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Abstract: In order to solve the problem of noise interference in the collected magneto mechanical
signals, a new wavelet shrinkage threshold based on adaptive estimation is proposed. Based on
the shortcomings of the traditional threshold function, an improved threshold function is proposed,
and the parameters of the threshold function are solved by the improved genetic algorithm, and
the optimal denoising effect is finally obtained. The new threshold function can not only make up
the defects of each threshold function, ensure the continuity of threshold function, but also flexibly
adjust the threshold to adapt to different noise conditions, and solve the deviation caused by inherent
threshold function, and protect the useful information with noise signals.

Keywords: force magnetic signal; wavelet denoising method; adaptive threshold; genetic algorithm;
wavelet basis function

1. Introduction

The force and magnetic signals of metal components contain a lot of characteristic
information. In order to extract useful feature information effectively, it is necessary
to denoise the magnetic signal [1–3]. Fourier transform can not approximate the local
information of motor vibration signal and is not suitable for noise reduction of magnetic
signal [4,5]. The wavelet function has the function of local analysis, which can approach
the detail characteristics of the signal very well, and is convenient for extracting the feature
information of metal components [6]. The fast wavelet decomposition algorithm proposed
in the literature makes the wavelet widely used in many fields. On this basis, wavelet
threshold denoising has been developed rapidly [2,7–10].

The principle of wavelet threshold denoising algorithm is that signal and noise present
different forms in wavelet domain [11,12]. With the increase of decomposition scale, the
amplitude of noise figure decreases rapidly to zero, while the amplitude of real signal
coefficient remains unchanged [4,8,13–15]. In the process of threshold denoising, the
selection of threshold and threshold function is an important step [16]. At present, adaptive
threshold is one of the most popular threshold selection methods [17–22].

According to the latest literature [17–21], the current research direction of wavelet
threshold denoising mainly lies in the construction of a new threshold function and the
selection of threshold. However, there are few research studies on wavelet basis function
and decomposition level. There is no basis for the selection of wavelet basis function
and the number of decomposition layers, so it is necessary to analyze and optimize the
wavelet basis function and the number of decomposition layers. After selecting the best
wavelet basis function and the number of decomposition layers, it is necessary to select the
threshold function and threshold value.

In this paper, signal-to-noise ratio (SNR) and minimum mean square error (RMSE)
are used as evaluation criteria. The optimization of wavelet basis function and decom-
position level is carried out. SNR and RMSE were calculated for different wavelet basis
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functions and decomposition levels. We select the wavelet basis function and the number
of decomposition layers with the largest SNR value and the smallest RMSE.

For the selection criteria of threshold, this paper adopts the adaptive threshold algo-
rithm to determine the threshold.

At the same time, the hard threshold function is a discontinuous function, and the
reconstructed signal has oscillation. In addition, the soft threshold function has deviation
from the real value of signal when the signal is contracted. In view of the above short-
comings, this paper proposes an improved threshold function algorithm, which uses the
improved threshold function combined with the new threshold to modify the wavelet
coefficients, and realizes the effective extraction of the signal.

2. Mathematical Background

It is assumed that X = [x0,x1,x2, · · · , xN−1]
T is an observation value containing noise.

In other words [23–25],
xi = si + ni, (i = 1, 2, · · · , N) (1)

si is the true value of the signal at time i, and ni is the independently distributed white
Gaussian noise N(0, σ). Our goal is to find an estimate Ŝ of the signal S based on the
observed value of X. To minimize the minimum mean squared error of S and Ŝ, we replace
the mathematical expectation by the mean:

ξ(Ŝ, S) =
1
N
‖Ŝ− S‖2

=
1
N

N

∑
i=1

(ŝi − si)
2 (2)

The noise elimination method proposed by Donoho [17,26–29] is effective in the sense of
minimum mean square error and can achieve better visual effects. Its main theoretical basis
is that the signal belonging to Besov space is in the wavelet domain, and its energy is only
concentrated in a limited number of coefficients. However, the noise energy is distributed in the
whole wavelet domain. Therefore, the coefficient of signal after wavelet decomposition is larger
than the coefficient of noise. Furthermore, the signal coefficients can be preserved, and most
noise coefficients can be reduced to zero by using the threshold method.

From the above theory, as showm in Figure 1, we can reach the following wavelet
thresholding denoising steps:
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Figure 1. Signal reconstruction and decomposition process.

(1) The appropriate wavelet basis function is used to decompose the input noise signal,
and the corresponding approximation coefficient and detail coefficient are extracted.

