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Abstract: Users’ activities in location-based social networks (LBSNs) can be naturally transformed
into graph structural data, and more advanced graph representation learning techniques can be
adopted for analyzing user preferences, which benefits a variety of real-world applications. This
paper focuses on the next point-of-interest (POI) recommendation task in LBSNs. We argue that
existing graph-based POI recommendation methods only consider user preferences from several
individual contextual factors, ignoring the influence of interactions between different contextual
information. This practice leads to the suboptimal learning of user preferences. To address this
problem, we propose a novel method called hierarchical attention-based graph convolutional network
(HAGCN) for the next POI recommendation, a technique which leverages graph convolutional
networks to extract the representations of POIs from predefined graphs via different time patterns
and develops a hierarchical attention mechanism to adaptively learn user preferences from the
interactions between different contextual data. Moreover, HAGCN uses a dynamic preference
estimation to precisely learn user preferences. We conduct extensive experiments on real-world
datasets to evaluate the performance of HAGCN against representative baseline models in the field
of next POI recommendation. The experimental results demonstrate the superiority of our proposed
method on the next POI recommendation task.

Keywords: graph representation learning; contextual information; graph convolutional network;
hierarchical attention; POI recommendation

1. Introduction

Recent years have witnessed the exponential growth of social networks [1]. Location-
based social networks (LBSNs), amongst the typical social networks, play an import role
in people’s daily life. A growing number of people are share their life experiences on
the social platforms based on LBSNs. For instance, a user could share their favorite
restaurant on the social platform for making friends who have the similar preferences.
Understanding user preferences from their activities can not only can improve the service
of social platform for users, but also brings economic value to the platform. Hence, one of
the most important applications of LBSNs is the recommender system [2]. The advantage
of recommender systems in LBSNs is to their ability to help users explore some new places
that they have not visited previously according to their check-in habits. As a fundamental
task of recommender systems in LBSNs [3], next POI recommendation [4–6] has attracted
many researchers.

The goal of next POI recommendation is to recommend several POIs based on the
previous check-in activities of the target users. Due to the complex contextual information
used in POI recommendations, this recommendation task is more challenging than tradi-
tional recommendation tasks, such as music recommendation and movie recommendation.
One of the key challenges in next POI recommendation is to preserve the personalized user

Electronics 2023, 12, 1241. https://doi.org/10.3390/electronics12051241 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12051241
https://doi.org/10.3390/electronics12051241
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5135-3912
https://orcid.org/0000-0002-5570-7818
https://doi.org/10.3390/electronics12051241
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12051241?type=check_update&version=2


Electronics 2023, 12, 1241 2 of 13

preferences [7] for different users. To achieve this goal, many studies have proposed the
extraction of user preferences from check-in history.

In this field of next POI recommendation, existing methods could be divided into
two main categories, namely Markov chain-based method [8–10] and deep learning based-
method [11–13]. The former utilizes the Markov chain-based strategies, such as matrix
factorization, to calculate the transition matrix and further predict the next check-in places
of users. Conversely, the latter leverages deep learning-based techniques, such as recurrent
neural network and its variants [14–19], to learn user preferences. Despite their effective-
ness, these methods treat the check-in activities of users as sequences, which is inefficient
in capturing the interaction information of different POIs.

To overcome this gap, recent studies have tended to transform the check-in records
of users into graph structural data and further leverage graph representation learning-
based techniques, such as graph convolutional network [20], to learn user preference.
The graph structure data are suitable for analyzing the habits of user check-in behaviors
since the check-in records could be naturally transformed into a bipartite graph, which
describes the interactions of users and POIs. Based on this operation, many researchers
have developed various graphs to explore the user preference. Nevertheless, most existing
graph-based methods for next POI recommendation only exploit one type of specific
contextual information, such as fixed timestamps for temporal factors, which is inefficient
in learning dynamic and complex user preferences. Intuitively, user preference can vary
under interactions between different types of contextual information.

