubernetes because
of the flexibility and scalability of the container. However, Kubernetes brings us some
security challenges. Therefore, it is important to learn that there will be many security
issues in the existing containerized environment, particularly in Kubernetes. To this end,
Attack–Defense Trees can greatly help us model the process.

To illustrate the methodology, we constructed a simple Attack Tree based on the
MITRE ATT&CK framework [98] and modeled the procedure of attacking the Kubernetes
cluster. The MITRE ATT&CK framework is a network attack-related framework covering
recognized tactics and technologies.

6.3.2. Attack Scenario Two

The subject of this example is to attack the Kube-API server, which marshals all the
communication on master node, instead of the entire cluster because of its simplicity to
readers and because the less complex tree structure can fit on a single page better. The whole
process is shown in Figure 10. According to the structure of the Kubernetes cluster, we find
that there are three different attack paths.

Figure 10. Attack Tree for attacking the KubeAPI server.

Attack Tree Modeling and Quantification

Attack Tree Modeling: First, attackers can intrude on the cluster’s management
layer if the Kubernetes cluster runs in a public cloud provider with compromised cloud
credentials (for example, EKS in AWS, GKE in GCP, and AKS in Azure.). In addition, we
know that the Kube-API server keeps interactive communication with ETCD and Kubelet
through the APIs. As a result, attackers can also attack the Kube-API server by invading
these two components.

In a case where the worker node has any vulnerable pods that contain containers
with public-facing applications, the remote code execution (RCE) vulnerability may be
exploited by the attacker. Note that this may result in sending requests to the Kube-API
server using the service account credentials if the service account (the service account in
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Kubernetes provides identity for processes running in a pod; https://cloud.google.com/
kubernetes-engine/docs/how-to/kubernetes-service-accounts (accessed on 16 January
2023)) is mounted to the container (the default behavior in Kubernetes).

Another common risk for Kubernetes users is the misconfiguration issue, which makes
a service (service in Kubernetes is a way of exposing an app running in a pod. https:
//kubernetes.io/docs/concepts/services-networking/service/ (accessed on 16 January
2023)) that should not be exposed or publicly accessible. For instance, Kubelet allows
unauthenticated access to an API, which is exposed by default on port 10250/TCP—this
makes it vulnerable and able to be attacked by outsiders. Similarly, insecure configurations
of Kube-API server and ETCD, which expose the unexpected ports, lead to external attacks.

Quantification with an Attack Tree: We chose the probability of success attribute
domain to quantify the Attack Tree. In this attribute domain, we have to assign the
probability of risks (namely, attacks) for each leaf node in the Attack Tree as stated in
the former section in Attack Tree analysis for the core infrastructure layer. Similarly, we
assign the values depending on our own understanding and experience. The matrix values,
the mean and standard deviation, are computed as shown.

• Mean:

µ =
17.40

3
= 5.80

• Standard Deviation:

σ =

√
11.72

3
=
√

3.91 = 1.98

We present all the data in Table 7, which clearly shows the matrix value (X) with its
standard value (Y) and also displays the probabilities. It is easy to determine that the risk
of misconfiguration leading to exposing the port to the public is a high-level risk whose
probability of success is 90%.

Table 7. Risk matrix value for the ATree of the Kube-API server.

Factors
Risks Occurrence Danger Matrix Standard ProbabilityFrequency Degree Value Value

Find cloudcredentials 1.2 3 3.6 −1.11 0.13

Exposingport publicly 3 2.8 8.4 1.31 0.90

Public-facingapplication 2.1 2.6 5.46 −0.17 0.43

From the Attack Tree domain analysis, we found the probability of successfully at-
tacking the Kube-API server. The probability was 99%, and the tree diagram is shown
in Figure 11. This means that, if the Kube-API server does not have any protection, it is
extremely vulnerable regarding the Kubernets cluster.

Attack–Defense Tree Modeling and Quantification

Attack–Defense Tree Modeling: After modeling the Attack Tree for attacking the
Kube-API server and performing quantitative analysis, we need to construct an Attack–
Defense Tree with the related countermeasures, which is shown in Figure 12.

If we want to mitigate the risk of compromised cloud credentials, we can achieve this
by impersonating service accounts. The idea of impersonation is to use one identity A to
act as another identity B but without having access to B’s credentials, and this is achieved
by granting identity A the ability to obtain an access token for identity B [99]. We only
grant this permission to identity A, and it should show an access token when it needs to
access any resource.

https://cloud.google.com/kubernetes-engine/docs/how-to/kubernetes-service-accounts
https://cloud.google.com/kubernetes-engine/docs/how-to/kubernetes-service-accounts
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
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Figure 11. Probabilities in the Attack Tree for attacking the KubeAPI server.

