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Abstract: Along with the growing of population and social and technological improvements, the
use of energy and natural resources has risen over the past few decades. The sustainability of using
coal, oil, and natural gas as the main energy sources faces, however, substantial obstacles. Fuel cells,
batteries, and super-capacitors have the highest energy densities, but due to their high-power density
and rapid charge-discharge speed, regular dielectric capacitors are becoming more popular for
pulsed power applications. High electric breakdown strength and high maximum but low-remnant
(zero in the case of linear dielectrics) polarization are necessary for high energy density in dielectric
capacitors. The high performance, multi-functionality, and high integration of electronic devices
are made possible in large part by the multilayer ceramic capacitors (MLCCs). Due to their low
cost, compact size, wide capacitance range, low ESL and ESR, and excellent frequency response,
MLCCs play a significant role in contemporary electronic devices. From the standpoint of the
underlying theories of energy storage in dielectrics, this paper emphasizes the significant problems
and recent advancements in building extremely volumetric-efficient MLCCs. Following a thorough
examination of the state-of-the-art, important parameters that may be used to improve energy-storage
qualities are highlighted, such as controlling local structure, phase assembly, dielectric layer thickness,
microstructure, conductivity, different failure modes, and the specific performance during the failure
mechanism. The summary of some conclusions on the impending need for innovative materials
and diagnostic methods in high-power/energy density capacitor applications appears at the end of
the paper.

Keywords: multilayer ceramic capacitors (MLCCs); high-power density; failure mechanism;
equivalent series resistance (ESR)

1. Introduction

Ceramic capacitors, film capacitors, and electrolytic capacitors are the three basic
types of capacitors. The dielectric, structure, terminal connection technique, use, coating,
and electrolyte may all be used to further classify each category (only for electrolyte
capacitors) [1]. Since the number of stored charges is mostly dependent on the dielectric
material, the dielectric categorization is the most used. Table 1 displays some of the above
categories of dielectric properties [2,3].

Table 1. Dielectric constants and the minimal thickness for several sorts of capacitors [1–3].

Capacitors Categories Dielectric Dielectric Constant
(εr)

Dielectric Thickness
(d)

Electrolyte Aluminum Oxide [8, 10] [0.03, 0.7] µm
Tantalum Oxide [23, 27] [0.04, 0.5] µm

Film Polyester Film ∼=3.2 [0.5, 2] µm

Ceramic
Barium Titanate [0.5, 20] × 103 [2, 3] µm
Titanium Oxide [15, 250] [2, 3] µm

Electronics 2023, 12, 1297. https://doi.org/10.3390/electronics12061297 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12061297
https://doi.org/10.3390/electronics12061297
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7683-6897
https://orcid.org/0000-0001-8737-6999
https://doi.org/10.3390/electronics12061297
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12061297?type=check_update&version=1


Electronics 2023, 12, 1297 2 of 23

As it was previously possible to establish, the properties of the dielectric dictate how
the capacitor behaves. This is generally the case for all capacitors, however for exceptionally
high-power capacitors, the permeability of the plates, tabs, and connections may also be
used to calculate the highest peak current of the capacitor.

Table 1 makes it abundantly evident that the various kinds of capacitors have varied
properties, thus which capacitor to use relies on the properties of the circuit in which it
will be used. The following are a few of the most crucial factors to take into account while
making a decision [1]:

# Ratted voltage, capacitances, price, volumetric efficiency, consistency and dependabil-
ity of capacitances, longevity, and power density.

# Current ripple ratting and maximum peak current.
# Temperature range, insulating resistance, and leakage current.
# Capacitor performance and resonance frequency (capacitance dependency with fre-

quency and temperature, as well as its internal resistance).

The most common type of capacitor in electronics is a ceramic one, and the most
popular type of these is called a multilayer ceramic capacitor (MLCC). Many electrical
products, including computers and cell phones, use MLCCs. Three kinds of commercially
available dielectrics can be distinguished: Categories I, II, and III [4].

Titanium oxide, which has the lowest dielectric constant of the ceramic technologies, is
used as a dielectric in Class I dielectrics, which are also known as temperature compensated
dielectrics (Table 1). These capacitors are useful for several electronic systems circuits,
including snubber circuits and soft-start circuits, due to their poor volumetric efficiency
and tiny capacitance values (100 nF). Along with being relatively stable with voltage,
temperature, and time, the capacitance additionally has a low dissipation factor [5].