(2) Threshold wavelet coefficients. The wavelet coefficients of the original signal are
retained, and other wavelet coefficients are eliminated.

(3) The threshold coefficient is reconstructed by iswt (iswt is the name of a function defined
in MATLAB). In this way, the asymptotic estimation of the original signal can be obtained.
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3. Adaptive Wavelet Threshold Denoising Method
3.1. Selection of Wavelet Basis Function

The selection principle of wavelet basis function is generally considered from the
specific signal characteristics and wavelet basis function attributes. As shown in Table 1
Wavelet basis has the mathematical characteristics of orthogonality, symmetry, regularity,
vanishing moment and tight support. The orthogonality reflects the degree of perfection of
wavelet bases, and the wavelet bases with good orthogonality are conducive to the accurate
reconstruction of wavelet decomposition coefficients. Symmetrical wavelet bases have
linear phase, which can avoid phase distortion in signal decomposition and reconstruction.
The higher the regular basis of wavelets is, the higher the regularity of the basis is. In
order to detect the singular points effectively, the selected wavelet base must have enough
vanishing moments. The larger the support, the better the regularity. The smaller the width
of the support, the faster the calculation speed of wavelet transform.

Table 1. Parameter characteristics of wavelet basis functions.

Wavelet
Basis Orthogonality Biorthogonality Symmetry Compactness Vanishing

Moment Support Length Filter Length

Haar Yes Yes Symmetric Yes 1 1 2

Daubechies Yes Yes Symmetric
approximation Yes N 2N-1 2N

Biorthogonal No Yes Asymmetry Yes N-1
Restructure 2Nr + 1 Restructure 2Nr + 2
Decompose 2Nd +

1
Decompose 2Nd +

2

Coiflet Yes Yes Symmetric
approximation Yes 2N 6N-1 6N

Symlet Yes Yes Symmetric
approximation Yes 2N 2N-1 2N

As shown in Figure 2 and Table 2, we measured the surface of the pipe by instru-
mentMagnetic induction data are collected by three-dimensional magnetic signal sensors.
The main sources of signal noise are electromagnetic components, transistors, resistors
and integrated circuits. In addition, the buried depth and direction of buried pipeline,
acquisition environment, geomagnetic field, and operator’s own factors are also included.
Secondly, as shown in Figure 3, there are some mutation points with large amplitude in
the data, which are caused by many factors. These points can not be easily listed as noise
signals. It is necessary to conduct many tests to determine the causes before making a
decision. Therefore, we should not only remove the noise in the data as much as possible,
but also retain some large value mutation points in the data.
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Table 2. Technical parameters of tsc (Triaxial Stress Concentration)-2 m-8 tester.

Parameter Name Parameter

Hp range ±2000 A/m
Hp measurement channel 2–8 channel

Minimum measurement step width 1 mm
Maximum measurement step width 128 mm

Scanning speed 0.2–0.5 m/s
Basic relative error <5%

Relative error of measuring length <5%
Microprocessor 16 bit

Memory capacity 1 Mb
Flash memory capacity 32 Mb

Display LCD, 320 × 240
Transmission speed 115 kbps

Keyboard 14 keys
Battery 7.2 V

Power consumption 0.8–3.0 VA
Operating temperature range −15–55 ◦C

Relative humidity range 45–85%
Geometric dimension 243 × 120 × 40 mm

Weight 0.6 kg
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Figure 3. Magnetic signal data of sensor in a 1 z direction.

Through the above analysis, the wavelet basis function suitable for magnetic signal
denoising should have good orthogonality, high vanishing moment, high regularity and
moderate tight support length. Therefore, the approximate symmetric wavelet basis can
be used. According to the characteristics of wavelet basis function parameters in the table,
Daubechies (dbN), coifflet (coifN) and Symlet (symN) wavelet basis functions are suitable
for magnetic signal data de-noising.

According to Figures 4 and 5, under different threshold functions, the Decomposition
level is 5 to obtain SNR and RMSE diagrams under different wavelet basis functions. We
find that DB7 has good denoising performance. Therefore, we select DB7 as wavelet basis
function, and the schematic diagram of wavelet basis function is shown in Figures 6 and 7.
We set the number of decomposition levels to 6, the threshold value to Rigrsure, and the
threshold function to a soft threshold function.
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3.2. Determination of Decomposition Levels

For the selection of discrete wavelet decomposition layer, there is no systematic study
and no strict basis for partitioning. Therefore, researchers need to try according to the
actual problems. Different levels of decomposition will be used to analyze the signal after
noise reduction, so as to determine the most suitable level of wavelet decomposition for
this test. We select DB7 as the basis function, the threshold function as the hard threshold
function, and the threshold selection method as Sqtwolog to verify the denoising effect.

