
Citation: Yahya, A.E.; Gharbi, A.;

Yafooz, W.M.S.; Al-Dhaqm, A. A

Novel Hybrid Deep Learning Model

for Detecting and Classifying

Non-Functional Requirements of

Mobile Apps Issues. Electronics 2023,

12, 1258. https://doi.org/10.3390/

electronics12051258

Academic Editor: Arkaitz Zubiaga

Received: 30 January 2023

Revised: 25 February 2023

Accepted: 27 February 2023

Published: 6 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Novel Hybrid Deep Learning Model for Detecting and
Classifying Non-Functional Requirements of Mobile
Apps Issues
Abdulsamad E. Yahya 1, Atef Gharbi 1, Wael M. S. Yafooz 2,* and Arafat Al-Dhaqm 3

1 Faculty of Computing and Information Technology, Northern Border University, Rafha 76413, Saudi Arabia
2 Department of Computer Science, College of Computer Science and Engineering, Taibah University,

Medina 42353, Saudi Arabia
3 Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia
* Correspondence: wyfooz@taibahu.edu.sa

Abstract: As a result of the speed and availability of the Internet, mobile devices and apps are in
widespread usage throughout the world. Thus, they can be seen in the hands of nearly every person,
helping us in our daily activities to accomplish many tasks with less effort and without wasting
time. However, many issues occur while using mobile apps, which can be considered as issues of
functional or non-functional requirements (NFRs). Users can add their comments as a review on the
mobile app stores that provide for technical feedback, which can be used to improve the software
quality and features of the mobile apps. Minimum attention has been given to such comments by
scholars in addressing, detecting, and classifying issues related to NFRs, which are still considered
challenging. The purpose of this paper is to propose a hybrid deep learning model to detect and
classify NFRs (according to usability, reliability, performance, and supportability) of mobile apps
using natural language processing methods. The hybrid model combines three deep learning (DL)
architectures: a recurrent neural network (RNN) and two long short-term memory (LSTM) models.
It starts with a dataset construction extracted from the user textual reviews that contain significant
information in the Arabic language. Several experiments were conducted using machine learning
classifiers (MCLs) and DL, such as ANN, LSTM, and bidirectional LSTM architecture to measure the
performance of the proposed hybrid deep learning model. The experimental results show that the
performance of the proposed hybrid deep learning model outperforms all other models in terms of
the F1 score measure, which reached 96%. This model helps mobile developers improve the quality
of their apps to meet user satisfaction and expectations by detecting and classifying issues relating
to NFRs.

Keywords: mobile apps; machine learning; deep learning; non-functional requirements

1. Introduction

The growth in mobile application development and usage in several aspects of life
has increased the usage of apps in daily activities as a whole. This increase is due to the
proliferation of mobile devices, their portability, and their accessibility [1]. Many people,
whether old or young, use mobile applications for entertainment or other reasons. The
huge demand for mobile devices has encouraged software companies to develop more
mobile apps. Several apps have been developed to assist with teaching services, training
services, education services, contracting services, food delivery services, market staff
delivery, hospital assistance, health service, etc. The most popular platform for mobile
apps is the Google apps store, the Apple app store, and many other specialized app stores.
These platforms allow users to express their feedback through reviews and ratings that are
considered indicators of the quality of apps [2,3].

Electronics 2023, 12, 1258. https://doi.org/10.3390/electronics12051258 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12051258
https://doi.org/10.3390/electronics12051258
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2842-9736
https://orcid.org/0000-0002-0729-2654
https://doi.org/10.3390/electronics12051258
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12051258?type=check_update&version=2

Electronics 2023, 12, 1258 2 of 22

User comments and reviews of mobile apps can help in improving the quality and
features of software used in mobile apps. User reviews communicate valuable information
to mobile apps developers, including information of technical value and complaints about
the functionality of the system [4,5]. Such information can be used by developers as a source
for improving the functionality of mobile apps and meeting user expectations. Therefore,
via textual user reviews, apps developers can improve software usability and determine
user satisfaction, as well gain an understanding user needs. Users often prefer to learn
and read the other users’ comments to understand their experiences with mobile apps
before making a decision. In addition, users can form an initial idea about mobile apps and
compare features and functions before buying, downloading or using an app [6].

Scholarly reviews of mobile apps and ratings from 0–5 are utilized to classify bug
reports and user complaint issues regarding system functions. In addition, using exist-
ing data analytics, companies focus on sentiment analysis and study user comments in
assessing products or provided services. Software-oriented issues remain an interesting
area to study, particularly the non-functional requirements (NFRs) of mobile apps, which
play a significant role in user experience and user satisfaction. NFRs are considered as
measures that are used to assess the quality of mobile apps. NFRs are viewed from the
users’ perspectives in meeting user satisfaction with mobile apps.

NFRs include usability, reliability, performance, behavior issues, and security. The
usability of a mobile app refers to how the functions and the graphical user interface of the
mobile app operate. Users face difficulties in using mobile apps for many different reasons.
Reliability measures the consistency of mobile app functions based on updated feedback
from users, as well as function failure [7,8]. Performance refers to the issues related to
mobile apps during installation, opening, and carrying out the tasks or functions of an app.

Using manual procedures, researchers have paid attention to text mining in mobile
apps to reduce human efforts and time consumption in detecting and classifying issues
related to NFRs [9]. The use of machine learning and deep learning models is increasing,
due to their high performance in detecting and classifying issues in natural language
processing or computer vision domains using existing methods in mining information about
mobile apps’ classifications [4,10,11], summarizations of apps’ features [12,13], comparisons
of apps’ features [14], sentiment analysis [15–21], and wearable devices [22–24]. However,
to achieve a high performance rate, a huge amount of data is required. In addition, mining,
detecting, and classifying issues related to NFRs are given little attention. Detecting and
classifying mobile issues in the Arabic language remains a challenge. Therefore, exploiting
and combining multiple DL models can lead to significant improvements in performance,
compared with that of other models. In addition, an automated technique is required to
detect and classify mobile app issues.

Therefore, this research paper proposes a hybrid deep learning model that can detect
and classify issues related to NFRs, using textual user reviews that are extracted from the
Google Play Store. The proposed model combines three DL learning architectures: an RNN
model and two LSTM models. This hybrid model was trained and evaluated based on an
introduced Arabic dataset of NFRs. The dataset was collected from the most popular home-
delivery apps. The dataset preparation used several natural language processing methods,
such as data extraction, data cleaning, and data annotation. The dataset contained the
five main classes of NFRs: usability, reliability, performance, behavior issues, and security.
The dataset was annotated by three experts, including an expert with a Ph. D. in software
engineering. Additionally, several experiments were carried out, based on machine learning
classifiers and deep learning approaches—ANN, RNN, LSTM, and Bi-LSTM. The various
models were examined on the basis of various hyper-parameters. The experimental results
showed that, in terms of F1 scores, the proposed hybrid model outperformed the ML
classifiers and the DL models.