In light of the above discussions, in this paper, we propose a novel graph structural
data-based method for next POI recommendations named the dynamic temporal-based
graph convolutional network (HAGCN), which leverages predefined graphs to learn
dynamic user preferences via advanced graph representation learning-based techniques.
Specifically, HAGCN consists of three main parts: the graph convolutional module, the
attention-based fusion module and the dynamic preference estimation module. The first
module is to utilize graph convolutional layer to extract the representations of POIs from
the constructed graphs. Then, the attention-based fusion module develops a dual attention
layer to adaptively fuse the representations under different contextual information. In this
way, the influence of interactions between different context could be carefully preserved.
Finally, HAGCN proposes a dynamic preference estimation to capture the dynamic user
preferences according to the previous check-in activities.

The main contributions of this paper are summarized as follows:

• We propose a novel model, known as HAGCN, for the next POI recommendation task,
which can effectively learn user preferences from the check-in activities of users.

• We develop a dual attention layer to adaptively learn the representations of POIs from
different contexts and their interactions.

• We apply a dynamic preference estimation strategy to extract the user preferences
from the learned POIs’ presentations and previous check-in activities.

• We conduct extensive experiments on two real-world datasets. The experimental re-
sults show that our proposed HAGCN outperforms powerful baselines, demonstrating
the superiority of HAGCN.

2. Related Work

In this section, we provide a brief review of recent works of next POI recommen-
dation. In general, previous studies in this field could be divided into two categories:
Markov chain-based methods and deep learning-based methods. The former leverages
the Markov chain mechanism to model the check-in behaviors of users, while the latter
extracts the information from sequential factors via deep learning-based methods to learn
user preferences. We introduce recent works from these two perspectives.
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2.1. Markov Chain-Based Methods

The core assumption of Markov chain-based methods is that the next check-in behav-
ior of a target user is highly related with the previous check-in activities. Thus, the Markov
chain mechanism is introduced to model the successive check-in behaviors of users via
learning the specific transition probability between two check-in activities. One of the typi-
cally used Markov chain-based methods is the matrix factorization-based method [8–10],
whose core idea is to construct the transition matrix based on users’ check-in records
and further leverage the matrix factorization technique to learn user preferences from the
transition matrix. He et al. [8] develop a third-rank tensor to model the latent check-in
behavior patterns from the successive check-in activities, where a personalized Markov
chain is adopted to learn diverse user preferences from the check-in history. Besides di-
rectly modeling the relations between users and POIs, some researches [9,10] utilize the
category information of POIs to construct a transition matrix. He et al. [9] construct the
category-aware transition matrix to preserve the check-in behaviors of users in the POIs’
category level. Additionally, a list-wise Bayesian personalized ranking is utilized to learn
the user preferences from the transition matrix. Li et al. [10] develop a two-step method
that first predicts the POI’s category of the next check-in activity and then predicts the
specific POIs based on the category information. In this way, the check-in habits of users in
the category level can be carefully preserved.

Although Markov chain mechanism is useful for modeling the user preference from
the successive check-in behaviors, these models suffer from the high data sparsity of the
constructed transition matrix since most of users only have several check-in records. Addi-
tionally, the highly sparse transition matrix is hard to deeply extract the user preferences. So
that, recent methods begin to leverage more powerful methods (e.g., deep learning-based
methods) to model the check-in habits of users.

2.2. Deep Learning-Based Methods

Methods falling into this category leverage various neural network-based methods
to model the check-in records of users, such as recurrent neural network (RNN) [11–13]
and long short-term memory (LSTM [14]) methods [15–18]. Liu et al. [11] develop an
RNN-based method called ST-RNN that can extract local temporal and spatial contexts
in each neural network layer to learn user preferences from continuous time interval.
Yao et al. [12] utilize RNN model to extract the semantics-aware spatiotemporal transition
habits of users to improve the performance of POI recommendation service. Chen et al. [13]
first leverage a spatial-temporal topic model to extract the user preferences for POIs and
then use a supervised RNN model to predict the next check-in POI for users. Guo et al. [15]
consider the influence of data sparsity and propose a LSTM-based model to jointly learn the
sequential regularity and the transition regularities of similar POIs. In this way, the impact
of data sparsity on model performance could be reduced. Yang et al. [16] utilize LTSM to
learn contextual features of POIs from the check-in records and further propose an adaptive
convolution network, which is developed to learn the short-term user preferences based
on the successive check-in behaviors. Wu et al. [17] develop a LTSM-based model named
PLSPL, which can learn the specific long- and short-term preferences for different users
via the proposed user-based linear combination unit. In this way, the unique preference
of different users can be carefully preserved. Huang et al. [18] leverage the LSTM model
to learn spatiotemporal preference of users based on the previous check-in activities and
using the attention mechanism to capture the relevant check-in activities in the input
spatiotemporal contextual information.