The number of decomposition layers can not be determined by SNR, and the actual
de-noising effect should be observed. On the one hand, the filtered noise is required
to be clean, and on the other hand, the denoising effect should avoid the signal being
over-filtered. Through comparison, it is found that, as shown in Figures 8–10, when the
decomposition level is 5, the curve with decomposition level of 5 not only retains the overall
trend information of the original signal, but also has a good approximation for local detail
information, so the denoising quality is good. Therefore, we choose the five levels. The
detail coefficients and approximate coefficients under different decomposition layers are
obtained, as shown in Figures 11 and 12.
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3.3. Construction of Threshold Function

Hard threshold function expression [23–26]

yk,j =

 ωk,j,
∣∣∣ωk,j

∣∣∣ ≥ T

0,
∣∣∣ωk,j

∣∣∣ < T
(3)

Soft threshold function expression

yk,j =

 sgn(ωk,j)(
∣∣∣ωk,j

∣∣∣− T),
∣∣∣ωk,j

∣∣∣ ≥ T

0,
∣∣∣ωk,j

∣∣∣ < T
(4)
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In the past wavelet threshold denoising, hard threshold function and soft threshold
function are often used, but there are some problems such as fixed deviation and disconti-
nuity. In order to solve this problem, the paper tries to use shape adjustment parameters
to improve the threshold function, which can solve the disadvantages of soft and hard
thresholds to a certain extent, and achieve a good denoising effect. Based on this, we
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reconstruct a new threshold function according to the shortcomings of the two improved
threshold functions in the literature:

yk,j =


uωk,j + (1− u)sgn(ωk,j)(ωk,j − 2T

1+e
β(ωk,j−T)

T

), ωk,j ≥ T

0,
∣∣∣ωk,j

∣∣∣ < T

uωk,j + (1− u)sgn(ωk,j)(−ωk,j − 2T

1+e
β(−ωk,j−T)

T

), ωk,j ≤ −T

(5)

u = 1− e−α(
|ωk,j |−T

T )
2

(6)

f = ux + (1− u)sgn(x)(|x| − 2T

1 + e
β(|x|−T)

T

), α > 0 (7)

y =
−2

1 + e−βx , β ∈ R+ (8)

The constructed function curve is shown in Figure 13. The function value is distributed
between [−2, 0], and decreases with the increase of the x value, and the slope of the curve
increases from −60 to 60.
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3.4. Feasibility Analysis of Constructed Function

1. Function continuity

lim
ωk,j→T+

yk,j = lim
ωk,j→T+

uωk,j + (1− u)sgn(ωk,j)(ωk,j −
2T

1 + e
β(ωk,j−T)

T

) = lim
ωk,j→T+

(1− e−α(
ωk,j−T

T )
2

)T = 0 (9)

In the same way:
lim

ωk,j→T−
yk,j = 0 (10)

Therefore, the threshold function is continuous at T.
Similarly, it can be proved that:

lim
ωk,j→−T−

yk,j = lim
ωk,j→−T+

yk,j = 0 (11)

The threshold function is continuous at −T, and the function satisfies high-order
differentiability.
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2. The asymptotic property of function

lim
ωk,j→−∞

yk,j

ωk,j
= lim

ωk,j→−∞

uωk,j − (1− u)(−ωk,j − 2T

1+e
β(ωk,j−T)

T

)

ωk,j
= lim

ωk,j→−∞
[2(1− e−α(

−ωk,j−T
T )

2

)− 1] = 1 (12)

In the same way:

lim
ωk,j→+∞

yk,j

ωk,j
= 1 (13)

Asymptotic line of function:
yk,j = ωk,j (14)

Therefore, when the wavelet coefficients are large, the fixed deviation problem of soft
threshold function can be effectively reduced.

3. Deviation

lim
ωk,j→+∞

(yk,j −ωk,j) = lim
ωk,j→+∞

(u− 1)ωk,j + (1− u)(ωk,j −
2T

1 + e
β(ωk,j−T)

T

) = 0 (15)

In the same way, we can obtain that

lim
ωk,j→−∞

(yk,j −ωk,j) = 0 (16)

4. Analysis of influence parameters of threshold function

When α = 0, β = 0,the improved threshold function is a soft function; when α→ ∞
or β→ ∞ , the improved threshold function is a hard function. Therefore, the improved
threshold function has good continuity at the threshold point. According to the parameters
α and β, it can adapt to different signals.