Electronics 2023, 12, 1258 3 of 22

The main contributions of this study are summarized as follows:

• Issues related to NFRs in mobile apps were explored;
• A hybrid model was proposed and implemented to detect and classify mobile apps

issues related to NFRs, using RNN and LSTM models;
• An Arabic dataset was constructed, utilizing user reviews from the Google Play Store

for five classes of NFRs;
• The effect of data augmentation on the NFRs’ dataset was examined to improve

the model performance and solve the overfitting issue. In addition, the Arabic auto
corrector technique was used to enhance the model’s performance in detecting and
classifying issues of mobile apps;

• Finally, the performance of the proposed hybrid deep leaning model was evaluated,
analyzed, and compared with those of many ML classifiers and DL models.

The remaining structure of this paper is organized as follows: Section 2 discusses
related works. The problems in detecting and classifying mobile apps issues are explained
in Section 3. The methodology is discussed in Section 4. A discussion of the results is
provided in Section 4. Finally, the conclusions and suggestions for future work are provided
in Section 5.

2. Related Studies

User satisfaction and meeting user needs are the key factors in the successful develop-
ment of mobile apps. Therefore, attention to feedback from users regarding mobile issues
can achieve the aforementioned objectives. Existing methods and related methods are used
to detect and classify mobiles apps issues. Recently, the issue of mobile apps has been given
attention by researchers to improve software quality and meet user satisfaction.

Aslam et al., in [25], proposed a deep learning model to classify mobile apps’ user
reviews. The proposed mode trained on the basis of meta-data—1,126,453 items of textual
information extracted from Apple and 146,057 items of information extracted from Google
Play Store. It is classified the information into five classes: rating, bug, enhancement,
user, and experience. The model performance achieved at the average level of accuracy
for the five classes was 94%. Similarly, Ciurumelea et al. [11] helped developers save
time and effort in analyzing user feedback. The authors proposed a method to classify
user comments based on the issues discussed by user requests. The gradient boosted
regression trees (GBRT) model, trained on a dataset of 7,754 user comments from 39 mobile
apps, categorized the user comments into high-level and low-level taxonomy. The average
F1 score recorded was 87.7% for the high level, while for the low level, the average F1 score
was 85.5%.

Rustam et al., in [26], developed a sentiment analysis on a public dataset of the
Shopify app store dataset. They divided the dataset into happy and unhappy classes.
Then, they carried out several experiments using machine learning classifiers with feature-
engineering methods, such as TFIDF, BoW, and Chi2. The best accuracy was recorded using
logistics registration, reaching 86% with a combination of TFIDF and Chi2 as input features.
Similarly, Guzman et al., in [27], applied machine learning as single and ensemble classifiers
on a dataset collected from user mobile reviews that contained 4450 user textual comments,
with seven classes. The best F1 score was achieved using ensemble approaches, particularly
the approaches of naive Bayes (NB) machines and support vector (SVMs) machines, which
recorded 64%.

In addition, Isa et al., in [28], focused on a sentiment analysis with an optimiza-
tion process using machine learning classifiers NB, and SVM and a decision tree (DT).
The experiments were carried out on a dataset collected from Google Play Store, with
64,294 user comments. They used different feature engineering, such as TFIDF, word2Vec,
and Word2Doc, with a grid search algorithm. The model’s performance, in terms of ac-
curacy, was recorded after the optimization process using the DT classifier. In a different
way. Li et al., in [29], focused on user comments based on mobile apps before and after
updates. They studied the positive and negative user comments. The dataset was collected

Electronics 2023, 12, 1258 4 of 22

from WhatsApp with 1,148,032 user comments. They applied sentiment analysis and topic
modelling to identify the similarities and correlations between user comments before and
after the mobile app’s updates. In the same way, Li et al., in [14], studied comparative
opinions among mobiles apps user comments, then summarized the opinions based on
topic analysis. The experiment was based on dividing around 5 million reviews into six
categories from Google Play Store. The precision on the comparative opinions was 93.7%,
while the summarization was 60%.

Panichella et al., in [30], proposed a tool for extracting and analyzing user review
comments to help developers identify issues and weaknesses of mobile applications. It
was based on three main approaches: NLP, sentiment analysis, and machine learning
using Weka API. They categorized user reviews into five classes: user seeking information,
information giving, problem discovery, request features, and others. The tool archived
88.9% of the F1- score measure. Luiz and Maalej and Jha and Mahmoud, in [31,32], used the
same three steps to identify the issues by extracting the topics using topic modelling. The
sentiment analysis was detected in the user review and, finally, provided summarization for
mobile developers. In the end, these methods provided useful information for developers
from user comments, which could have a positive or a negative impact.

Jha and Mahmoud, in [8], proposed a method to classify the NFRs of mobile issues
into four classes: performance, support, usability, and dependability. They trainde the
model based on 6000 user comments. Both manual and automatic classifications were
applied. Automatic classification used NB and SVM on a dataset of 1,100 user comments.
The model’s performances were an average of 70% for precision and 86% for recall. Malik
and Shakshuki in [33] extracted features from 8,000 user reviews that were collected from
Google Play Store. Sentiment analysis was applied to the user comments and the final stage
provided a recommendation via a similarity among user comments.

Mobile app models have been proposed in the literature for several purposes. For
example, Sankar et al., in [20], investigated the usability of mobile applications within
virtual environments, considering several criteria, including the effectiveness and efficiency
of task completion, user satisfaction, and the number of errors users made. Empirical
research was carried out by [21] with the use of a set of measures to assess the usability
of mobile applications that operate on various mobile operating systems. Previously,
Mujahid et al., in [22], investigated the most important characteristics that define mobile
applications to facilitate the delivery of valuable, exceptional, and user-friendly mobile
apps to meet user requirements. Mardonova and Choi, in [23], performed a systematic
literature review for the identification and collection of required evidence regarding the
automated testing of mobile applications. The measurement of usability was carried out by
considering three factors, i.e., effectiveness, efficiency, and satisfaction. Mujahid, in [24],
designed a novel usability model in which people were the center of mobile application
development. In addition, they reviewed mobile applications for specific fields. They
reported that a variety of mobile applications have been designed for use in health services,
e.g., heart failure symptoms [25], cardiology [26], and diabetes [27]. Another study, [28],
suggested seven different strategies to assess and select health-related applications. Table 1
illustrates the comparative study of the existing methods of detecting and classifying
mobile apps issues.