In addition, in relation to the use of applied RNN and its variants to model the
user preferences, recent works [19,21–25] focus on introducing graph neural network
(GNN) to learn the informative representations of users through a variety graph-based data
constructed from check-in history. Li et al. [19] propose a novel spatiotemporal gated graph
neural network model based on the attention mechanism to learn the local- and global
preference of users. Chen et al. [21] utilize the knowledge graph technique to reduce the
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impact of data sparsity and further integrate the spatial–temporal contextual information
into graph embeddings to represent the transition patterns for diverse users. Wang et al. [22]
propose a novel graph-based spatial dependency modeling (GSD) module to learn the
geographical influences depending on distance cost among POIs in successive check-in
records. Wang et al. [16] exploit the intrinsic characteristics of POIs and further develop a
disentangled representation model based on graph attention networks to capture dynamic
user preferences. Kim et al. [24] jointly consider the influence of geographical influence and
arrival time of the check-in records and propose a dynamic positional graph neural network
(DynaPosGNN) to determine the correlation between arrival time and interaction graphs
constructed by check-in histories. Lim et al. [25] construct the POI interaction graphs to
explore the influence of spatial–temporal preference by learning neighborhood information
via a random walk-based self-attention strategy.

Although GNN-based methods have shown promising performance for next POI
recommendation, most existing GNN-based methods fail to extract more informative
user preference from the interactions between different contextual information. Thus, we
propose HAGCN, which can leverage the attention mechanism to explore the final repre-
sentations of users from the diverse interaction graphs of different contextual information.

3. Preliminaries

In this section, we provide several key definitions used in this paper.

Definition 1. (POI): A POI is a place with specific functions, such as a restaurant for meals. In
this paper, we use P = {p1, . . . , pm} to represent the set of POIs, where pm denotes the specific
POI with the identity number m. Each POI is associated with several contextual information, such
as geographical information which determines the location of the POI. We use lpm to represent the
location of POI pm, which is described by longitude and latitude in this paper.

Definition 2. (Check-in activity): A check-in activity represents that a user has visited a POI.
In this paper, we use a triplet cu,i = (u, p, t) to represent the i-th check-in activity, where u
denotes the user, p denotes the POI, and t denotes the timestamp of this check-in activity. We use
Cu = {cu,1, . . . , cu,i} to represent recent i check-in records of user u.

Definition 3. (Time pattern): The time pattern means the treatment for the check-in timestamp.
Check-in records under different time patterns reflect the diverse habits of users. For instance, if we
use hours to represent the time pattern, we will observe that a user tends to visit a bar at 12 at night.
If we use days (weekdays and weekends) to represent time pattern, we may find that a user tends to
visit a restaurant at weekends. As a result, a single time pattern is inefficient in exploring complex
user preferences of check-in habits. In this paper, we utilize two type of time patterns, called hours
pattern Th and days pattern Td, to capture the habits of users’ check-in activities. Th divides the
check-in timestamps into 24 h and Td treats all timestamp as weekdays and weekends. Note that the
setting of the time pattern is flexible, which means we can introduce more suitable time patterns to
analyze users’ check-in activities.

Definition 4. (Temporal interaction graph): A temporal interaction graph GT = (VT , ET) denotes
the interactions between POIs under a specific time pattern, where GT represents the interaction
graph under the time pattern T, VT denotes the node set of GT which is consisted of POIs, and ET
denotes the edge set of GT . The edge of GT represents that two POIs have been visited at the same
timestamp. In this paper, we derive two temporal interaction graphs, GTh and GTd , from the check-in
records of users under the time pattern Th and Td, respectively.

