
Citation: Qu, Y.; Ma, H.; Jiang, Y.; Bu,

Y. A Network Intrusion Detection

Method Based on Domain Confusion.

Electronics 2023, 12, 1255. https://

doi.org/10.3390/electronics12051255

Academic Editor: Cheng-Chi Lee

Received: 15 February 2023

Revised: 3 March 2023

Accepted: 4 March 2023

Published: 6 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Network Intrusion Detection Method Based on
Domain Confusion
Yanze Qu 1 , Hailong Ma 2,*, Yiming Jiang 2 and Youjun Bu 2

1 Institute of Information Technology, PLA Information Engineering University, Zhengzhou 450003, China
2 National Digital Switching System Engineering and Technological Research Center, Zhengzhou 450001, China
* Correspondence: longmanclear@163.com

Abstract: Network intrusion detection models based on deep learning encounter problems in the
migration application. The performance is not as good as expected. In this paper, a network intrusion
detection method based on domain confusion is proposed to improve the migration performance
of the model. A domain confusion network is designed for feature transformation based on the
idea of domain adaptation, mapping the traffic data in different network environments to the same
feature space. Meanwhile, a regularizer is proposed to control the information loss in the mapping
process to ensure that the transformed feature obtains enough information for intrusion detection.
The experiment results show that the detection performance of the model in this paper is similar
to or even better than the traditional models, and the migration performance in different network
environments is better than the traditional models.

Keywords: network security; deep learning; network intrusion detection; domain adaptation; trans-
fer learning

1. Introduction

With the popularity of network infrastructure and the development of network-related
technologies, such as network communication, electronic payment, cloud storage, and the
Internet of Things, cyberspace has gradually become another major strategic space. At the
same time, the occurrence frequency and harmfulness of malicious network behavior are
increasing. How to efficiently maintain the stability and security of the network is one of
the important research contents in the area of network security.

Network traffic data can effectively represent the nature of a network behavior. In
addition, compared with other network data, network traffic data are easy to access and
sufficiently diverse. It is feasible to judge whether network behavior is malicious or not
based on network traffic data. In recent years, relevant technologies in the area of machine
learning, especially deep learning, have gradually become the mainstream method for
constructing a network intrusion detection model. Compared with traditional methods, a
network intrusion detection model based on deep learning has advantages in the accuracy
and speed of detection and offers broad development prospects. Many relevant studies
based on public datasets have achieved a favorable performance [1].

However, the network intrusion detection model based on deep learning also faces some
difficulties. SOMMER R et al. pointed out in reference [2] that although many academic
studies have proved its good detection performance and development potential, the detection
performance of a network intrusion detection model based on deep learning in practical
deployment is much lower than expected, which the author attributed to the differences
between network security scenarios and other application scenarios of deep learning.

The network environments are heterogeneous. Infrastructure equipment manufactur-
ers, network scope, network users, etc., constitute various network environments, such as
the Internet, national network, and enterprise network. We call the data space available for

Electronics 2023, 12, 1255. https://doi.org/10.3390/electronics12051255 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12051255
https://doi.org/10.3390/electronics12051255
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4055-8458
https://doi.org/10.3390/electronics12051255
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12051255?type=check_update&version=1

Electronics 2023, 12, 1255 2 of 14

observation and sampling in a certain network environment the Network Data Domain
(NDD) of the network. An important reason why the performance of the same intrusion
detection model fluctuates greatly in different networks is that the NDDs of different net-
works differ in distribution. Deep learning completes various tasks by learning potential
patterns in data. Mathematically speaking, a deep learning model mainly completes the
fitting of mapping from feature space to output space. In the context of network intrusion
detection, an intrusion detection model is trained based on an NDD and has achieved
excellent detection performance. When it is migrated to another NDD, its mapping func-
tion does not change, but its detection performance declines significantly. This is because
different network environments obtain different NDDs.

To this problem, this paper proposes a network intrusion detection method based
on domain confusion, which trains a domain confusion network based on Generative
Adversarial Networks (GANs) [3]. At the same time, a regularizer is added to cope with the
phenomenon of information loss in the process of feature transformation, so as to obtain
a feature representation of network traffic data with domain-invariance and a sufficient
amount of information. The contribution of this paper can be summarized as follows:

(1) Based on the idea of GANs, the adversarial training method of a domain confusion
network is designed, so that the domain confusion network can effectively reduce the
influence of the network’s environment on network traffic data, so as to close the distance
between different NDDs.

(2) Based on the idea of the Auto-Encoder (AE), the regular term of information loss is de-
signed, which can effectively limit the information loss of network traffic data in the process of
feature transformation. The regularizer can ensure that the subsequent feature representation
obtains enough information for intrusion detection, thus improving the accuracy.

(3) A network intrusion detection method is proposed, which has strong robustness to
network environmental noise. It is sensitive to the part of the network traffic data that is
conducive to detection, while insensitive to the part related to the environment, providing
a feasible solution for improving the migration application and practical deployment of the
network intrusion detection model based on deep learning.

2. Related Work

Network intrusion detection is one of the important research topics in the area of
network security. In recent years, with the rapid development of deep learning, several
excellent works based on deep learning have emerged. In reference [4], BONTEMPS L et al.
trained a network intrusion prediction model on the normal traffic data based on Long
Short-Term Memory (LSTM) and then judged whether the network environment is in a
normal state by comparing the distance between the predicted value of the model and
the real value with a threshold value. Kim J et al. constructed a network intrusion detec-
tion model based on Multi-Layer Perceptron (MLP), which achieved 99.3% on accuracy
and 0.12% on false alarm rate on 10%KDD CUP99 [5]. Reference [6] proposed a net-
work intrusion detection model based on Non-Symmetric Deep Auto-Encoder (NDAE),
which achieved 97.85% on accuracy in the five classification tasks of NSL-KDD. In ad-
dition, there are many studies with an outstanding performance carried out on CTU-13,
UNSW-NB15, UGR’16, etc. [1]. Each of these datasets has its own purpose. For example,
UNSW-NB15 focuses on packet content analysis and is suitable for identifying encrypted
traffic. The success of network intrusion detection in various datasets also further proves
its advantages.