Electronics 2023, 12, 1258 5 of 22

Table 1. Comparative analysis between mobile apps user mining methods.

Author(s) Platform Dataset Size Classes Data Type Approach Accuracy/F1
Score

[11] Google Play Store 7754 Six User comments GBRT Average 87.7%

[25] Apple and Google
Play Store

1,126,453
146,057 Four User comments

and meta-data CNN 94%

[26] Shopify App
Store dataset 287,467 Two User comments

and rating

Logistics regression
Random forest
ADABOOST

86% using LR

[27] Multiple sources 4550 Seven User comment ML classifiers
Ensemble (NB, SVM) 64%

[28] Google Play 64,294 Three User comments
SVM
DT
NB

89% using DT

[29] Android platform 1,148,032 Two User comments Sentiment analysis
and topic modelling Opinion mining

[14] Google Play Store 5,000,000 Six User comments Opinion mining
summarization Precision 93.7%

[30] N/A 500 Five User comments ML classifiers 88.8%

[31,32] Google and Apple
Play Stores 32,210 N/A User comments

and rating
Sentiment analysis
and summarization Opinion mining

[33] iOS mobile apps 6000 Four User comments NB
SVM

Precision 70%
Recall 86%

[34] Google Play Store 8000 Three User comments Opinion mining
summarization report

[35]
Google Play Store

and Apple
App Store

7456 Fourteen User comments SVM 59%

3. Problem Formulation

Mobile app issues can be considered a problem in the software engineering area.
In this paper, the problem can be treated as a natural language processing problem, as
we worked with textual data extracted from user-generated comments, as reviews, on
mobile apps.

Detecting and classifying mobile app issues can be categorized into five classes: usabil-
ity, reliability, performance, behavior issues, and security. User textual comment, denoted
by (UR), is a subset of the set of collections of user textual comments (CTs) that are extracted
from mobile apps; and Y is denoted in the classes.

Let CT = {UR1, UR2, UR3, URn}, where n is the total number of URs

Based on the predefined classes of the NRFs, let the NRFs = {Class1, Class2, Class3,
Class4, and Class5}.

After the annotation process, the dataset (D) consists of URs and NFRs. Each UR is
assigned to one of the classes of NRFs, as follows:

UR ∈ NRFs

Let D be divided into D1 and D2, where D1 represents the training data for the model
and D2 represents the testing for the model’s performance:

D = D1 U D2

Electronics 2023, 12, 1258 6 of 22

The extracted features from D are converted to numerical data using the TFIDF
technique. which produces a set of vectors denoted by V. Each V is a representation of UR
and Y is a representation of e NRFs.

Let V = {V1,V2, V3, Vn}, where n is the total number of extracted words from D.

The problem is formulated as follows:
Each UR→ TFIDF→ X(V) to Y; Y is the label of a multiclass; the mobile apps’ issues

are categorized into five classes of NRFs. Let X be the function that categorizes V to the
appropriate class in Y:

UR→ TFIDF→ X(V) ∈ Y

4. Methods and Materials

The research methodology used to apply the hybrid deep learning model in detecting
the non-functional requirements of mobile apps is explained and discussed in the following
section. The methodology consisted of several phases to perform the objectives of this study:
data collection, data cleaning, data annotation, data pre-processing, data representation,
building the model, and the model’s performance evaluation, as presented in Figure 1. All
the phases are described in detail in the following subsections.

Figure 1. Research methods.

4.1. Data Collection

The data in this phase were collected from user-generated textual comments extracted
from the Google Play Store. For this step, the Google API was utilized through Python
programming language. A total of 10 home delivery applications were selected based on
the most popular apps that are commonly used in the Arabic area and the high-rated apps
that contained many user comments. Comments and meta-data were extracted from each
mobile app into one comma-separated value (CSV) format from Google Play Store. The
created file contained the following meta-data description, as presented in Table 2.

Electronics 2023, 12, 1258 7 of 22

Table 2. Mobile apps meta-data on Google.

Item Description

reviewId The review identification number of that comment
userName The user’s name
userImage The user’s image in his/her profile

content The user’s comments
score The rating score of mobile apps

thumbsUpCount The number of users who give thumbs up
reviewCreatedVersion The version of the review tool

at The time of comment created by the user
replyContent If there is a reply for that comment from other users

repliedAt The reply time

In this step, all the items were removed except the content item, which included the
textual data generated from a user comment. The total number of comments in all mobile
delivery apps was 77, 000. These comments were considered the input for the next phase.

4.2. Data Cleaning

Several steps were carried out to prepare data for the next phases. To complete this
task, some columns, duplicate data, data noise, and Arabic sentences written in English
(while their meaning was in Arabic languages) were removed. In addition, the five classes
were identified based on non-functional software issues. These classes are shown in Table 3
and the class description is presented in Table 4.

Table 3. Mobile apps issues—classes.

Class Name Class Number

Usability 1
Reliability 2

Performance 3
Behavior issues 4

Security 5

Table 4. Mobile apps issues—categories description.

Class Name Description

Usability How easily do the functions and the graphical user interface of the mobile app operate with the user?
Reliability Measures the consistency of the mobile app functions and function failures.

Performance Relates to issues for slow applications or function hanging.
Behavior issues Issues that are related to users, such as respect or lateness in service delivery.

Security Measures how the system is secured.

The total number of user comments for all applications was reduced to 9200 rows. All
files were combined in one single file to use for the data annotation phases.

4.3. Data Annotation

Three Arabic native speakers and experts with Ph. D.s in computer science and
software engineering assisted in the annotation process, assigning the user comments to
non-functional requirement classes as previously defined. After the annotation process was
completed, the verification task for classes was performed using Cohen’s Kappa measure.
It showed strong agreement between the three annotators. The final dataset is shown in
Table 5. In addition, examples of each class of NFRs of mobile apps issues are presented
in Table 6.

Electronics 2023, 12, 1258 8 of 22

Table 5. Non-functional classes.

Classes Class Count

Usability 1 2490
Reliability 2 1762

Performance 3 810
Behavior issues 4 1611

Security 5 1341
Total 8014

Table 6. Examples of user comments and classes of NFRs.