Class II dielectrics, also known as high dielectric constant materials, use the high
dielectric constant material barium titanate as a dielectric (Table 1). These capacitors are
produced due to their compact sizes and high capacitance values. Their dissipation factor is
therefore relatively large, and their capacitance tends to be unstable in response to voltage,
temperature, and time [2–4]. The maximum capacitance variation over a temperature
range is determined by the final digit of the three-character alphanumeric code used to
describe Class II dielectrics. For instance, because the maximum temperature change
for the X5R, X7R, and X8R’s capacitance is 15%, these devices are recommended for use
in power electronics circuits. Both classes have higher dielectric resistance and lower
dissipation factors when compared to Al-caps, but they have worse properties when
compared to MK capacitors. Class III dielectrics, which have the highest capacitance and
maximum volumetric efficiency of the three classes, are used to construct barrier layer
capacitors. However, temperature, voltage, and frequency have a significant impact on
them. Additionally, they operate at a voltage of about 25 V. Class III ceramic capacitors are
frequently used in bypass coupling when dielectric losses, strong insulation resistance, and
stability are not required [4].

Class II and class III capacitors, which tend to have greater dielectric constants and
smaller breakdown fields, are therefore better suited for low-voltage applications, particu-
larly where considerable capacitance is needed. The failure of ceramic capacitors during
dielectric breakdown, which renders the device worthless, is another pertinent component
of these devices [6].

For power devices, Cer-aLinkTM, a new ceramic capacitor technology from EPCOS,
may be the ideal option. Recent research has shown that this technology can be particularly
useful in the DC-link of voltage source inverters because of its promising properties,
including low losses, rising capacitance with applied voltage, low series inductance, and
high-capacitance density [7,8].

The necessity for portable electronic devices that can be connected to high-speed, high-
transmission-capacity networks has increased, as shown by words like “digital nomad”,
“ubiquitous computing” and “internet of things.” These breakthroughs have accelerated
research on electronic components with high performance, great reliability, and low power
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consumption. The multilayer ceramic capacitor (MLCC), which is one of them, is the most
significant passive element capable of storing and releasing electrical charge. For resonant
circuit applications, MLCCs provide excellent stability and low losses, as well as great
volumetric efficiency for buffer, by-pass, and coupling applications [5,9–11].

Prior studies, including those conducted by the authors of [12] and [13–19], have
evaluated an MLCC’s dependability under high-acceleration impacts, mostly focusing on
structural failure for an MLCC’s electrical, mechanical, and thermal interaction [20]. Using
a multiscale homogenization modeling method, the authors of article [21] created a finite
element simulation model to describe the structural characteristics of multilayer ceramic
capacitors. In [22], it was discovered that the electric field distortion brought on by the
impact-driven deformation of an MLCC can quickly lead to ceramic capacitor failure. This
was demonstrated using the analogous mechanical model. Through a dynamic experiment
with a high-overload impact, an MLCC failed. The impact of this failure on an advanced
system was then examined.

Energy-storage and conversion technologies are envisaged for use in practical applica-
tions because they have a wide operating temperature range, are inexpensive, have a high
energy density, a high-power density, and a high conversion efficiency. Figure 1 illustrates
the energy and power density requirements for typical energy-storage systems [23].
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Figure 1. Energy density and power density relationships for popular energy-storage devices [23].

Dielectric capacitors offer ultra-high-power densities > 10 kW kg−1 in comparison
to conventional energy-storage devices. As a result, they have ultra-high charging and
discharging speeds and may start releasing accumulated energy in a nanosecond or mi-
crosecond time frame scale, allowing for exceptionally high pulse power. They also offer
beneficial qualities, including an extremely long cycle life, dependability, and safety.

Dielectric capacitors are therefore essential for the development and application of
third-generation semiconductor devices. These components are also utilized in high-
power energy-storage and pulse power systems, which include electromagnetic weapons,
advanced medical equipment, electric and hybrid vehicles, and smart grids [24,25]. How-
ever, the energy density of currently available commercial polymer dielectric capacitors is
quite low (0.1 Wh.kg−1), leading to relatively large and heavy energy-storage and pulse-
power devices.
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For instance, the capacitors under each carriage of a high-speed train weigh more
than 50 kg and occupy 50% of the space and 60% of the weight of the converter valves
for high-voltage, direct-current transmission. This enormous volume would produce a
significant equivalent series inductance (ESL) when switched quickly, which could harm or
even cause the failure of semiconductor devices. This shows that these integrated capacitors
cannot yet meet the specifications for use in electronic systems and devices that call for
small, lightweight integrated capacitors [26,27].