5. Parity

The definition domain of the function is R and satisfies the requirement:

yk,j(−ωk,j) = −yk,j(ωk,j) (17)

Therefore, the function is an odd function, which is consistent with the soft threshold
and hard threshold.

As shown in Figure 14, the improved threshold function curve is distributed between
the soft and hard threshold curves, which not only solves the problem of discontinuity at
the threshold, but also relieves the energy loss caused by constant deviation.
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Through calculation, we obtain the SNR and RMSE values under different parameters,
as shown in Figure 15. It can be seen from the figure that, when β is known, with the
increase of α, SNR gradually increases and finally tends to a fixed value. On the contrary,
RMSE gradually decreases and finally tends to a constant value. However, when α is
known, the SNR value gradually increases with the increase of β, and finally tends to a
constant value, while the change rule of RMSE is the opposite. Therefore, by adjusting the
two parameters, we can obtain the ideal threshold function value, and then obtain the best
wavelet coefficients and denoising effect.
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3.5. Estimation of Threshold

The adaptive threshold algorithm is based on the steepest descent method in the
optimization method. In other words, the threshold at the next time should be equal to
the threshold at the present time plus a gradient value proportional to the negative mean
square error function.

The algorithm is based on the steepest descent method in the optimization method,
that is, the threshold T(n+1) at the next time should be equal to the threshold T(n) at the
present time plus a gradient value ∆T(n) proportional to the negative mean square error
function:

T(n + 1) = T(n)−µ · ∆T(n) (18)

where µ is learning rate, and ∆T(n), and the expression is as follows:

∆T(n) =
∂ξ(n)
∂T(n)

(19)
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Therefore, the key to derive this algorithm is to find ∆T(n). We can set a function
g(Ω) of the observed value, whose expression is:

g(Ω) = ŝ(Ω)−Ω (20)

If the valuation of signal S is based on the observed value ω, and thus g(Ω) belongs
to the mapping from RN to RN, and g(Ω) is differentiable, then:

ξ(Ŝ, S) = E
[
‖ŝ(Ω)− s‖2

]
= N + E

{
‖g(Ω)‖2 + 2∇y · g(Ω)

}
(21)

∇y · g(Ω) =
N

∑
1

∂gi
∂ωk,j

(22)

SURE is an unbiased estimate of the above mean square error, and its expression is as
follows:

ξ(Ŝ, S) = N + E‖g(Ω)‖2 + 2∇y · g(Ω) (23)

The gradient expression of the mean square error ξ is:

∆T(n) =
∂ξ(n)
∂T(n)

= 2
N

∑
1

gi ·
∂gi

∂T(n)
+ 2

N

∑
1

∂2gi
∂ωk,j∂T(n)

(24)

According to Equation (28),
gi = yk,j −ωk,j (25)

A new threshold function (Equation (13)) is presented in this paper. It has continuous
derivatives of infinite order. Based on Equation (32), an adaptive iterative operation is
carried out to dynamically seek the best threshold. According to Equation (32), we can
obtain:

∂g(i)
∂T(n)

= ωk,j
∂u

∂T(n)
+ sgn(ωk,j)(−

∂u
∂T(n)

)(ωk,j −
2T(n)

1 + e
β(ωk,j−T(n))

T(n)

) + sgn(ωk,j)(1− u)
−2(1 + e

β(ωk,j−T(n))

T(n) ) + 2T(n)e
β(ωk,j−T(n))

T(n) (− βωk,j

T(n)2 )

[1 + e
β(ωk,j−T(n))

T(n) ]

2 (26)

∂u
∂T(n)

= 2α(
ωk,j − T(n)

T(n)
)(

ωk,j

T(n)2 )e
−α(

ωk,j−T(n)

T(n) )
2

(27)

∂g(i)
∂ωk,j

= u− 1 + ωk,j
∂u

∂ωk,j
+

(− ∂u
∂ωk,j

)sgn(ωk,j)(ωk,j −
2T(n)

1 + e
β(ωk,j−T(n))

T(n)

)

+ (1− u)sgn(ωk,j)

1− −2βe
β(ωk,j−T(n))

T(n)[
1 + e

β(ωk,j−T(n))

T(n)

]2


β

T(n)
e

β(ωk,j−T(n))

T(n) (28)

∂u
∂ωk,j

=
2α

T(n)
(

ωk,j − T(n)
T(n)

)e−α(
ωk,j−T(n)

T(n) )
2

(29)

∂2u
∂ωk,j∂T(n)

=
−2αT(n)2 − 4αωk,j + 4αT(n)

T(n)3 e−α(
ωk,j−T(n)

T(n) )
2

+ 4α2 ωk,j − T(n)
T(n)

e−α(
ωk,j−T(n)

T(n) )
2

(
ωk,j − T(n)

T(n)
)(

ωk,j

T(n)2 ) (30)

∂2g(i)
∂ωk,j∂T(n) , its expression is too complex, so it will not be expressed in this article.