Classes Comment In English

Usability
úÎ«

�
éJ.ª� ð

�
èY

�
®ªÓ

�
HAêk. @ñË@ ð Pñ¢

�
JK
 h. A

�
Jm�'

 l .
×A

	
KQ�. Ë @

�
éêk. @ñË@ ÉJ
îD�

�
� úk

.
QK. ð , ÐY

	
j

�
J�ÖÏ @

The program needs to be developed and the
interfaces are complex and difficult for the user.
Please make the interface easier.

Reliability É
	
ª

�
J

�
��
 AÓ é«A� �

	
� ú

Í l .

×A
	
KQ�. Ë @ É

	
ª

�
�@ ÈðAg@

I’m trying to run the program for half an hour,
but it won’t work.

Performance QÓ@ ø@
	

YJ

�
®

	
J
�
JË

�
éK. Aj.

�
J�B@ ú

	
¯ ù¢�. ñ

�
®ÊªK
ð A �Ü

ß@X Q

	
k

A
�
JK

�
�J
J.¢

�
JË @

The application is always lagging, hanging and
slow to respond to the command.

Behavior Issues

Q�
�» @ I. Ê£ I. Ê£@ �A

	
JÊË Ð@Q

�
�g@ ú

	
¯AÓ @Yg. @Yg. Zú

æ� l .

×A
	
KQK.

�
éJ

	
¯AÓ l .

×A
	
KQ�. Ë @ð É�ñK
AÓ �

	
�ð

�
é«A� 	áÓ

@Yg.
�
é

J�
�

�
éÊÓAªÓ ½J
Ê« XQ

�
K ZCÔ«

�
éÓY

	
g

A very, very bad program. There is no respect for
people. Ask for an order for more than an hour
and a half, and it does not arrive. The program
does not have customer service that responds to
you with very bad treatment.

Security �
é
�
¯A¢J. Ë @

	áÓ
�
é
�
Q̄å� ð

	á�
K. A�
	
� ð ÈAJ

�
Jk@ Fraud and theft of the card when purchasing.

4.4. Data Pre-Processing

The dataset consisted of unstructured textual data that contained noise that could
affect the model’s performance. Therefore, data pre-processing was used to enhance the
accuracy of the model’s performance, to classify the classes correctly. The most common
NLP methods utilized in this process were the removal of stop words, the repetition of the
same character in a sentence, the removal of special characters, the removal of numbers,
and the removal of punctuation. These items were considered unnecessary data that could
reduce the model’s performance.

4.5. Data Representation

In this phase, feature-extraction methods were used to convert items into numerical
data using TFIDF word representation from the Sklearn package’s TfidfVectorizer Library.
TFIDF is a statistical method used to show the significance of words in textual data;
scholarly research has proved that it is significantly important in many text-mining areas.
The weight of TFIDF was used as input for the ML classifiers or the DL learning models.
The mathematical formula of TFIDF is as follows):

Wa,b = t fa,b X log(
N

d fa
) (1)

where Wa,b is the weight of TFIDF for word (a) in user comment (b), tfa,b is the occurrence
of word (a) in user comment (b), and dfa is the total number of user comments containing
word (a).

Electronics 2023, 12, 1258 9 of 22

4.6. Machine and Deep Learning Models

This phase utilizes several machine learning and deep learning classifiers. These mod-
els were used to obtain the highest accuracy in detecting and classifying non-functional
issues in mobile apps. Three types of models were implemented through several experi-
ments: ML classifiers, the DL model, and the proposed model.

The machine learning classifiers were logistic regression (LR), decision tree (DTs),
naive Bayes (NB), multinomial naive Bayes (MNB), support vector machines (SVMs),
AdaBoost, random forest (RF), K-nearest neighbors (KNNs), stochastic gradient descent
(SGD), and ensemble classifiers such as AdaBoost, random forest (RF), and XGBoost (XGB).

Recently, deep learning models have been widely used, due to their accuracy in the
classification task. Therefore, in this study, three DL architectures were used: feed-forward
neural network (FFNN) (known as fully connected layers), long short-term memory (LSTM),
and bidirectional long short-term memory (Bi-LSTM). FFNN consists of three layers: input,
hidden, and output layers, as illustrated in Figure 2.

Figure 2. Feed-forward neural network.

The LSTM model was developed as a type of RNN architecture that deals with
the time-sequence feature model. The RNN architecture learns automatically, based
on the feature’s dependencies, unlike the ANN architecture. The main issue with the
RNN architecture is the vanishing gradient issue, which makes it difficult to train. The
LSTM architecture is used to overcome this issue. Generally, the RNN architecture and
the LSTM architecture are commonly used successfully in scholarly natural-language-
processing applications. As a result, it was used to detect the issues of mobile apps
based on user-generated comments that were considered as a sequence of words. The
LSTM model architecture is shown in Figure 3. In addition, the Bi-LSTM is an advanced
model of LSTM used for additional training in the NLP area, which allows for training
in both backward and forward directions.. Therefore, this model was trained and tested
in several experiments.

Electronics 2023, 12, 1258 10 of 22

Figure 3. LSTM model architecture.

A hybrid deep learning model was proposed in this study to improve the precision
and accuracy in detecting and classifying non-functional software requirements issues.
In the experimenalt observations, the best accuracy level was recorded using the LSTM
model. The proposed model consisted of three models: an RNN model and two LSTM
models. Each of these three models received input in the form of TFIDF, which was
calculated based on the word/term frequency. In the end, in these three models, the
features were concatenated together; then, the output was fed into the fully connected
dense layer using a fattening layer to transform the features into single-dimension input,
while the output layer used the softmax function that provided the prediction to one of
the five mobile apps issue categorizations. The softmax function was calculated as shown
in mathematical Formula (2), while all the hidden layers of the LSTM and RNN models
used a rectified linear unit (ReLU) to ensure that the models trained effectively from the
features and avoided the overfitting issue by adding a regularization and dropout. The
general architecture of the proposed hybrid deep learning model is illustrated in Figure 4.

Softmax σ (Z)j =
ezi

∑k
j=1 ezi

(2)

Electronics 2023, 12, 1258 11 of 22

where Z is the input vector/list of the user comments in numerical values, Zj represents
the values of the input vector, ezi is the exponential function to provide a positive value,
and K is the number of classes.

Figure 4. Proposed hybrid deep learning model.

Moreover, the ar-corrector technique was used to correct the user review comments.
This way, the model performance was enhanced to detect mobile apps issues and classify
them into the appropriate predefined class.