The performance of a network intrusion detection model based on deep learning
is relatively mature, but it is also faced with some problems. Reference [7] conducted a
study of 30 papers from top-tier security conferences within the past decade and analyzed
the pitfalls existing in the steps of constructing a security system based on deep learning,
pointing out that most of the studies did not take the limitations of actual conditions
into account, and the evaluation experiments were ideal. The problem mentioned in
reference [2] that the network intrusion detection models developed a striking gap in terms

Electronics 2023, 12, 1255 3 of 14

of actual deployments has not been solved. The research on the migration application of a
network intrusion detection model is slightly insufficient.

In the classic scenario of deep learning, the data distribution during application is often
assumed to be the same as that of training. However, in the actual scenario, the application
environment is often different from the training one, which leads to the degradation of
the model. In order to solve this problem, transfer learning comes into being, the core of
which is to find the relationship between existing and new knowledge. In transfer learning,
the data environment used for training is usually called the source domain, and the data
environment for the application is called the target domain. Domain Adaptation (DA) is a
method of transfer learning, which maps the features of different domains into the same
space, thus reducing the differences between the source domain and the target domain [8]
and finally obtaining the feature representation with domain-invariance.

GANs provide a method to effectively learn feature representation from samples
without massive annotated data [9]. It achieves this goal by updating two adversarial
neural networks through the back propagation algorithm. At present, the idea of generative
adversarial learning has achieved refreshing achievements in many areas, such as image
generation [10,11] and video generation [12]. In reference [13], the adversarial method is
introduced into the study of DA, and Domain Adversarial Neural Networks (DANNs)
were proposed. The authors added the domain error as a regularizer into the loss function
and completed training with a gradient reversal layer, achieving a good migration effect
in the area of image recognition. However, this work did not really involve GANs into
training. Combining the above works, a domain confusion network is designed to generate
the feature representation with domain-invariance.

The Auto-Encoder [14] is also one of the generation models. Its training goal is
to ensure that the output of the model is as similar as possible to the input, obtaining
meaningful feature representation by imposing constraints on the intermediate layers of
the neural network, such as limiting the number of perceptrons or the sparsity. If the output
and input of the model are close enough, the vector in the middle layer is considered
as a feature representation that can effectively represent the original data sample. This
algorithm inspired the design of the regularizer in this paper.

3. Method
3.1. Problem Modeling

The construction of network intrusion detection model based on deep learning requires
the support of massive datasets with well-annotated labels. Deep learning is a process
of approximating complex function through a large amount of data. The amount of
training datasets and the accuracy of annotation play an important role in determining the
performance of the model. The construction of qualified network security datasets is costly
and requires a long development period. Training an intrusion detection model with high
robustness to NDDs’ transformation is a more valuable and promising method.

There is an NDD DS from which a massive network dataset with well-annotated labels
TS can be obtained, corresponding to the training space for network intrusion detection
model. There is an NDD DT from which a massive network dataset without labels TT can
be acquired by tools, such as Wireshark, corresponding to the deployment environment of
network intrusion detection model. A robust network intrusion detection model should pay
enough attention to the part of the data that is conducive to classification, while neglecting
other parts, such as environmental noise.

Network traffic data are one of the most commonly used network security data to
construct network intrusion detection models. The experiment of this paper is based on it,
and it is related to the network environment to a certain extent. Take network protocols as
an example; the usage of network protocols varies in different network environments. The
usage of encryption protocols on the Internet is usually higher than that on the Intranet. It is
difficult to determine the correlation function between network traffic features and network
environment. Traditional methods cannot effectively solve this problem. It is a feasible

Electronics 2023, 12, 1255 4 of 14

scheme to transform network traffic features with deep learning, compressing environment-
related information and obtaining feature representation with domain-invariance.

3.2. Domain Confusion Network

The network intrusion detection model based on domain confusion consists of two
parts: domain confusion network, a feature extractor responsible for feature transformation,
and a classifier responsible for identifying malicious network behaviors. The domain
confusion network is responsible for mapping the traffic data of different NDDs into the
same feature space and retaining enough information for the classification work of the
classifier to ensure the classification accuracy.

Figure 1 shows the training process of the domain confusion model. In the figure
above, two neural networks appear, namely Network Domain Confusion Network and
Network Domain Discriminator. To map the traffic data of different NDDs into the same
space, the training process of the two models is adversarial to some extent.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 14

Network traffic data are one of the most commonly used network security data to

construct network intrusion detection models. The experiment of this paper is based on

it, and it is related to the network environment to a certain extent. Take network protocols

as an example; the usage of network protocols varies in different network environments.

The usage of encryption protocols on the Internet is usually higher than that on the Intra-

net. It is difficult to determine the correlation function between network traffic features

and network environment. Traditional methods cannot effectively solve this problem. It

is a feasible scheme to transform network traffic features with deep learning, compressing

environment-related information and obtaining feature representation with domain-in-

variance.

3.2. Domain Confusion Network

The network intrusion detection model based on domain confusion consists of two

parts: domain confusion network, a feature extractor responsible for feature transfor-

mation, and a classifier responsible for identifying malicious network behaviors. The do-

main confusion network is responsible for mapping the traffic data of different NDDs into

the same feature space and retaining enough information for the classification work of the

classifier to ensure the classification accuracy.