Definition 5. (Geographical interaction graph): A geographical interaction graph Gg = (Vg, Eg)
describes the similarity between POIs on the geographical influence, where Vg denotes the node set
of Gg and Eg denotes the edge set of Gg. The edge of Gg represents that two POIs belong to the
same district.
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Definition 6. (Top-k next POI recommendation): Given the recent check-in records Cu of user u, the
goal of the Top-k next POI recommendation is to generate a POI recommendation list {p1, . . . , pk}
that the user may have interest to visit at the future time t.

The notations used in this paper are summarized in Table 1.

Table 1. Notations and their descriptions.

Notations Descriptions

P the set of POIs
U the set of users
C the check-in records
T the time pattern

GT temporal interaction graph
Gg geographical interaction graph

HGTh ,HGd ,HGg the representations of nodes from GTh ,GTd ,Gg

Hhg,Hdg the interaction representations from GTh ,GTd ,Gg
HP the final representations of POIs
HU the representations of user preferences

4. Dynamic Temporal-Based Graph Convolutional Network

In this section, we detail our proposed dynamic temporal-based graph convolutional
network (HAGCN) for next POI recommendation. This contains three main modules: graph
convolutional module, attention-based fusion module and dynamic preference estimation
module. The overall framework is shown in Figure 1.
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4.1. Graph Convolutional Module

As mentioned before, the graph structural data are naturally suitable for analyzing
the check-in behaviors of users. Thus, we first transform the check-in history into graph
structural data to describe the interactions between POIs under different context. Then, we
leverage the graph convolutional network to learn the representations of POIs.

For constructing the graph structural data, we obey the aforementioned Definition
4 and Definition 5. Specifically, we construct three graphs GTh , GTd and Gg to represent
the interactions between POIs under varying temporal and geographical contexts. Note
that constructing the graph is a flexible operation. Definition 4 and Definition 5 are
general settings. The interactions between POIs can be redefined according to specific
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requirements. In this paper, we study the influence of temporal and geographical context
on user preferences. Additionally, we leave investigating more contextual information,
such as semantic context, to future studies. After constructing the graph structural data, we
focus on learning the informative representations of POIs from these constructed graphs.
In this paper, we utilize the graph convolutional network to achieve this goal.

The graph convolutional network (GCN) [20] consists of several graph convolutional
layers. Each graph convolutional layer is defined as follows:

H(l+1) = σ(ÂH(l)W(l)) (1)

where H(l+1) and H(l) denote the representations in the (l + 1)-th and l-th graph convolu-
tional layer, respectively. Â denotes the normalized adjacency matrix of the input graph.
W(l) denotes the parameter matrix of the l-th graph convolutional layer. Additionally, σ(·)
denotes the nonlinear activation function, such as RELU.

For each constructed graph, we develop a GCN block with two graph convolutional
layers to learn the representations of POIs. As a result, we obtain the representations of
nodes HGTh ∈ Rm×d, HGTd ∈ Rm×d and HGg ∈ Rm×d from the interaction graphs GTh , GTd
and Gg respectively.

4.2. Attention-Based Fusion Module

Previous studies [14,15] reveal that user preference varies with different contextual
information. This observation indicates that considering the influence of multiple contexts
leads to discovery of the informative user preference. Although existing methods aim
to extract user preferences under different context factors, such as temporal factors and
geographical factors, they ignore the influence of the interaction between different context
factors on user preferences, leading to the obtention of suboptimal user preferences.

To overcome this limitation, we develop an attention-based fusion module that adap-
tively learns the representations from different interactions between multi-contextual
information. Specifically, we consider the interactions between different time patterns
and geographical factors via the attention mechanism in this paper. For this purpose, we
propose dual attention layer to adaptively adjust the contribution of different contextual
information. The first attention layer is used to learn the interaction representations from
different contextual information. Additionally, the second attention layer is developed to
learn the final representations from the extracted interaction representations.