Figure 12. Attack–Defense Tree for attacking the KubeAPI server.

As for the misconfiguration issues, the best defensive practice is to deny access by
default and allow traffic only explicitly. Moreover, cloud administrators need to check the
guidance from the cloud provider and conduct a regular review thereafter to ensure that
all services are properly firewalled and not exposed publicly. When it comes to vulnerable
pods, we need to ensure that all container images used are the latest and are downloaded
from trusted sources. In addition, we can use container-specific automated scanning
technologies to scan images for applications, and we also can build pod security policy
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rules, which define some security conditions. Thus, if a pod wants to be accepted into the
cluster, it must run under conditions.

Quantification with an Attack–Defense Tree: In this part, we perform a quantitative
analysis of the Attack–Defense Tree with the probability of success attribute domain
and all the above processes as a complete procedure of security modeling through ADTree.
In a similar manner to before, we can see the standard value of each defensive measure in
Table 8, and creating an impersonating service account has the highest probability.

• Mean:

µ =
18.32

3
= 6.11

• Standard Deviation:

σ =

√
0.8373

3
=
√

0.28 = 0.53

Table 8. Defense matrix value for an ADTree of the Kube-API server.

Defenses
Factors Effectiveness Cost Matrix Standard ProbabilityDegree Level Value Value

Create impersonating
service accounts 2.7 2 5.4 −1.34 0.09

Deny access
by default 2.9 2.3 6.67 1.06 0.86

Create pod
security policy 2.5 2.5 6.25 0.26 0.60

The ADTree diagram is displayed in Figure 13. There is a great reduction of risk
after adding the defensive measures. The automatically computed value in the root node
changed to 55%, which was 99% in the Attack Tree. Thus, it reflects that, although we
cannot totally eliminate the risk, we can mitigate the impacts through certain effective
measures.

6.4. Security Quantification of the E-Government Layer

Finishing the analysis of the container-integration layer, which concentrates on Kuber-
netes, we come to attack the e-government layer in which the public obtains the service via
portals and websites. Internet technology holds great potential to improve the interface
between public organizations and citizens [100]. With the help of the internet, the relation-
ship between the government, enterprises, and residents has become more coordinated
than ever before.

Through the e-government system portal, citizens can access and gain civic informa-
tion and public services easily, and this also provides a channel for them to communicate
with the government so that the citizens can better participate in the management of the
government. However, in addition to the benefits, the internet also has many drawbacks.
Websites have been continuously targeted by malicious users to acquire monetary gain,
and there has been an increase in internet crimes over the years [101]. Although web
applications are the cornerstone of the realization of various functions of the e-government
system, this is not without threats.

Thus, we perform a security analysis and attempt to determine the risks or vulnerabil-
ities of these portals and websites. We found some knowledge of website vulnerabilities
from The Open Web Application Security Project (OWASP) (https://owasp.org (accessed
on 16 January 2023)). OWASP is an online community working to develop software
and documentation for securing web applications and web services [102,103]. In 2017,
OWASP released a list of the most critical website vulnerabilities. This indicates a common
agreement about what the most critical web application security risks are [102–105].

https://owasp.org
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Figure 13. Probabilities in the Attack–Defense Tree for attacking the KubeAPI server.

Attack Scenario Three

In this case, the subject of our scenario is the portals and websites of the e-government
system, which is the entrance to the public. In accordance with OWASP, we construct our
attack scenario, and then we conduct a security quantification evaluating the probability of
these vulnerabilities with our proposed quantification measure.

Attack Tree Modeling and Quantification

Attack Tree Modeling: The steps are the same as in the above examples. We first
present an Attack Tree in Figure 14 to visualize the risks or attacks that have been executed
through these vulnerabilities.

Figure 14. Attack Tree for e-government portals.
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This is mainly divided into three possible risk types, which consist of interior risks,
exterior risks, and the staff breach of privilege. We discuss staff violation of privileges first.
This is a common but dangerous risk in many enterprises and organizations because staff
have access to the organization’s systems, networks, and data, and they can use legally
acquired access rights to negatively affect the confidentiality, integrity, and availability of
information in the organization’s information system. Thus, for internal staff, attacking the
website is very simple.