Figure 1 shows the training process of the domain confusion model. In the figure

above, two neural networks appear, namely Network Domain Confusion Network and

Network Domain Discriminator. To map the traffic data of different NDDs into the same

space, the training process of the two models is adversarial to some extent.

Network Domain Confusion

Network

SD

TD

ST

TT

Network Domain

Discriminator

F-Vectors

Domain Label

Train

Data Flow

Predicted Label

Figure 1. The Method to Train a Network Domain Confusion Model.

Domain confusion network maps network traffic data of SD and TD into

F Vectors− to obtain their corresponding feature representation, as shown in Equation

(1).

, (, ;)s T C s T CV V N T T = (1)

The task of domain discriminator is to identify the NDD to where the feature repre-

sentation *V belongs. The output of domain discriminator is a scalar *(;)D DN V , rep-

resenting the probability of feature representation *V belonging to SD . In the training

process, we completed the training of domain discriminator by minimizing classification

errors, as shown in Equation (2). On the contrary, domain confusion network was trained

to maximize the classification error.

min[log((;)) log((;))]D T D D s DN V N V − (2)

Binary Cross Entropy (BCE) is often used as a loss function for binary classification

problems, and its expression is shown in Equation (3). In the Equation, P represents the

Figure 1. The Method to Train a Network Domain Confusion Model.

Domain confusion network maps network traffic data of DS and DT into F−Vectors
to obtain their corresponding feature representation, as shown in Equation (1).

Vs, VT = NC(Ts, TT ; θC) (1)

The task of domain discriminator is to identify the NDD to where the feature represen-
tation V∗ belongs. The output of domain discriminator is a scalar ND(V∗; θD), representing
the probability of feature representation V∗ belonging to DS. In the training process, we
completed the training of domain discriminator by minimizing classification errors, as
shown in Equation (2). On the contrary, domain confusion network was trained to maxi-
mize the classification error.

min[log(ND(VT ; θD))− log(ND(Vs; θD))] (2)

Binary Cross Entropy (BCE) is often used as a loss function for binary classification
problems, and its expression is shown in Equation (3). In the Equation, P represents the
output of the classification model, and Y is the expected result. When training is processed
in batches, yi represents the category of the i-th sample, and p(yi) represents the i-th output
of the model. With 0 indicating that the sample belongs to DS and 1 indicating that the
sample belongs to DT , the loss functions of domain discrimination network and domain
confusion network can be derived as Equations (4) and (5).

BCELoss = BCE(P, Y) = − 1
N

N

∑
i=1

[yi log(p(yi)) + (1− yi) log(1− p(yi))] (3)

Electronics 2023, 12, 1255 5 of 14

LossD =
1
2
[BCE(NC(TS; θC), [0, . . . , 0]) + BCE(NC(TT ; θC), [1, . . . , 1])] (4)

LossC = BCE(ND(NC(TT ; θC); θD), [0, . . . , 0]) (5)

In the above training process, the samples of different NDDs are first mapped to the
same feature space through domain confusion network, and then domain discriminator
is trained based on this batch of data, so that it can effectively identify the feature repre-
sentation of the traffic samples of NDDs. After this training, domain confusion network is
trained based on the outputs of the domain discriminator, making the feature representation
generated by domain confusion network more easily recognized by domain discrimination
network as coming from DS. After several rounds of the above steps, the loss value of the
two neural networks will level off. At this point, the system can be considered to be in
Nash equilibrium. In F−Vectors, the feature representation of the DT’s samples will be
closer to those of the DS’s samples. Ideally, domain discriminator cannot complete the
classification task. In this case, domain confusion network can be used to generate a feature
representation that is independent of network environment for traffic data. With the output
of domain confusion network as points in the feature space and domain discrimination
network as a hyperplane, the training process can be shown in Figure 2.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 14

output of the classification model, and Y is the expected result. When training is pro-
cessed in batches, iy represents the category of the i-th sample, and ()ip y represents

the i-th output of the model. With 0 indicating that the sample belongs to SD and 1 in-

dicating that the sample belongs to TD , the loss functions of domain discrimination net-
work and domain confusion network can be derived as Equations (4) and (5).

1

1(,) [log(()) (1) log(1 ())]
N

i i i i
i

BCELoss BCE P Y y p y y p y
N =

= = − + − −∑ (3)

1 [((;),[0,...,0]) ((;),[1,...,1])]
2D C S C C T CLoss BCE N T BCE N Tθ θ= + (4)

(((;);),[0,...,0])C D C T C DLoss BCE N N T θ θ= (5)

In the above training process, the samples of different NDDs are first mapped to the
same feature space through domain confusion network, and then domain discriminator
is trained based on this batch of data, so that it can effectively identify the feature repre-
sentation of the traffic samples of NDDs. After this training, domain confusion network
is trained based on the outputs of the domain discriminator, making the feature represen-
tation generated by domain confusion network more easily recognized by domain dis-
crimination network as coming from SD . After several rounds of the above steps, the
loss value of the two neural networks will level off. At this point, the system can be con-
sidered to be in Nash equilibrium. In F Vectors- , the feature representation of the TD ’s

samples will be closer to those of the SD ’s samples. Ideally, domain discriminator cannot
complete the classification task. In this case, domain confusion network can be used to
generate a feature representation that is independent of network environment for traffic
data. With the output of domain confusion network as points in the feature space and
domain discrimination network as a hyperplane, the training process can be shown in
Figure 2.