4.7. Model Evaluation

This section provides details about how the model performance was evaluated. All
the results of the ML and DL experiments were analyzed and evaluated based on the
most common measures. These measures were precision (3), recall (4), accuracy (5), and
F1 score (6), through the confusion matrix. The following tables show the mathematical
formula for the mentioned measures.

Precision =
True positive

True Positive + False Positive
(3)

Recall =
True Positive

True Positive + Flase Negative
(4)

Accuracy =
True positive + True Negative

True Positive + True Negative + False Positive + False Negative
(5)

F1-score =
2 ∗ (Precision ∗ Recall)

Precision + Recall
(6)

where true positive is when the model predicts the correct user comments in the correct
class; false positive is when the model predicts that the user comment is correct while it is
negative; true negative is when the model predicts that the user comment is negative and it
is negative; false negative is when the model predicts that the user comment is incorrect
while it is correct.

Electronics 2023, 12, 1258 12 of 22

5. Results and Discussion

This section presents the details of the experimental environment and the results of the
three types of experiments. To evaluate the proposed model’s ability to detect and classify
the issues of mobile apps based on the introduced two datasets, several experiments were
carried out. In these experiments, the traditional machine learning classifiers and the deep
learning methods, as well as the proposed combined model, were utilized.

5.1. Experimental Environment

All the experiments in both machine and deep learning were executed using Python
Keras, which is a high-level deep learning programming language, with the backend
TensorFlow framework using Google COLAB. For all experiments, the experimental GPU
was utilized to train the models. During the process of the experiments, the models were
trained in both datasets by using 70% and 30% for training and testing data, respectively.
Two datasets were used in all experiments: the first dataset contained five classes, as shown
in Table 3; the second dataset contained only four classes, as shown in Table 7.

Table 7. Second dataset.

Classes Class Count

Usability 1 4252
Performance 3 810

Behavior issues 4 1611
Security 5 1341

Total 8014

Both datasets were considered imbalanced datasets. The data augmentation techniques
were exploited to increase the dataset, which led to improving the model’s performance.
In order to use the data augmentation techniques, the library called “textattack” was
utilized, particularly “EasyDataAugmenter”. In this way, the number of user comments
were increased by using a swap-per-augmented technique for the words by 10%. As result,
the model’s performance was assessed using F1 scores of a confusion matrix, in addition to
precision, recall, and accuracy.

5.2. Classical Machine Learning Classifiers

This section explains the results obtained through the execution of several experiments
to examine the best model performance in terms of accuracy, using the ML classifiers. These
classifiers used were LR, DT, NB, MNB, SVM, RF, KNN, and SGD, as well as ensemble
classifiers such as Ada, RF, and XGB. The experimental results showed that the highest F1
score was recorded using RF with dataset 2, which reached 94.37%. This followed the data
augmentation (WDA) technique, which outperformed all the other classifiers. The same
classifier recorded 94.26% on dataset 1, with average precision and recall of 95% for all four
classes, followed by the SVC classifier, which recorded 94.26% in the F1 score.

The results of the experiments on dataset 2 using the WDA technique showed that
the best F1 score recorded was 74.93%, when using LR, followed by the SGD classifier,
which slightly decreased in F1 score, reaching 74.55% Using dataset 1 with WDA, the best
model performance recorded was 73.85% using LR, followed by SVC, which recorded
73.60%. Overall, the lowest F1 score, 38.84%, was recorded using KNN with the data
augmentation technique.

Several experiments were conducted using dataset 2. In these experiments, the results
showed that the highest F1 score was measured using RF and SVC, reaching 94% using
the data augmentation. Repeatedly, the lowest F1 score achieved using the three classifiers,
DT, KNN, and NB, were 38% and 49% without augmentation and with augmentation,
respectively. In addition, the average precision and recall for the three classifiers were

Electronics 2023, 12, 1258 13 of 22

recorded between 42% to 71%. Table 8 provides the results of all ML classifiers using
both datasets.

Table 8. F1-Score using ML classifiers.

Model
Dataset 1 Dataset 2

WODA WDA WODA WDA

Ada 62.41% 64.43% 68.98% 69.64%
DT 49.77% 49.08% 49.56% 49.54%
GB 68.90% 74.07% 70.44% 71.85%

KNN 38.84% 70.68% 44.99% 68.28%
LR 73.85% 81.99% 74.93% 82.91%

MNB 72.22% 76.29% 74.35% 65.84%
NB 45.90% 57.22% 54.18% 65.84%
RF 71.14% 94.26% 72.18% 94.37%

SGD 73.22% 82.13% 74.55% 83.02%
SVC 73.60% 93.50% 74.72% 94.26%
SVM 73.22% 83.68% 74.05% 83.83%
XGB 71.85% 85.71% 73.14% 86.22%

WODA: without data augmentation; WDA: with data augmentation.

In the data augmentation technique, the model’s performance in terms of the F1 score
measure was improved, as shown in Figure 5, using dataset 1 and dataset 2. Therefore, the
highest improvement in the model’s performance in terms of the F1 score was recorded
using KNN in both datasets, which improved in percentage by 45% and 34% using datasets
1 and 2, respectively, followed by RF, with improvement between 24% and 25% when using
both datasets, respectively. The confusion matrix demonstrates the highest and lowest
values of the F1 score with/without data augmentation, as shown in Figures 6 and 7 for
dataset 1 and Figures 8 and 9 for dataset 2.

Figure 5. F1 score improvement: (a) dataset 1; (b) dataset 2.

5.3. Deep Learning Approach

The DL models achieved the highest performance level according to the existing
studies. In the second approach, several experiments were carried out to obtain the best F1
score using DL models with various hyper-parameters. The most common models used in
NLP applications were ANN, LSTM, and Bi-LSTM. The three models were applied using
both datasets 1 and 2. In these experiments, the TFIDF was utilized as an input for the DL
models. Sequential architecture was implemented in all experiments using Keras. Table 9
presents the optimal hyper-parameters utilized for the three models after several attempts
in the experiment to obtain the best model performance.

Electronics 2023, 12, 1258 14 of 22

Figure 6. Confusion matrix for ML classifiers using dataset 1 without data augmentation: (a) LR,
(b) SVC, (c) KNN.

Figure 7. Confusion matrix for ML classifiers suing dataset 1 with data augmentation: (a) RF, (b) SVC,
(c) DT.

Electronics 2023, 12, 1258 15 of 22

Figure 8. Confusion matrix for ML classifiers suing dataset 2 without data augmentation: (a) SVC,
(b) SGD, (c) KNN.

Figure 9. Confusion matrix for ML classifiers using dataset 2 with data augmentation: (a) RF, (b) SVC,
(c) DT.