Exterior risks represent methods that may be used by external attackers to attack the
website rather than self-existing flaws. SQL injection attacks are very common attacks.
These are widely used to attack the database behind web applications. This attack constructs
a malicious SQL query or creates a statement exploiting the logic vulnerabilities of the
input parameters in target web application, and then the SQL interpreter behind the target
web application executes the malicious SQL query and returns confidential data without
authorization.

Cross-site scripting (XSS) is a web security vulnerability that allows attackers to
execute scripts in the pages provided to other users. In this way, the attackers can steal
the cookies stored on the client or other sensitive data used by other websites to identify
the client.

Attackers can even impersonate legitimate users to interact with the website. Some
components included in the application run with full permissions unexpectedly (for ex-
ample, third libraries, development frameworks, and other modules in the application).
Consequently, it is easy to attack a website if its applications and APIs that exploit compo-
nents have known vulnerabilities.

On the contrary, interior risks refer to defects that exist in the websites or portals
themselves, and these vulnerabilities are exploited by malicious people. In many websites,
the functions of authentication and session management are weak, and attackers can
assume using manual combinations or can use the help of automated tools with a password
list [106–108] (Note that we can use the Crunch (Crunch https://tools.kali.org/password-
attacks/crunch (accessed on 16 January 2023)) tool to generate a password list).

In addition, some websites have weak protection for sensitive data, such as banking
information, health information, and user accounts. Thus, it is likely to cause a financial
loss when attackers obtain these exposed sensitive data. Moreover, as with the former
analysis in Kubernetes, misconfiguration is also the most ordinary risk issue in website
security when security settings are defined improperly. For example, insecure default con-
figurations, default account access, and open cloud storage all give attackers an opportunity
to attack websites.

Quantification with an Attack Tree: We chose the level of each threat from High
(3), Medium or Mid (2), and Low (1). For example, most portals have a weak or even
broken authentication management; thus, the frequency grade is 3, which is at a high level.
In addition, the probabilities corresponding to other risks are also all presented in Table 9.
Moreover, we assign these data to our Attack Tree as shown in Figure 15.

• Mean:

µ =
32.40

7
= 4.63

• Standard Deviation:

σ =

√
12.59

7
=
√

1.80 = 1.34

https://tools.kali.org/password-attacks/crunch
https://tools.kali.org/password-attacks/crunch
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Table 9. Risk matrix value for an Attack Tree of portals.

Risk
Factors Occurrence Danger Matrix Standard ProbabilityFrequency Degree Value Value

BrokenAuthentication 3 1 3 −1.22 0.11

DataExposure 2.6 2.3 5.98 1.01 0.84

SecurityMisconfiguration 2.7 2.1 5.67 0.78 0.78

SQLInjection 2 3 6 1.02 0.85

Cross-SiteScripting 2.1 2.6 5.46 0.62 0.73

VulnerableComponents 1.5 2.2 3.3 −0.99 0.16

Staff Breachof Privilege 1.3 2.3 2.99 −1.22 0.11

Figure 15. Probabilities in the Attack Tree for e-government portals.

Attack–Defense Tree Modeling and Quantification

Attack–Defense Tree Modeling: Although we encounter many website-associated
risks, we have some viable means to avoid or mitigate their impacts. In real life, a risk has
multiple countermeasures; however, we only list one as a representative in our Attack–
Defense Tree as shown in Figure 16.

Figure 16. Attack–Defense Tree for e-government portals.

When we deal with the issue of staff breaches of privileges, we can only do our best
to improve laws and regulations and formulate severe penalties so as to minimize the
possibility of such risks. On the other hand, data separation from command and queries
should be implemented, when we attempt to mitigate SQL injection attacks, and we also
can perform input validation at the server side. To mitigate the cross-site scripting (XSS)
risk, we can use context-sensitive encoding to separate the browser content from untrusted
data. In addition, we also can apply scanner tools to find the XSS risks automatically.
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Timely detection and updates are a good way to prevent the risks caused by com-
ponents with known vulnerabilities. Furthermore, acquiring components over secure
links that are released from official sources is also a good countermeasure to these risks.
Weak-password checks are essential to mitigate the broken authentication risk, such as
asking for a minimal length and complexity of passwords and limiting failed login attempts.
Where possible, conducting all data encryption in transit is a way to prevent sensitive data
exposure.

To prevent misconfiguration, the preferred option is to utilize an automated scanner to
inspect insecure configurations, such as default passwords. Similar to insecure components,
reviewing and updating regularly is always helpful.