(a) (b) (c)

(d) (e)

Figure 2. The Training Process. Traffic samples are mapped to the points in the feature space as (a),
in which the orange ones represent these samples of source domain and the blue ones represent
those of target domain. The discriminator is trained based on the dataset as (b). The parameters in
domain confusion network are adjusted to make the points closer as (c). Then, the discriminator

Figure 2. The Training Process. Traffic samples are mapped to the points in the feature space as (a),
in which the orange ones represent these samples of source domain and the blue ones represent those
of target domain. The discriminator is trained based on the dataset as (b). The parameters in domain
confusion network are adjusted to make the points closer as (c). Then, the discriminator needs to
be updated as (d). After enough iterations, as (e) shows, the discriminator cannot complete its task
smoothly, and the probability that one point comes from source domain is about 0.5.

3.3. Information Loss Regularizer

When the above adversarial system reaches the equilibrium state, domain discrimina-
tor cannot accurately distinguish the feature representation of samples in different NDDs.
It can be considered that the part related to network environment is greatly reduced, and
the feature representation obtains domain-invariance. However, in the process of feature
transformation, the information carried by samples is decreased. In addition to the expected
reduction in the relevant part of network environment, the information of other parts is also

Electronics 2023, 12, 1255 6 of 14

inevitably affected, thus affecting the performance of the model. In order to deal with this
problem, it is necessary to add information loss regularizer to the loss function of domain
confusion network, so as to ensure that the subsequent feature representation has enough
information to judge whether the network behavior is malicious or not.

Considering the design of information loss regularizer, domain confusion network
was designed based on the idea of Auto-Encoder as shown in Figure 3. Mean Square Error
(MSE) was used to measure information loss, as shown in Equation (6).

R = MSE(X, Y) =
1
N

N

∑
i=1

(Y− X)2 (6)

Electronics 2023, 12, x FOR PEER REVIEW 6 of 14

needs to be updated as (d). After enough iterations, as (e) shows, the discriminator cannot complete
its task smoothly, and the probability that one point comes from source domain is about 0.5.

3.3. Information Loss Regularizer
When the above adversarial system reaches the equilibrium state, domain discrimi-

nator cannot accurately distinguish the feature representation of samples in different
NDDs. It can be considered that the part related to network environment is greatly re-
duced, and the feature representation obtains domain-invariance. However, in the process
of feature transformation, the information carried by samples is decreased. In addition to
the expected reduction in the relevant part of network environment, the information of
other parts is also inevitably affected, thus affecting the performance of the model. In or-
der to deal with this problem, it is necessary to add information loss regularizer to the loss
function of domain confusion network, so as to ensure that the subsequent feature repre-
sentation has enough information to judge whether the network behavior is malicious or
not.

Considering the design of information loss regularizer, domain confusion network
was designed based on the idea of Auto-Encoder as shown in Figure 3. Mean Square Error
(MSE) was used to measure information loss, as shown in Equation (6).

...R
eL

U
()

Input Output

Intermediate
Layers

as similar as possible

Figure 3. The Structure of Domain Confusion Network.

2

1

1(,) ()
N

i
R MSE X Y Y X

N =

= = −∑ (6)

The final loss function of domain confusion network is shown in Equation (7). λ is
a regularizer coefficient. If λ is too large, the model pays too much attention to the in-
formation loss during the feature transformation, making the model difficult to reach con-
vergence.

(((;);),[0,...,0]) (, (;))C D C T C D T C T CLoss BCE N N T MSE T N Tθ θ λ θ= + (7)

The pseudocode of the training process is shown in Algorithm 1.

Algorithm 1. The Training Process of Domain Confusion Network
def get_DCN():

Load Data
data_Source = get_Data(source)
data_Target = get_Data(target)

Figure 3. The Structure of Domain Confusion Network.

The final loss function of domain confusion network is shown in Equation (7). λ is a
regularizer coefficient. If λ is too large, the model pays too much attention to the information
loss during the feature transformation, making the model difficult to reach convergence.

LossC = BCE(ND(NC(TT ; θC); θD), [0, . . . , 0]) + λMSE(TT , NC(TT ; θC)) (7)

The pseudocode of the training process is shown in Algorithm 1.

Electronics 2023, 12, 1255 7 of 14

Algorithm 1 The Training Process of Domain Confusion Network

def get_DCN():
Load Data
data_Source = get_Data(source)
data_Target = get_Data(target)
Initialize the Neural Network
DCN = base_network()
Discriminator = base_classifier()
Multiple Epoches
for epoch in range(num_epoch):

Multiple Batches
for batch_Source, batch_Target in data_Source, data_Target:

Obtain Feature Representation
F_Source, F_Target = DCN (batch_Source), DCN (Batch_Target)
Train the Discriminator
Pred_Source = Discriminator(F_Source)
Pred_Target = Discriminator(F_Target)
Preds = [Pred_Source, Pred_Target]
Expecteds = [0 in len(Pred_Source),1 in len(Pred_Target)]
Loss of the Discriminator
Loss_Discriminator = BCE(Preds, Expecteds)
Loss_Discriminator.backward()
Update the Discriminator
Discriminator.weights.update()
Train the Domain Confusion Network
Preds_DCN = Discriminator(F_Target)
Expecteds_DCN = [0 in len(Pred_Target)]
Loss of the Domain Confusion Network
Loss_DCN = BCE(Preds_DCN, Expected_DCN) + λ*MSE(F_Target, batch_Target)
Update the Domain Confusion Network
DCN.weights.update()

Obtain the DCN
return DCN

4. Experiment
4.1. Experiment Setup

As mentioned above, the network intrusion detection model based on domain con-
fusion requires two NDDs for construction. The experiment was carried out based on
CICIDS2017 and CICIDS2018 [15], which were developed by the Communications Security
Establishment (CSE) in collaboration with the Canadian Institute for Cybersecurity (CIC)
for evaluating the detection performance of an intrusion detection system. In reference [15],
the team evaluated eleven public datasets since 1998 and found that most of them were
out of date, and some of the datasets suffered from low reliability, lack of diversity, and
low volume. The CICIDS datasets followed eleven criteria for constructing baseline dataset
proposed in reference [16], including benign network behaviors and most up-to-date at-
tack behaviors, in which flow was taken as the basic unit. According to RFC3917 [17], a
network flow is defined as a set of packets that have the same quintuple (source IP address,
destination IP address, source port, destination port, and protocol number) within a certain
period of time.