We first learn the interaction representations based on HGTh and HGg . We leverage the
learnable weight layer to obtain the attention weights:

ahg = (HGTh ||HGg)Whg (2)

where || denotes the concatenation operation, Whg ∈ R2d×2 denotes the weight parameter
matrix of the linear layer and ahg ∈ Rm×2 denotes the attention matrix. Then, we can
leverage the weighted aggregation strategy to obtain the interaction representations as
follows:

Hhg = ahg
0 ·H

GTh + ahg
1 ·H

Gg (3)

where Hhg ∈ Rm×d denotes representations extracted from the interaction graphs, GTh and
Gg. In this way, we can adaptively learn the representations under different contextual
information. Additionally, we can utilize the same strategy to obtain the representations
from GTd and Gg as follows:

adg = (HGTd ||HGg)Wdg (4)

Hdg = adg
0 ·H

GTd + adg
1 ·H

Gg (5)

where Hdg ∈ Rm×d denotes representations extracted from the interaction graphs GTd
and Gg.
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After extracting the interaction representations, we need to determine the final rep-
resentations of POIs. As mentioned before, different contextual information contributes
differently to the final representations. To capture the contributions of different contexts,
we also develop the attention layer to adaptively fuse the interaction representations to
obtain the final representations:

HP = ψ((Hcon(Hcon)T) · (HconWcon) (6)

where Hcon= (Hhg||Hdg) , ψ(·) denotes the softmax function and Wcon denotes the projec-
tion layer. HP denotes the final presentations of POIs. In this way, we can adaptively fuse
the representations from different contextual information.

4.3. Dynamic Preference Estimation Module

Estimating the user preferences is also an important part of analyzing the check-in
habits of users. Intuitively, user preferences vary at different timestamps. Additionally, the
influences of different check-in records are different. To capture dynamic user preferences,
we propose a time-aware estimation strategy that adjusts the influence of history records
according to the check-in timestamp. Specifically, for each check-in record in check-in
history, we leverage the following method to estimate user preferences:

HU
u = ∑cu,i∈Cu

exp−(ti−t0) ·HP
pi

(7)

where ti denotes the check-in timestamp and t0 denotes the current timestamp. HU
u denotes

the representations of user preferences. In this way, we can capture the dynamic user
preferences among different timestamps.

4.4. Model Training

As for model training stage, we adopt the widely used learning method, known as
Bayesian personalized ranking (BPR) [26–28], to learn the model parameters. We first
define the ranking score function to calculate the preference scores of unvisited POIs for
each user. For each pair (u, p), we have the following:

su,p = HU
u · (HP

p )
T

(8)

Based on Equation (8), the loss function of HAGCN is as follows:

Loss = − 1
|U| ∑u∈U

∑
(u,pp ,pn)∈Cu

ln ρ(su,pp − su,pn) (9)

where U denotes the set of users, pp denotes the positive POI that appears in check-in
history Cu of user u, and pn denotes the negative POIs that have not appeared in Cu.
Additionally, ρ(·) denotes the sigmoid function. By minimizing the loss function, we can
utilize the stochastic gradient descent (SGD) method to learn the model parameters. The
overall learning process is reported in Algorithm 1.
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Algorithm 1: the learning process of HAGCN

Input: Check-in records: C; Max training epoch T.
Output: Model parameters: θ.

1. Constructing the interaction graphs based on C according the Definition 4 and Definition 5;
2. Calculating the interaction representations of POIs based on Equations (3) and (5);
3. Calculating the final representations of POIs based on Equation (6);
4. Calculating the user preferences based on Equation (7);
5. for epoch in T do:
6. Calculating the BPR loss function based on Equation (9);
7. Learning model parameters θ with SGD;
8. end for
9. Return model parameters θ.

5. Experiments

In this section, we first introduce the experimental settings of this paper, including
datasets, baseline models and evaluation metric. Then, we provide the experimental results
of model comparison, parameter analysis and ablation study. Finally, we provide the
corresponding analysis for each experiment.

5.1. Dataset

Following the method outlined in a recent study [17], we adopt two real-world datasets
collected from the famous location based social network Foursquare, called NYC and TKY.
NYC contains the check-in records in New York from Apr. 2012 to Feb. 2013, while TKY
consists of check-in records which are from Tokyo in the same period of NYC. Each check-in
record contains the information of user, POI, location and timestamp. We also follow the
data preprocess operation in [17] that divide the check-in records into several sessions for
each user, which meets the task of next POI recommendation. After data preprocessing, we
split the dataset into training set, validation set and test set for model training, validation
and testting. Specifically, we select the first 70 percent check-in records as a training set for
training the model, then 10 percent as a validation set for tuning the model parameters,
and the rest as a test set for evaluating the model performance. The statistics of the used
datasets are summarized in Table 2.