Quantification with an Attack–Defense Tree: Likewise, we need to quantify the im-
pact of defensive measures so that we can have a clear contrast as before. After computing,
we found that µ is equal to 3.61 and σ equals 1.45. In Table 10, we show the standard values
obtained from normalization and the probability after searching the statistics table.

• Mean:

µ =
21.66

6
= 3.61

• Standard Deviation:

σ =

√
12.58

6
=
√

2.10 = 1.45

Table 10. Defense matrix value for an Attack–Defense Tree of portals.

Defenses
Factors Effectiveness Cost Matrix Standard ProbabilityDegree Level Value Value

Weak-passwordchecks 2 1 2 −1.11 0.13

Encrypt alldata in transit 2.2 1.3 2.86 −0.52 0.30

Automatedscanners 2.6 2.2 5.72 1.46 0.93

Separate data and queries 2.7 2 5.4 1.23 0.89

Timely detectionand update 2.3 1 2.3 −0.90 0.18

Strict regulations 2.6 1.3 3.38 −0.16 0.44

Assigning the data into the Attack–Defense Tree, we find the success probability of
the entire attack scenario. From Figure 17, we can see there is still a 75% success probability
to perform an attack on the portals; however, compared to the probability in the Attack
Tree (99%), the risk has been clearly reduced.

6.5. Security Quantification of the Access Layer

The access layer offers various approaches for stakeholders to obtain government
services with quick access. Today, people have access to the internet from their home,
office, and even remote areas [109]. There are a myriad of different devices for the public to
access the internet, such as digital televisions, desktop personal computers, laptops, tablet
computers, and mobile phones.

Since, in the e-government system, the internet is the channel of communication
between the government and citizens, essentially, almost any device that can connect to
the internet can access government services. In addition, every device has an amount of
different potential risks. For example, we may be troubled with network attacks that also
include sundry paths.

What is more troublesome is the risk from individuals. For example, a personal device
may be stolen, thereby, creating a risk of privacy leakage. In addition, some people do
not set up identity authentication for their devices so that anyone can use their electronic
accounts on the internet as long as they can find the device. The carelessness of people can
greatly affect the calculations of risk probability.
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Figure 17. Probabilities in the Attack–Defense Tree for e-government portals.

Thus, although it is convenient for users to gain the services of government, it is
problematic to construct attack scenarios for this layer because there are many possible
ways to obtain access and in particular, there is the uncontrollability of human beings.
Moreover, compared to other intangible layers, this layer is more accessible for people
to understand as it is related to various physical devices. For these reasons, we did not
perform an in-depth study and quantification analysis on this in our paper.

Attack Scenario Four

However, we still generally built an Attack–Defense Tree to describe this process in
Figure 18. We generally divided the risk into three types: individual threats, network
attacks, and others. Here, we simply list some potential risks, such as non-authenticated
devices, and countermeasures, such as using antivirus software to protect from risks.

Figure 18. ADTree for the access layer.

6.6. Toward a More Secure E-Government System

Here, we provide a discussion about the above security quantification results and give
some recommendations on creating a more secure e-government system. The results of
probability in the aforementioned tables of both Attack Trees and Attack–Defense Trees
are summarized in Table 11. The attack scenarios that we established are consistent with
the architecture of an e-government system consisting of four layers. However, we mainly
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focus on the first three layers to represent the risk probability of the entire e-government
system. The reasons for excluding the access layer were stated in detail previously.

From the table, we find a satisfactory reduction of the risk probability when we
add the defensive measures. The risk reduction in the container-integration layer is the
most significant, and the remaining two layers have around the same degree of decline.
The results also indicate that the quantification method that we proposed makes sense.

Table 11. Quantification results of each layer.

Factors
Layers Core

Infrastructure Layer
Container

Integration Layer
E-Government

Portal Layer

Probability in ATree 99% 99% 99%

Probability in ADTree 72% 55% 75%

Now, we attempt to determine the risk probability of the container-technology-driven
e-government system after quantifying the risk probability in its three most important
layers. As we know now, an attacker has a 72% success rate to attack the core infrastructure
layer, which uses cloud computing technology. There is a 55% probability for a malicious
person to successfully perform an attack on the container-integration layer, which utilizes
the Kubernetes cluster to manage containers, where the applications of the e-government
system run. The probability of an attack without obstacles to the portal layer is 75%.
In short, as long as one of the three layers is successfully attacked, it is equivalent to the
e-government system being successfully attacked. We record the probability of it not being
attacked as F(x). Thus, we calculate the risk probability with following equations.