Another decisive reason for choosing CICIDS datasets as the baseline is the similarity
between CICIDS2017 and CICIDS2018. The two datasets were obtained with the same
form by the development team in 2017 and 2018, respectively, for similar purposes using
similar configurations, which provided convenience for the experiment and eliminated the
work of feature alignment. Due to the complexity of network data, datasets constructed
by different research groups often have different purposes and use different collection
configurations and different forms, which greatly weakens the comparability among public

Electronics 2023, 12, 1255 8 of 14

datasets. Due to the privacy of network data, many public datasets do not provide complete
traffic data, but only provide partial observations, which makes it difficult to carry out
feature alignment. For example, KDD CUP’99 is collected from military networks and
provides TCP connection features, time-based features, and host state features for different
attacks. The similarities between CICIDS2017 and CICIDS2018 in terms of temporal and
spatial characteristics and collection configuration provide necessary conditions for the
implementation of the evaluation experiment.

Ten percent of CICIDS datasets was randomly selected for training, and then it was
divided into a training set and a test set in a ratio of 4:1. Based on CICFlowMeter [18], the
corresponding features were extracted from the traffic of a network flow. The shapes of
each dataset in the experiment are shown in Table 1.

Table 1. The Shape of Experiment Datasets.

Name Shape

CICIDS2017_Train [226, 231, 77]
CICIDS2018_Train [659, 831, 77]
CICIDS2017_Test [56, 557, 77]
CICIDS2018_Test [164, 957, 77]

The experiment took binary classification as the main task, CICIDS2017 as the traffic
data of DS, and CICIDS2018 as the traffic data of DT . The traffic data of DT were involved
in the training process as unlabeled data. The parameter settings are shown in Table 2.
How to select the value of λ will be discussed below.

Table 2. The Parameters During Experiments.

Parameter Value

Optimizer Adam
Learning Rate 0.0001

Batch Size 128
Epoch Number 50

Regularizer Coefficient λ 0.1

It was necessary to process the data before the training. The pre-processing pseu-
docode is shown as Algorithm 2.

Algorithm 2 Data Pre-Processing

def pre_processing(data):
Load Data

data = get_Data(dataset)
Feature Selection via CICFlowMeter with its default setting
data = feature_selection_via_CICFlowMeter(data)
Data Cleaning, Drop Samples with Null
data = clean_Data(data)

Obtain Feature and Label from Data
features, labels = data.split()
Normalize Feature
features = StandardScaler(features)
Label Encoding
labels = LabelMapper(labels)
Obtain Data after Pre-processing
data = [features, labels]

Electronics 2023, 12, 1255 9 of 14

4.2. Domain Confusion Model

The experimental dataset is tabular data composed of 77 dimensional feature vec-
tors. For tabular data, multi-layer perceptron has a high processing efficiency [5]. The
domain confusion model was obtained based on the training method and the loss function
Equation (7) proposed above. The changes in loss with different λ during training are
shown in Figures 4–9.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 14

data = clean_Data(data)
Obtain Feature and Label from Data

features, labels = data.split()
Normalize Feature
features = StandardScaler(features)
Label Encoding
labels = LabelMapper(labels)
Obtain Data after Pre-processing
data = [features, labels]

4.2. Domain Confusion Model
The experimental dataset is tabular data composed of 77 dimensional feature vectors.

For tabular data, multi-layer perceptron has a high processing efficiency [5]. The domain
confusion model was obtained based on the training method and the loss function Equa-
tion (7) proposed above. The changes in loss with different λ during training are shown
in Figures 4–9.

Figure 4. The Loss During Training (λ = 0.1).

0
1
2
3
4
5
6
7
8
9

1 36 71 10
6

14
1

17
6

21
1

24
6

28
1

31
6

35
1

38
6

42
1

45
6

49
1

52
6

56
1

59
6

63
1

66
6

70
1

73
6

77
1

80
6

84
1

87
6

91
1

94
6

98
1

Lo
ss

Iterations

λ=0.1

Loss_Confusion Network Loss_Discriminator

Figure 4. The Loss During Training (λ = 0.1).

Electronics 2023, 12, x FOR PEER REVIEW 10 of 14

Figure 5. The Loss at The End of Training (λ = 0.1).

Figure 6. The Loss During Training (λ = 0.5).

Figure 7. The Loss at The End of Training (λ = 0.5).

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Lo
ss

Iterations

λ=0.1 Later period

Loss_Confusion Network Loss_Discriminator

0
1
2
3
4
5
6
7
8
9

1 37 73 10
9

14
5

18
1

21
7

25
3

28
9

32
5

36
1

39
7

43
3

46
9

50
5

54
1

57
7

61
3

64
9

68
5

72
1

75
7

79
3

82
9

86
5

90
1

93
7

97
3

Lo
ss

Iterations

λ=0.5

Loss_Confusion Network Loss_Discriminator

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Lo
ss

Iterations

λ=0.5 Later period

Loss_Confusion Network Loss_Discriminator

Figure 5. The Loss at The End of Training (λ = 0.1).