Electronics 2023, 12, 1258 16 of 22

Table 9. Parameter used in ANN approach using both datasets.

Parameters ANN LSTM BiLSTM

Batch-size 128 32 64
Hidden layer-activation function Relu Relu Relu
Output layer-activation function Softmax Softmax Softmax

Dropout 0.5 0.5 0.5
Number of epochs 100 100 100

Loss-function sparse_categorical_crossentropy
Optimizer Adam Adam Adam

Regularization L2 (0.001) L2 (0.001) L2 (0.001)

Table 9 demonstrates the optimal hyper-parameters that were used in the experiment
to obtain the best model performance. In the ANN experiment, the F1 score reached
80% and 88% using dataset 1 WDA and WODA, respectively, while in dataset 2, the F1
score reached 78% and 89% using WDA and WODA, respectively, in detecting mobile non-
functional issues and classifying according to relatives’ class. Figure 6 indicates the model
performance according to the F1 score using both datasets. The overfitting problem was
raised using datasets 1 and 2, as shown in Figures 10a and 11a; when the data augmentation
technique was applied, the overfitting issues were solved, as shown in Figures 10b and 11b.

Figure 10. ANN model validation and testing accuracy and loss without data augmentation
(dataset 1): (a) model accuracy (WODA); (b) model accuracy (WDA).

Figure 11. ANN model validation and testing accuracy and loss without data augmentation
(dataset 2): (a) model accuracy (WODA); (b) model accuracy (WDA).

Electronics 2023, 12, 1258 17 of 22

Figure 10b shows us that the model had much better accuracy with data augmentation,
which reached a peak of 89% in validation, while in the model-training process it reached
85%. Similarly, it was significantly noticeable, as shown in Figure 11b, that when using
dataset 2, the model improved when the applied data augmentation F score reached
86% and 90% in model training and validation, respectively.

In the LSTM experiment, the best accuracy level was recorded at 93% using both datasets
with DA technique 1, while the lowest accuracy rate was recorded using LSTM, decreasing
to 64% and 66% using dataset 1 and dataset 2, respectively. The figure shows the testing
and validation accuracy and the loss for ANN experiments using dataset 1 and dataset 2. In
the model overfitting, the difference between the validation and training was around 20%.
These were WODA techniques in both datasets, as presented in Figures 12a and 13a, using
dataset 1 and dataset 2, respectively. When using WDA, the model’s performance in training
and validation improved, and no overfitting issue was identified with the model, as shown in
Figures 12b and 13b for dataset 1 and dataset 2, respectively.

Figure 12. LSTM model validation and testing accuracy and loss dataset 1: (a) model accuracy
(WODA); (b) model accuracy (WDA).

Figure 13. LSTM model validation and testing accuracy and lose (dataset 2): (a) model accuracy
(WODA); (b) model accuracy (WDA).

Figures 12b and 13b show correlation with the statement made above that LSTM
scored the highest in terms of accuracy with data augmentation in both datasets 1 and 2.
The above graph verifies this information. The Bi-LSTM experiments scored the lowest
rate out of all the experiments tested, at 66% to 68%, as presented in Figures 14b and 15b,
with a overfitting issue. However, a drastic change was seen when data augmentation was

Electronics 2023, 12, 1258 18 of 22

applied; this number skyrocketed to 91% in both datasets, as shown in Figures 14b and 15b.
In these figures the green line indicates the training accuracy while the blue line indicates
the validation accuracy.

Figure 14. Bi-LSTM model validation and testing accuracy and loss (dataset 1): (a) model accuracy
(WODA); (b) model accuracy (WDA).

Figure 15. Bi-LSTM model validation and testing accuracy and loss using dataset 2: (a) model
accuracy (WODA); (b) model accuracy (WDA).

From the given information, we concluded that the Bi-LSTM model struggled im-
mensely with data augmentation, scoring only 66% to 68% in the given graph; however, it
performed much better with data augmentation, reaching higher than expected accuracy of
91% in both datasets.

The second dataset further proved the initial point and had a light boost in its accuracy
without data augmentation, from 66% to 68% in dataset 2.

5.4. The Proposed Hybrid Deep Learning Model

This section explains the results of the experiment based on the proposed model. The
proposed model was based on three RNN architectures, which consisted of three combined
models: a simple RNN model and two LSTM models. The input for the three models was
the same. These three models were concatenated to provide the outputs to the dense layer.
The experiment settings are shown in Table 10 for the three models. Several experiments
carried out were categorized into two types of experiments using dataset 1 and 2. All these
experiments were based on function API architecture. The “Adam optimizer” and the loss
function “categorical_crossentropy” were utilized. The input shape was 2, a 500 feature
extracted using TDIDF.

Electronics 2023, 12, 1258 19 of 22

Table 10. Hyper-parameter used to evaluate the proposed hybrid deep learning model.

Parameters Simple RNN LSTM 1 LSTM 2

Hidden layer-activation function Relu relu relu
Number of neurons 128 64 32

Output layer-activation function Softmax softmax softmax
Dropout 0.5 0.5 0.5

Regularization l2 (0.0001) l2 (0.0001) l2 (0.0001)

The proposed hybrid deep learning model was applied to both datasets, and the
model’s performance achieved the highest F score of 96% using dataset 1 WDA; it also
achieved 95% using dataset 2 with WDA, as shown in Figures 16b and 17b. The loss function
for training and validation decreased, as shown in Figures 16d and 17d. The confusion
matrix for the experimental results in both datasets is illustrated in Figures 16c and 17c.

Figure 16. Proposed model validation and testing accuracy and loss using dataset 1: (a) model
accuracy using dataset 1—WODA; (b) model accuracy using dataset 1—WDA; (c) confusion matrix
(WDA); (d) training and validation loss.

All the aforementioned tests showed that the best scores were reached in both datasets;
however, slightly worse scores resulted in the second dataset. We can confidently say
that this study proved that the proposed model was the best and scored the highest
percentages in all aspects. It can detect and classify the mobile app issues properly into the
aforementioned five classes. To elaborate further, the comparison between the experiment
results of all the models—the MLCs, the DLs, and the proposed model—are presented
in Table 11.

Electronics 2023, 12, 1258 20 of 22

Figure 17. Proposed model validation and testing accuracy and loss using dataset 2: (a) model
accuracy using dataset 2—WODA; (b) model accuracy using dataset 2—WDA; (c) confusion matrix
(WDA); (d) training and validation loss.

Table 11. Comparison between model performance for MLCs, DLs, and the proposed model.