The convergence condition is ∆T < T2Ti. i is decomposition level. The initial threshold
of wavelet denoising is T = q2

√
2 log(N). N is the number of observation data, and q2 is

the noise variance, which can be estimated by the median value of the absolute value at
each level.
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3.6. Denoising Process

The flow chart of adaptive wavelet denosing algorithm is shown in Figure 16.
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4. Results and Discussion 
Figure 16. New wavelet threshold denoising process.

4. Results and Discussion

In order to verify the performance of the proposed de-noising method, computer-
generated white Gaussian noise is added to the known magnetic signals and compared
with the classical algorithm. From the perspective of reconstructed signal quality, many
quantitative parameters can be used to evaluate the performance of denoising process. In
this case, the following parameters are compared:

Signal-to-noise ratio (SNR):

SNR = 10 ln[
∑
n

x2(n)

∑
n
[x(n)− x̂(n)]2

] (31)

where x̂(n) is the denoised signal, and x(n) is the original signal. The constant, N, is the
number of samples composing the signals.
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Root-mean-square error (RMSE):

RMSE =

√√√√∑
n
[x(n)− x̂(n)]2

length(n)
(32)

where n records the length of each element in the decomposed wavelet coefficient matrix.
As can be seen from Figure 17, the denoising results show that the denoising effect

of the new method is better than that of the conventional threshold denoising method.
Compared with model(xu2018), it can be seen that the denoising effect of this paper is
still good. According to Table 3, the SNR value of the adaptive threshold is 96.3, and
the RMSE value is 0.2011, indicating that the effect is better than that of the conventional
threshold method and model (xu2018). It can be seen from Table 4 that the SNR value of
the constructed threshold function is higher than that of the soft threshold function, hard
threshold function, and model (xu2018). It shows the superiority of the proposed method.
The number of decomposition layers is 5.
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Table 3. Conventional wavelet threshold denoising method.

Denoising
Index

Threshold
Function

Wavelet
Basis

Wavelet Threshold Selection Method

Sqtwolog Rigrsure Heursure Minimaxi

SNR
Hard

threshold
function

DB7
91.3 89.88 92.62 93.98

RMSE 0.2646 0.2841 0.2477 0.2314
SNR

COIF4
89.71 91.18 92.83 88.52

RMSE 0.2866 0.2671 0.2413 0.293

SNR
Soft

threshold
function

DB7
92.4 94.18 95.73 90.71

RMSE 0.2491 0.2284 0.221 0.2769
SNR

COIF4
91.33 95.29 94.71 89.43

RMSE 0.263 0.2234 0.2251 0.2884

Table 4. Constructed wavelet threshold denoising method.

Denoising Index Wavelet Basis
Denoising Method

xu(2018) Constructed Threshold Function

SNR
DB7

96.72 100.74
RMSE 0.207 0.1651

SNR
COIF4

95.89 98.16
RMSE 0.2115 0.1867

5. Conclusions

In the process of three-dimensional force and magnetic signal processing, the denois-
ing effect of the signal plays an important role in the feature extraction and analysis of
the force and magnetic signal. Firstly, the most appropriate wavelet basis function and
decomposition layer number are selected through analysis and calculation. In addition,
the new method of a new threshold combined with a new threshold function is used to
denoise the analog signal and the measured vibration signal. It shows that the satisfactory
noise reduction effect can be achieved by setting the appropriate threshold combined with
the new threshold function, which can reflect the real vibration characteristics and retain
the high-frequency characteristics of the signal.

According to the simulation results of the analog signal, the new threshold and the
improved threshold function can effectively improve the signal-to-noise ratio, reduce the
root mean square error, suppress the high-frequency noise, and recover the real useful
signal in the signal. According to the measured magnetic signal processing, the improved
noise reduction algorithm has a good noise reduction effect in magnetic signal processing.
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