λ is the regularier coefficient in Equation (7), which to a certain extent represents the
model’s attention to information loss. Figures 4, 6 and 8 show the changes in loss of the
domain confusion network and domain discrimination network in the whole training stage
under different regularity coefficients. The blue line represents the loss of the domain
confusion network, and the orange one represents the loss of the domain discrimination
network. With the increase in iteration rounds, the loss of the two networks gradually be-
comes stable, which can be considered that the adversarial system reaches the equilibrium,
and the training of domain confusion model is completed.

Electronics 2023, 12, 1255 10 of 14

Electronics 2023, 12, x FOR PEER REVIEW 10 of 14

Figure 5. The Loss at The End of Training (λ = 0.1).

Figure 6. The Loss During Training (λ = 0.5).

Figure 7. The Loss at The End of Training (λ = 0.5).

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Lo
ss

Iterations

λ=0.1 Later period

Loss_Confusion Network Loss_Discriminator

0
1
2
3
4
5
6
7
8
9

1 37 73 10
9

14
5

18
1

21
7

25
3

28
9

32
5

36
1

39
7

43
3

46
9

50
5

54
1

57
7

61
3

64
9

68
5

72
1

75
7

79
3

82
9

86
5

90
1

93
7

97
3

Lo
ss

Iterations

λ=0.5

Loss_Confusion Network Loss_Discriminator

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Lo
ss

Iterations

λ=0.5 Later period

Loss_Confusion Network Loss_Discriminator

Figure 6. The Loss During Training (λ = 0.5).

Electronics 2023, 12, x FOR PEER REVIEW 10 of 14

Figure 5. The Loss at The End of Training (λ = 0.1).

Figure 6. The Loss During Training (λ = 0.5).

Figure 7. The Loss at The End of Training (λ = 0.5).

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Lo
ss

Iterations

λ=0.1 Later period

Loss_Confusion Network Loss_Discriminator

0
1
2
3
4
5
6
7
8
9

1 37 73 10
9

14
5

18
1

21
7

25
3

28
9

32
5

36
1

39
7

43
3

46
9

50
5

54
1

57
7

61
3

64
9

68
5

72
1

75
7

79
3

82
9

86
5

90
1

93
7

97
3

Lo
ss

Iterations

λ=0.5

Loss_Confusion Network Loss_Discriminator

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Lo
ss

Iterations

λ=0.5 Later period

Loss_Confusion Network Loss_Discriminator

Figure 7. The Loss at The End of Training (λ = 0.5).
Electronics 2023, 12, x FOR PEER REVIEW 11 of 14

Figure 8. The Loss During Training (λ = 1).

Figure 9. The Loss at The End of Training (λ = 1).

λ is the regularier coefficient in Equation (7), which to a certain extent represents
the model’s attention to information loss. Figures 4, 6 and 8 show the changes in loss of
the domain confusion network and domain discrimination network in the whole training
stage under different regularity coefficients. The blue line represents the loss of the do-
main confusion network, and the orange one represents the loss of the domain discrimi-
nation network. With the increase in iteration rounds, the loss of the two networks grad-
ually becomes stable, which can be considered that the adversarial system reaches the
equilibrium, and the training of domain confusion model is completed.

In addition, it can be seen from the above figures that the loss of the domain discrim-
ination network reaches convergence relatively early. The training direction of the domain
confusion network in the later period is mainly determined by the regularier of infor-
mation loss. In the case of sufficient iteration rounds, a smaller λ (λ ! = 0) can also be
effective in accomplishing its tasks.

Figures 5, 7 and 9 show the fluctuation of losses under different regularity coefficients
in the equilibrium state. The average loss of the domain confusion network and the do-
main discrimination network under different regularity coefficients in the equilibrium
stage is shown in Table 3. The loss of the domain confusion network is proportional to λ ,

0
2
4
6
8

10
12

1 41 81 12
1

16
1

20
1

24
1

28
1

32
1

36
1

40
1

44
1

48
1

52
1

56
1

60
1

64
1

68
1

72
1

76
1

80
1

84
1

88
1

92
1

96
1

Lo
ss

Iterations

λ=1

Loss_Confusion Network Loss_Discriminator

0
0.5

1
1.5

2
2.5

3
3.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Lo
ss

Iterations

λ=1 Later Period

Loss_Confusion Network Loss_Discriminator

Figure 8. The Loss During Training (λ = 1).

Electronics 2023, 12, 1255 11 of 14

Electronics 2023, 12, x FOR PEER REVIEW 11 of 14

Figure 8. The Loss During Training (λ = 1).

Figure 9. The Loss at The End of Training (λ = 1).

λ is the regularier coefficient in Equation (7), which to a certain extent represents
the model’s attention to information loss. Figures 4, 6 and 8 show the changes in loss of
the domain confusion network and domain discrimination network in the whole training
stage under different regularity coefficients. The blue line represents the loss of the do-
main confusion network, and the orange one represents the loss of the domain discrimi-
nation network. With the increase in iteration rounds, the loss of the two networks grad-
ually becomes stable, which can be considered that the adversarial system reaches the
equilibrium, and the training of domain confusion model is completed.

In addition, it can be seen from the above figures that the loss of the domain discrim-
ination network reaches convergence relatively early. The training direction of the domain
confusion network in the later period is mainly determined by the regularier of infor-
mation loss. In the case of sufficient iteration rounds, a smaller λ (λ ! = 0) can also be
effective in accomplishing its tasks.