Approaches Dataset 1 Dataset 2

WODA WDA WODA WDA

RF 71.14% 94.26% 72.18% 94.37%
SVC 73.60% 93.50% 74.72% 94.26%
ANN 71% 89% 73% 90%
LSTM 64% 93% 66% 93%

Bi-LSTM 66% 91% 68% 91%
Proposed model 80% 96% 77% 95%

Table 11 presents a comparison of the results of the best MLCs, DLs, and the proposed
model in terms of accuracy. Based on the experimental results, the proposed model
provided the best results in terms of percentage in all aspects; for example, it scored the
highest in dataset 1 without data augmentation, at 80%, as well the highest score with
data augmentation, at 96%. We can also conclude that the proposed model scored highest
in terms of percentage in dataset 2 without data augmentation, at 77%, which was lower
by 3% compared with dataset 1; however, it still reached the highest score after the SVC
model, which scored 74.72%. We also believe that the proposed model obtained the highest
score in dataset 2 with data, reaching 95%, which was only 1% less than its score with data
augmentation from dataset 1.

Electronics 2023, 12, 1258 21 of 22

6. Conclusions

This paper proposed a novel model based on combining three deep learning archi-
tectures for detecting and classifying mobile apps’ non-functional requirement issues. In
the proposed model, data augmentation and Arabic sentence correction techniques were
applied. The model was trained on five identified main mobile issues, based on the intro-
duced dataset. The model’s performance and the experimental results were as evaluated
and compared with those of ML classifiers, FFNN architecture, and LSTM models. It out-
performed all the aforementioned models. In addition, the data augmentation technique
helped in improving accuracy. The proposed model produced a score of 96% with data
augmentation, in terms of the F-score. In the future, the proposed model may be applied to
multilingual data and the dataset may be increased. Additionally, different methods, such
as averaging and merging, may be applied to the model’s features to improve its accuracy.

Author Contributions: Conceptualization, W.M.S.Y., A.E.Y. and A.A.-D.; methodology, W.M.S.Y.
and A.E.Y.; software, W.M.S.Y., A.G. and A.A.-D.; validation, W.M.S.Y. and A.E.Y.; formal analysis,
A.G.; investigation, W.M.S.Y.; resources, W.M.S.Y.; data curation, W.M.S.Y.; writing—original draft
preparation, W.M.S.Y.; writing—review and editing, W.M.S.Y.; visualization, A.G.; supervision,
W.M.S.Y. and A.E.Y.; project administration, W.M.S.Y.; funding acquisition, A.E.Y. and A.G. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is funded by the Deanship of Scientific Research at Northern Border University,
Arar, Kingdom of Saudi Arabia under grant number CSCR-2022-11-1786.

Acknowledgments: The authors gratefully acknowledge the approval and the support of this re-
search study by the grant no. CSCR-2022-11-1786 from the Deanship of Scientific Research at Northern
Border University, Arar, K.S.A.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Villarroel, L.; Bavota, G.; Russo, B.; Oliveto, R.; Di Penta, M. Release planning of mobile apps based on user reviews. In Proceedings

of the 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), Austin, TX, USA, 14–22 May 2016;
pp. 14–24.

2. Iacob, C.; Harrison, R. Retrieving and analyzing mobile apps feature requests from online reviews. In Proceedings of the 2013
10th Working Conference on Mining Software Repositories (MSR), San Francisco, CA, USA, 18–19 May 2013; pp. 41–44.

3. Caldeira, C.; Chen, Y.; Chan, L.; Pham, V.; Chen, Y.; Zheng, K. Mobile apps for mood tracking: An analysis of features and user
reviews. In Proceedings of the AMIA Annual Symposium Proceedings, Washington, DC, USA, 4–8 November 2017; Volume 2017,
p. 495.

4. Palomba, F.; Salza, P.; Ciurumelea, A.; Panichella, S.; Gall, H.; Ferrucci, F.; De Lucia, A. Recommending and localizing change
requests for mobile apps based on user reviews. In Proceedings of the 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), Buenos Aires, Argentina, 20–28 May 2017; pp. 106–117.

5. Mcilroy, S.; Shang, W.; Ali, N.; Hassan, A.E. User reviews of top mobile apps in Apple and Google app stores. Commun. ACM
2017, 60, 62–67. [CrossRef]

6. Khalid, H.; Shihab, E.; Nagappan, M.; Hassan, A.E. What do mobile app users complain about? IEEE Softw. 2014, 32, 70–77.
[CrossRef]

7. Corbalán, L.; Thomas, P.; Delía, L.; Cáseres, G.; Sosa, J.F.; Tesone, F.; Pesado, P. A study of non-functional requirements in apps
for mobile devices. In Proceedings of the Conference on Cloud Computing and Big Data, Honolulu, HI, USA, 29–31 May 2019;
pp. 125–136.

8. Jha, N.; Mahmoud, A. Mining non-functional requirements from App store reviews. Empir. Softw. Eng. 2019, 24, 3659–3695.
[CrossRef]

9. Yao, Y.; Jiang, W.; Wang, Y.; Song, P.; Wang, B. Non-Functional Requirements Analysis Based on Application Reviews in the
Android App Market. Inf. Resour. Manag. J. 2022, 35, 1–17. [CrossRef]

10. Lu, M.; Liang, P. Automatic classification of non-functional requirements from augmented app user reviews. In Proceedings of
the 21st International Conference on Evaluation and Assessment in Software Engineering, Karlskrona, Sweden, 15–16 June 2017;
pp. 344–353.

11. Ciurumelea, A.; Schaufelbühl, A.; Panichella, S.; Gall, H.C. Analyzing reviews and code of mobile apps for better release planning.
In Proceedings of the 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER),
Klagenfurt, Austria, 20–24 February 2017; pp. 91–102.

http://doi.org/10.1145/3141771
http://doi.org/10.1109/MS.2014.50
http://doi.org/10.1007/s10664-019-09716-7
http://doi.org/10.4018/IRMJ.291694

Electronics 2023, 12, 1258 22 of 22

12. Tao, C.; Guo, H.; Huang, Z. Identifying security issues for mobile applications based on user review summarization. Inf. Softw.
Technol. 2020, 122, 106290. [CrossRef]

13. Wang, W.; Li, Z.; Tian, Z.; Wang, J.; Cheng, M. Extracting and summarizing affective features and responses from online product
descriptions and reviews: A Kansei text mining approach. Eng. Appl. Artif. Intell. 2018, 73, 149–162. [CrossRef]