Table 2. Statistics of datasets.

Dataset #Users #POIs #Sessions

NYC 1121 38,643 11,433
TKY 2134 62,003 29,131

5.2. Baseline Model

In this paper, we choose the following models for model comparison from three
perspectives, Markov chain-based method, RNN-based method and graph-based method:

TAD-FPMC [10]: TAD-FPMC is a tensor factorization-based method that first predicts
the POI category and then generates the recommendation POIs based on the prediction
results outlined in the previous step.

ARNN [15]: ARNN first leverages a random walk-based method to assess the influence
of location neighbors and further utilizes the RNN-based model to extract the sequential
regularity of all users.

PLSPL [17]: PLSPL is an RNN-based method that develops a user-based linear combi-
nation unit to learn the dynamic preference for different users.

STKGRec [21]: STKGRec derives the user preference from the constructed knowledge
graphs via a novel spatial–temporal transfer relation.
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STP-UDGAT [25]: STP-UDGAT is a graph attention network-based method that
leverages the attention mechanism to learn user preference from the spatial-temporal-
preference neighborhoods.

TAD-FPMC is a Markov chain-based method. ARNN and PLSPL are RNN-based
methods. STKGRec and STP-UDGAT are graph-based methods.

5.3. Evaluation Metric

For evaluating the model performance on the task of next POI recommendation, we
adopt two widely used evaluation metrics, Precision@k [17] and MAP@k [17], where k de-
notes the length of the POI recommendation list. In this paper, we vary k in {5 , 10, 15, 20}.
Precision@k is used to indicate the rate of the ground truth POI appears in the recommenda-
tion list. A higher value of Precision@k means that model can predict more POIs correctly.
Additionally, MAP@k is used to the quality of the recommendation list. A higher value
means that the ground truth POI is higher in the recommendation list. The calculations of
these evaluation metrics are performed as follows:

Precision@k =
1
n

n

∑
i=1

∣∣Di
rec ∩ Di

vis

∣∣∣∣Di
vis

∣∣ (10)

MAP@k =
1
n

n

∑
i=1

∣∣Di
rec ∩ Di

vis

∣∣
rank

(11)

where n denotes the number of training items, Di
rec denotes the recommendation list, Di

vis
denotes the visited list and rank denotes the position of the correctly recommended POI in
the ranked list [17].

5.4. Performance Comparasion

To evaluate the model performance on the task of next POI recommendation, we run
each model on 2 datasets with 10 random initializations and report the average results. The
experimental results are summarized in Tables 3–6.

Table 3. Model performance on NYC in terms of Precision.

Model Precision@5 Precision@10 Precision@15 Precision@20

TAD-FPMC 0.218 0.256 0.283 0.332
ARNN 0.256 0.293 0.312 0.367
PLSPL 0.292 0.356 0.391 0.423

STKGRec 0.289 0.349 0.379 0.419
STP-UDGAT 0.295 0.378 0.412 0.463

HAGCN 0.315 0.386 0.434 0.487

Table 4. Model performance on NYC in terms of MAP.

Model MAP@5 MAP@10 MAP@15 MAP@20

TAD-FPMC 0.142 0.156 0.165 0.173
ARNN 0.154 0.162 0.176 0.184
PLSPL 0.191 0.201 0.211 0.222

STKGRec 0.183 0.196 0.204 0.212
STP-UDGAT 0.199 0.207 0.217 0.231

HAGCN 0.208 0.219 0.225 0.243
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Table 5. Model performance on TKY terms of Precision.

Model Precision@5 Precision@10 Precision@15 Precision@20

TAD-FPMC 0.223 0.263 0.296 0.342
ARNN 0.262 0.303 0.326 0.378
PLSPL 0.301 0.364 0.404 0.443

STKGRec 0.297 0.351 0.392 0.438
STP-UDGAT 0.308 0.385 0.426 0.477

HAGCN 0.321 0.399 0.449 0.492

Table 6. Model performance on TKY terms of MAP.