Figures 5, 7 and 9 show the fluctuation of losses under different regularity coefficients
in the equilibrium state. The average loss of the domain confusion network and the do-
main discrimination network under different regularity coefficients in the equilibrium
stage is shown in Table 3. The loss of the domain confusion network is proportional to λ ,

0
2
4
6
8

10
12

1 41 81 12
1

16
1

20
1

24
1

28
1

32
1

36
1

40
1

44
1

48
1

52
1

56
1

60
1

64
1

68
1

72
1

76
1

80
1

84
1

88
1

92
1

96
1

Lo
ss

Iterations

λ=1

Loss_Confusion Network Loss_Discriminator

0
0.5

1
1.5

2
2.5

3
3.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Lo
ss

Iterations

λ=1 Later Period

Loss_Confusion Network Loss_Discriminator

Figure 9. The Loss at The End of Training (λ = 1).

In addition, it can be seen from the above figures that the loss of the domain discrimi-
nation network reaches convergence relatively early. The training direction of the domain
confusion network in the later period is mainly determined by the regularier of information
loss. In the case of sufficient iteration rounds, a smaller λ (λ! = 0) can also be effective in
accomplishing its tasks.

Figures 5, 7 and 9 show the fluctuation of losses under different regularity coefficients
in the equilibrium state. The average loss of the domain confusion network and the domain
discrimination network under different regularity coefficients in the equilibrium stage is
shown in Table 3. The loss of the domain confusion network is proportional to λ, but the
loss of domain discrimination is not, making it an effective reference for system stability.

Table 3. The Average Losses of Different λ.

λ Confusion Network Loss Discriminator Loss

0.1 0.7736 0.6931
0.5 2.7282 0.6143
1.0 2.0472 0.6012

The goal of the domain confusion network is that the domain discrimination network
cannot accurately classify its output. The expected value given by the domain discrimi-
nation network is 50%, and the corresponding loss value is 0.6931. The closer the loss of
the domain discrimination network is to 0.6931, the stronger the domain-invariance of the
feature representation. Therefore, λ = 0.1 is preferred.

4.3. Migration Application

After the training of the domain confusion network, the network intrusion detection
model CN-MLPM was constructed based on DS with the domain confusion model as a
feature extractor. The baseline models MLPM and 1D-CNNM were constructed based on
the method in reference [5,19]. The evaluation experiment was conducted on the test set of
DS and DT . The experiment results are shown in Tables 4–6.

Table 4. The Loss During Training.

Model Training Loss Validation Loss Validation Accuracy

MLPM 0.092 0.073 96.91%
1D-CNNM 0.110 0.070 96.76%
CN-MLPM 0.105 0.088 95.14%

Electronics 2023, 12, 1255 12 of 14

Table 5. The Evaluation Results on CICIDS2017_Test.

Model Accuracy Precision Recall F1-Score

MLPM 96.13% 99.45% 91.94% 0.9554
1D-CNNM 92.51% 98.13% 91.03% 0.9444
CN-MLPM 96.15% 99.08% 92.92% 0.9590

Table 6. The Evaluation Results on CICIDS2018_Test.

Model Accuracy Precision Recall F1-Score

MLPM 71.10% 75.05% 91.29% 0.8237
1D-CNNM 72.91% 74.31% 92.56% 0.8243
CN-MLPM 76.17% 77.84% 96.30% 0.8609

As can be seen from the results, the detection performance of CN-MLPM on DS is very
close to that of MLPM in all indexes, which indicates that the network traffic data do not
lose a lot of information that is helpful to distinguish the nature of network behavior in
the feature transformation. On DT , the detection performance of CN-MLPM is superior
to MLPM, which indicates that the network intrusion detection model based on domain
confusion obtains robustness to network environmental noise and can effectively improve
the detection performance in the migration application.

In order to measure the degradation degree of different models, the D− ratio was
taken as an important indicator. Its calculation formula is shown in Equation (8), in which
the D− ratio refers to the degradation degree of different models, acc is the evaluation
accuracy of the model on DS, and acc′ is the evaluation accuracy of the model on DT .

D− ratio =
acc− acc′

acc
(8)

With the work of reference [20], the migration performance of various methods is
shown in Table 7.

Table 7. The Migration Performance of Various Methods.

Model Accuracy_DS Accuracy_DT D − Ratio

PCA 90.98% 67.48% 25.83%
Isolation Forest 91.11% 44.79% 50.84%
Auto-Encoder 94.26% 70.97% 24.71%

MLPM 96.13% 71.10% 26.04%
1D-CNNM 92.51% 72.91% 21.19%
CN-MLPM 96.15% 76.17% 20.78%

The model proposed in this paper has better robustness to the noise of the net-
work environment and can cope with the migration application of network intrusion
detection model.

5. Conclusions

Although the network intrusion detection model based on deep learning has achieved
remarkable performance, there is relatively little research on its migration application,
which greatly affects the promotion and productive application of deep learning in the area
of network security. This paper proposes a network intrusion detection method based on
domain confusion. Based on the idea of GANs and Auto-Encoder, a domain confusion
network is designed to process the traffic data, so as to reduce the part about network
environment in the sample as much as possible and, at the same time, to retain the part
that is helpful to distinguish the nature of network behavior. With the domain confusion
model, an intrusion detection model with high robustness to network environmental noise

Electronics 2023, 12, 1255 13 of 14

is constructed. Taking the network intrusion detection model as an example, this paper
provides a feasible idea for the deep model in the area to improve the generalization
performance, contributing to the actual deployment of network security systems based on
deep learning.

Network traffic data are only a perspective to observe network behavior. In addition
to the feature transformation method proposed in this paper, a more comprehensive way
to characterize network behavior, such as modeling the packets of a network flow with
the host state, is bound to further improve the generalization ability of deep models.
Meanwhile, some works based on unsupervised learning methods have been proved to
have better robustness, which is the direction of further research [21].