14. Li, Y.; Jia, B.; Guo, Y.; Chen, X. Mining user reviews for mobile app comparisons. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 2017, 1, 1–15. [CrossRef]

15. Jeong, B.; Yoon, J.; Lee, J.-M. Social media mining for product planning: A product opportunity mining approach based on topic
modeling and sentiment analysis. Int. J. Inf. Manag. 2019, 48, 280–290. [CrossRef]

16. Camacho-Rivera, M.; Vo, H.; Huang, X.; Lau, J.; Lawal, A.; Kawaguchi, A. Evaluating asthma mobile apps to improve asthma
self-management: User ratings and sentiment analysis of publicly available apps. JMIR mHealth and uHealth 2020, 8, e15076.
[CrossRef]

17. Valdivia, A.; Luzon, M.V.; Herrera, F. Sentiment Analysis in TripAdvisor. IEEE Intell. Syst. 2017, 32, 72–77. [CrossRef]
18. Lin, B.; Zampetti, F.; Bavota, G.; Di Penta, M.; Lanza, M.; Oliveto, R. Sentiment analysis for software engineering: How far can we

go? In Proceedings of the 40th International Conference on Software Engineering, Gothenburg, Sweden, 27 May–3 June 2018;
pp. 94–104.

19. Tang, F.; Fu, L.; Yao, B.; Xu, W. Aspect based fine-grained sentiment analysis for online reviews. Inf. Sci. 2019, 488, 190–204.
[CrossRef]

20. Sankar, H.; Subramaniyaswamy, V.; Vijayakumar, V.; Kumar, S.A.; Logesh, R.; Umamakeswari, A. Intelligent sentiment analysis
approach using edge computing-based deep learning technique. Softw. Pract. Exp. 2020, 50, 645–657. [CrossRef]

21. Nayebi, M.; Cho, H.; Ruhe, G. App store mining is not enough for app improvement. Empir. Softw. Eng. 2018, 23, 2764–2794.
[CrossRef]

22. Mujahid, S.; Sierra, G.; Abdalkareem, R.; Shihab, E.; Shang, W. Examining user complaints of wearable apps: A case study on
android wear. In Proceedings of the 2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems
(MOBILESoft), Buenos Aires, Argentina, 22–23 May 2017; pp. 96–99.

23. Mardonova, M.; Choi, Y. Review of wearable device technology and its applications to the mining industry. Energies 2018, 11, 547.
[CrossRef]

24. Mujahid, S. Determining and Detecting Permission Iassues of Wearable Apps; Concordia University: Montréal, QC, Canada, 2018.
25. Aslam, N.; Ramay, W.Y.; Xia, K.; Sarwar, N. Convolutional neural network based classification of app reviews. IEEE Access 2020,

8, 185619–185628. [CrossRef]
26. Rustam, F.; Mehmood, A.; Ahmad, M.; Ullah, S.; Khan, D.M.; Choi, G.S. Classification of shopify app user reviews using novel

multi text features. IEEE Access 2020, 8, 30234–30244. [CrossRef]
27. Guzman, E.; El-Haliby, M.; Bruegge, B. Ensemble methods for app review classification: An approach for software evolution (n).

In Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), Lincoln, NE,
USA, 9–11 November 2015; pp. 771–776.

28. Isa, S.M.; Suwandi, R.; Andrean, Y.P. Optimizing the hyperparameter of feature extraction and machine learning classification
algorithms. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 69–76. [CrossRef]

29. Li, X.; Zhang, Z.; Stefanidis, K. Sentiment-Aware analysis of mobile apps user reviews regarding particular updates. ICSEA 2018,
2018, 109.

30. Panichella, S.; Di Sorbo, A.; Guzman, E.; Visaggio, C.A.; Canfora, G.; Gall, H.C. Ardoc: App reviews development oriented
classifier. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
Seattle, WA, USA, 13–18 November 2016; pp. 1023–1027.

31. Luiz, W.; Viegas, F.; Alencar, R.; Mourão, F.; Salles, T.; Carvalho, D.; Gonçalves, M.A.; Rocha, L. A feature-oriented sentiment rating
for mobile app reviews. In Proceedings of the 2018 World Wide Web Conference, Lyon, France, 23–27 April 2018; pp. 1909–1918.

32. Guzman, E.; Maalej, W. How do users like this feature? A fine grained sentiment analysis of app reviews. In Proceedings of the
2014 IEEE 22nd International Requirements Engineering Conference (RE), Karlskrona, Sweden, 25–29 August 2014; pp. 153–162.

33. Malik, H.; Shakshuki, E.M. Mining collective opinions for comparison of mobile apps. Procedia Comput. Sci. 2016, 94, 168–175.
[CrossRef]

34. McIlroy, S.; Ali, N.; Khalid, H.; EHassan, A. Analyzing and automatically labelling the types of user issues that are raised in
mobile app reviews. Empir. Softw. Eng. 2016, 21, 1067–1106. [CrossRef]

35. Rasool, M.; Ismail, N.A.; Boulila, W.; Ammar, A.; Samma, H.; Yafooz, W.M.; Emara, A.H.M. A Hybrid Deep Learning Model for
Brain Tumour Classification. Entropy 2022, 24, 799. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.infsof.2020.106290
http://doi.org/10.1016/j.engappai.2018.05.005
http://doi.org/10.1145/3130935
http://doi.org/10.1016/j.ijinfomgt.2017.09.009
http://doi.org/10.2196/15076
http://doi.org/10.1109/MIS.2017.3121555
http://doi.org/10.1016/j.ins.2019.02.064
http://doi.org/10.1002/spe.2687
http://doi.org/10.1007/s10664-018-9601-1
http://doi.org/10.3390/en11030547
http://doi.org/10.1109/ACCESS.2020.3029634
http://doi.org/10.1109/ACCESS.2020.2972632
http://doi.org/10.14569/IJACSA.2019.0100309
http://doi.org/10.1016/j.procs.2016.08.026
http://doi.org/10.1007/s10664-015-9375-7
http://doi.org/10.3390/e24060799
http://www.ncbi.nlm.nih.gov/pubmed/35741521

	Introduction
	Related Studies
	Problem Formulation
	Methods and Materials
	Data Collection
	Data Cleaning
	Data Annotation
	Data Pre-Processing
	Data Representation
	Machine and Deep Learning Models
	Model Evaluation

	Results and Discussion
	Experimental Environment
	Classical Machine Learning Classifiers
	Deep Learning Approach
	The Proposed Hybrid Deep Learning Model

	Conclusions
	References