F(x) = (1− 0.72)× (1− 0.55)× (1− 0.75) = 0.0315 = 3.15% (7)

P(x) = 1− F(x) = 0.9685 = 96.85% (8)

Equation (7) finds the risk-free probability of the e-government system, which is merely
3.15%, and P(x) in Equation (8) represents the risk probability of a container-technology-
driven e-government system. According to this result, we can confidently state that the
system is still insecure. There is an urgent demand for us to enhance the security aspects of
e-government systems. Therefore, we need to find more effective ways to defend against
risks or develop a safer system. According to our analysis, we have reasons to strongly
suggest that the public pay greater attention to the security issues of e-government systems.

7. Conclusions and Future Work
7.1. Conclusions

In this paper, we advanced an innovative and distinct quantification measure in
our aim to contribute to the security quantification of the container-technology-driven
e-government systems. As far as we know, this work is the first to combine the risk
matrix method and a normal distribution in threat analysis, and we further used the
probability density function to quantify the probability of risk. The analytical results
demonstrate that the numerical probability parameters that we obtained from the proposed
measure are justifiable and meaningful. We analyzed a set of current use cases of e-
government systems—in particular, the UK government portal—which is in line with our
research scope.

As such, we built a working prototype of an e-government system and obtained the
foundation to build attack scenarios and perform security risk analysis on the e-government
system. As stated earlier, we applied the Attack–Defense Tree method to model attack
scenarios by constructing ATrees and ADTrees in analyzing the domain of probability
of attack success.

We calculated the probability of each risk (attack) and countermeasure and then
precisely demonstrated the influence of the Attack Tree and Attack–Defense Tree, which
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succinctly and vividly indicated the reduction of the risk probability with countermeasures.
Finally, we analyzed our security quantification, which infers that it is urgent to pay
attention to the enhancement of e-government security.

7.2. Future Work

We summarize this paper with a quantified security evaluation with respect to our
proposed quantification measure. However, we did not assess and validate the quantifi-
cation accuracy of this measure. As such, we have a set of plans to do so in our future
extension:

• We will focus on strictly evaluating whether our method is strongly reasonable and
on justifying its practical value in the security field. For example, we can compare the
security quantification results of our method with others to see whether the data can
preserve coherence or not for the same security case. In addition, some other attribute
domains can be discussed regarding the security quantification.

• We observe that, even though the system is built on top of the most cutting-edge tech-
nologies (such as Docker, Kubernetes, Serverless Computing, and other state-of-the-art
systems), the underlying technologies have security flaws. Therefore, after analyzing
these potential risks more rigorously, we can advance a better system in the future.
We observe that not only the security issues but also the underlying technologies have
adverse impacts on the performance and dependability, e.g., poor load prediction and
autoscaling, cold start, and issues attached with zero downtime, rolling updates, and
load balancing. Notably, we are currently working on addressing these issues, and we
have had good results in dealing with the issues mentioned herewith.

• Moreover, although we introduced known defensive measures for almost every risk in
our analysis, the risk probability is still very high. Thus, we can attempt to determine
new and better defensive measures or technologies in this field in the near future.
Moreover, we are planning to work on vulnerability quantification using Fault Trees
and safety quantification using Reliability Block Diagrams and to thereafter perform a
comparative analysis.

• In this paper, the Attack Tree security quantification was limited regarding empirical
evaluation and validation. In the future, we can work on performing empirical
evaluations and validations of every attack and the related countermeasures. In
particular, we need to perform penetration testing to evaluate and validate our findings
and analysis. To perform penetration testing, we need to have a clear understanding
of the security patterns, root causes, exploits, possible fixes, and more.
In addition, we need to know about the details of the system configuration for the
distinct security patterns, root causes, exploits, and/or possible fixes. Moreover, we
need to have in-depth knowledge and experience working with the required tools and
techniques for the specific security-related operations. The saving grace is that Kali
Linux [110] and Parrot Security OS [111] are integrated with many security testing
tools, which can help us greatly. However, these are not a panacea, and thus we will
have to investigate many of the cases for ourselves.
Notably, we performed system configuration for some of the distinct security cases
attached to Docker and Kubernetes (particularly those that were not aligned with Kali
Linux and Parrot Security OS). Consequently, we performed penetration testing
for them. Furthermore, we plan to perform penetration testing of the other security
issues and threats discussed in this paper. This will help us have a better security
analysis and, finally, will help us build an e-government system in a better way. In
addition, it will help us detect unidentified security flaws and direct us in devising
better countermeasures.
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