Model MAP@5 MAP@10 MAP@15 MAP@20

TAD-FPMC 0.146 0.164 0.175 0.186
ARNN 0.159 0.169 0.186 0.197
PLSPL 0.196 0.206 0.219 0.228

STKGRec 0.188 0.203 0.211 0.217
STP-UDGAT 0.206 0.215 0.226 0.240

HAGCN 0.213 0.229 0.239 0.252

Based on the above experimental results, we can make the following observations:
(1) HAGCN achieves the best performance on two datasets, which indicates that extracting
model performance from different time patterns can improve the model performance;
(2) graph-based models have obtained better performance than other models, showing that
transforming the users’ check-in records into graph structural data is helpful for capturing
the check-in habits of users; (3) TAD-FPMC performs the worst on two datasets, which
demonstrates that introducing multi-contextual information is crucial to learning user
preferences, especially since TAD-FPMC only considers the influence of temporal factors.

5.5. Parameter Analysis

In this section, we provide additional experiments for investigating the influence of
two core parameters, the number of GCN layers and the number of hidden dimensions,
on the model’s performance. We fix the length of recommendation list to 10 and vary the
number of layers and hidden dimensions to observe the changes of the model performance
on NYC dataset. Specifically, we vary the number of GCN layers in {1 , 2, . . . , 5} and the
number of hidden dimensions in {32 , 64, . . . , 512}. The experimental results are shown in
Figures 2 and 3.
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From Figure 2 we can observe that the model performance is sensitive to the number of
GCN layers. This is because the model will suffer from the over-smoothing problem [29,30]
when increases the number of GCN layers. Thus, the large number of GCN layer could
hurt the model performance.

As for the influence of the hidden dimension, we can observe that the model perfor-
mance changes slightly when we increase the number of hidden dimensions from Figure 3.
This phenomenon indicates that the model performance is not sensitive to the number of
hidden dimensions

5.6. Ablation Study

In this section, we study the influence of the different time patterns on the model
performance. We propose two variants of our proposed HAGCN, named HAGCN-H and
HAGCN-D. In HAGCN-H, the hours pattern is preserved. Additionally, in HAGCN-D,
we observe the day pattern. We also set a fixed value 10 to the length of recommendation
list and observe the model performance on NYC dataset. The experimental results are
summarized in Table 7.

Table 7. The performance of HAGCN and its variants on NYC.

Metric HAGCN-H HAGCN-D HAGCN

Precision 0.373 0.362 0.386
MAP 0.205 0.203 0.219

We can make the following findings from Table 7: (1) HAGCN beats its two variants,
showing that learning user preferences through different time patterns is a promising
way to increase the model performance; (2) HAGCN-H outperforms HAGCN-D, which is
because the hours pattern can preserve more information of users’ check-in habits than the
day pattern. We can also conclude that our proposed HAGCN can extract more precise
user preferences from the check-in records.

6. Conclusions

In this paper, we study one of the most important tasks, next POI recommendation in
the location-based social networks. To better understand the check-in habits of different
users from the check-in records, we propose a novel model named dynamic temporal-
based graph convolutional network (HAGCN). The key idea of HAGCN is to extract user
preferences under different time patterns. For this purpose, HAGCN first constructs several
interaction graphs to represent the relations of POIs under different contextual information.
Next HAGCN leverages GCN-based neural network modules to learn the representations of
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POI in these constructed graphs. Then, for different users, HAGCN develops an attention-
based fusion module to adaptively learn the user preferences. Moreover, a dynamic
preference estimation is proposed to preserve the influence of temporal factors on user
preferences. We present the results of extensive experiments conducted on two real-
world datasets. The experimental results show that our proposed HAGCN consistently
outperforms several competitive methods on next POI recommendation task.

As extensive experimental results from real-world datasets have proved the promising
performance of HAGCN on the task of next POI recommendation, HAGCN could be
applied in the POI recommendation service of location-based mobile applications in LBSNs,
such as Foursquare and Yelp, to help users explore new and interesting POIs.
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