Author Contributions: Conceptualization, Y.Q. and H.M.; Data curation, Y.Q.; Formal analysis, Y.Q.
and H.M.; Funding acquisition, Y.B.; Investigation, Y.Q.; Project administration, Y.B.; Resources, Y.B.;
Software, Y.Q. and Y.J.; Supervision, H.M.; Validation, Y.Q. and H.M.; Visualization, Y.Q.; Writing—
original draft, Y.Q.; Writing—review and editing, Y.Q. and Y.J. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the National Natural Science Fund of China, grant number
62176264. The APC was funded by the National Natural Science Fund of China, grant number 62176264.

Data Availability Statement: The data used to support the findings of this study are available from
reference [15].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, Z.; Liu, X.; Li, T.; Wu, D.; Wang, J.; Zhao, Y.; Han, H. A systematic literature review of methods and datasets for

anomaly-based network intrusion detection. Comput. Secur. 2022, 161, 102675. [CrossRef]
2. Sommer, R.; Paxson, V. Outside the closed world: On using machine learning for network intrusion detection. In Proceedings of

the 2010 IEEE Symposium on Security and Privacy, Berleley/Oakland, CA, USA, 16–19 May 2010.
3. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Bengio, Y. Generative adversarial networks.

Commun. ACM 2020, 63, 139–144. [CrossRef]
4. Bontemps, L.; Cao, V.L.; McDermott, J.; Le-Khac, N.A. Collective anomaly detection based on long short-term memory recurrent

neural networks. In Proceedings of the International Conference on Future Data and Security Engineering, Can Tho City, Vietnam,
23–25 November 2016; Springer: Berlin/Heidelberg, Germany, 2016.

5. Kang, M.J.; Kang, J.W. Method of intrusion detection using deep neural network. In Proceedings of the 2017 IEEE International
Conference on Big Data and Smart Computing (BigComp), Jeju Island, Republic of Korea, 13–16 February 2017; pp. 313–316.

6. Shone, N.; Ngoc, T.N.; Phai, V.D.; Shi, Q. A deep learning approach to network intrusion detection. IEEE Trans. Emerg. Top.
Comput. Intell. 2018, 2, 41–50. [CrossRef]

7. Arp, D.; Quiring, E.; Pendlebury, F.; Warnecke, A.; Pierazzi, F.; Wressnegger, C.; Rieck, K. Dos and Don’ts of Machine Learning in
Computer Security. In Proceedings of the USENIX Security Symposium, Boston, MA, USA, 10–12 August 2022.

8. Wang, J.; Lan, C.; Liu, C.; Ouyang, Y.; Qin, T.; Lu, W.; Yu, P. Generalizing to unseen domains: A survey on domain generalization.
IEEE Trans. Knowl. Data Eng. 2022, 1. [CrossRef]

9. Saxena, D.; Cao, J. Generative adversarial networks (GANs) challenges, solutions, and future directions. ACM Comput. Surv.
(CSUR) 2021, 54, 1–42. [CrossRef]

10. Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of gans for improved quality, stability, and variation. arXiv 2017,
arXiv:1710.10196.

11. Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4401–4410.

12. Spampinato, C.; Palazzo, S.; D’Oro, P.; Giordano, D.; Shah, M. Adversarial framework for unsupervised learning of motion
dynamics in videos. Int. J. Comput. Vis. 2020, 128, 1378–1397. [CrossRef]

13. Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Lempitsky, V. Domain-adversarial training of neural
networks. J. Mach. Learn. Res. 2016, 17, 1–35.

14. Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. arXiv 2020, arXiv:2003.05991.
15. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic

characterization. ICISSp 2018, 1, 108–116.
16. Gharib, A.; Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. An evaluation framework for intrusion detection dataset. In Proceedings

of the 2016 International Conference on Information Science and Security (ICISS), Pattaya, Thailand, 19–22 December 2016; pp. 1–6.
17. RFC3917[EB/OL]. 2014. Available online: http://www.ietf.org/rfc/rfc3917.txt (accessed on 10 December 2022).

http://doi.org/10.1016/j.cose.2022.102675
http://doi.org/10.1145/3422622
http://doi.org/10.1109/TETCI.2017.2772792
http://doi.org/10.1109/TKDE.2022.3178128
http://doi.org/10.1145/3446374
http://doi.org/10.1007/s11263-019-01246-5
http://www.ietf.org/rfc/rfc3917.txt

Electronics 2023, 12, 1255 14 of 14

18. Lashkari, A.H.; Draper-Gil, G.; Mamun, M.S.I.; Ghorbani, A.A. Characterization of tor traffic using time based features. In Proceedings
of the ICISSP, Porto, Portugal, 19–21 February 2017; pp. 253–262.

19. Wang, W.; Zhu, M.; Wang, J.; Zeng, X.; Yang, Z. End-to-end encrypted traffic classification with one-dimensional convolution
neural network. In Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), Beijing,
China, 22–24 July 2017; pp. 43–48.

20. Verkerken, M.; D’hooge, L.; Wauters, T.; Volckaert, B.; De Turck, F. Towards Model Generalization for Intrusion Detection:
Unsupervised Machine Learning Techniques. J. Netw. Syst. Manag. 2021, 30, 1–25. [CrossRef]

21. Qu, Y.; Ma, H.; Jiang, Y. CRND: An Unsupervised Learning Method to Detect Network Anomaly. Secur. Commun. Netw. 2022,
2022, 9509417. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s10922-021-09615-7
http://doi.org/10.1155/2022/9509417

	Introduction
	Related Work
	Method
	Problem Modeling
	Domain Confusion Network
	Information Loss Regularizer

	Experiment
	Experiment Setup
	Domain Confusion Model
	Migration Application

	Conclusions
	References