1.1. Basic Composition and the Concept of Energy Storage

A plane-parallel capacitor, which is a simple illustration of a capacitance device, is
composed of two electrode panels that are separated from one another and have dielectric
materials integrated into them, as seen in Figure 2a,b. The capacity of the external electric
field to induce or polarize dielectrics to electrostatic charge determines the capacity of
dielectric capacitors to store electrical energy. In order to store electrical energy, charges will
build up on the surfaces of the dielectrics as a result of the charging mechanism shown in
Figure 2a. The arrangement of the dipoles in one direction will revert to its original form if
the electric field is released to allow for the provision of induced charges to load equipment
(Figure 2b). It naturally follows that dielectrics are thus regarded as being crucial to the
ability of capacitors to store electrical energy.
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Figure 2. (a) Charging; (b) Discharging; and (c) Schematic diagram for calculating the unipolar P–E
loop efficiency of dielectric capacitors as a foundation for assessing energy-storage effectiveness [28].

1.2. Energy Storage Density

By definition, a key component in the capacity of dielectric capacitors to store energy
is their capacitance (C), which can be represented by the incremental quantity of charge
(dQ) brought about by an external electric field (dV). Figure 2c illustrates how to compute
dielectric capacitors using their specs and shape as well as their permittivity, which is
determined using the following formula:

C = ε0εr
d
A

=
dQ
dV

(1)

where A stands for the plate area of the dielectric capacitors, ε0 stands for the vacuum
permittivity, εr for the relative permittivity, and d stands for the thickness of the dielectrics.
The voluminal energy-storage density W (=J/Vvol) is used as a normalized metric to
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represent the amount of stored energy per unit volume Vvol (=Ad) in a dielectric capacitor.
Electrostatic energy may be stored in dielectrics during the charging process:

W =
J
A

=

∫ Qmax
0 Vdq

Ad
=

Dmax∫
0

EdD (2)

where E is the applied electric field (=V/d), Qmax is the highest charge that was achieved
under the maximum electric field (Emax) at the end of the charging process, and D is the
electrical displacement that is comparable to the charge areal density (Q/A) of dielectrics.
The relational equation D = ε0εrE = P + ε0E demonstrates that the Formula (3) may be
rewritten as integral over its polarization (P):

W =

Pmax∫
0

EdP (3)

In the presence of the greatest electric field, Pmax is the maximum degree of po-
larization. Because it makes it straightforward to check these two electrical experiment
parameters, P and E, formula (3) is well known and used to evaluate the efficacy of energy-
storage devices. Since the electrical displacement or permittivity in linear dielectrics is
unaffected by the applied electric field, the following formula may be used to estimate
energy-storage density, which corresponds to the green shaded area in Figure 2c:

W = ε0εrE2 (4)

Whether the dielectrics are linear or nonlinear, it is evident that the applied electric
field or permittivity has a substantial impact on the energy-storage density. Given that
energy dissipation in dielectric materials is unavoidable, especially in nonlinear dielectric
materials like FEs, RFEs, and AFEs, where it is represented as joule heat loss, the following
deformation is advised for determining recoverable energy-storage density (Wrec):

Wrec =

Pmax∫
Pr

EdP (5)

where Pr stands for the residual polarization. Dielectric nonlinearity, a phenomenon in
which permittivity commonly displays a nonlinear declining trend as a function of an
electric field, is a characteristic of the majority of dielectric materials. Although semielectric
phase insulators do produce some nonlinearity, nonlinear insulators like nonferrous and fer-
roelectric insulators have intrinsic properties that make them unfavorable for high-energy
storage densities. These intrinsic properties include a decrease in permittivity under a given
field. The increase in permittivity will enhance the capacity to store energy in a certain
electric field by attaining a greater bias. Above this electric field, carrier injection will take
place, leading to considerable energy loss, inadequate insulation, and dielectric nonlinearity.
Therefore, a combination of high bias with electric field independence, high-breakdown
resistance, and little dielectric loss is a feasible technique to produce large energy-storage
densities in insulators, which will aid in reducing dielectric energy-storage devices.

1.3. State-of-the-Art in Ceramics

For more than 20 years there has been discussion on whether lead-free electro-ceramics
can completely replace their lead-based counterparts. On most criteria, lead-based compo-
sitions perform better than their lead-free equivalents. In addition, there are many other
formulations that would be needed to address the features of basically doped PZT in lead-
free compositions. Environmental restrictions, however, are quite likely to cause lead-free
electro-ceramics to begin to displace their lead-based counterparts and reach development
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on a massive scale in the coming years, provided that the performance, dependability, and
cost of lead-free are equal to PZT [29–32]. The probability of lead-free high-energy-density
capacitors entering mass production is the highest of any application due to:

(1) The ability to compensate for a raising the BDS, by a decrease in inherent electrical
characteristics, frequently by reducing layer thickness (see Section 1.4.1).

(2) The market dominance of lead-free BT-based MLCCs, which are expected to continue
to grow.

Figure 3 summarizes the different dielectric materials for different types of ceramic capacitors.
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1.4. Bulk Ceramics
1.4.1. Lead-Based-Ceramics

Commercially, lead-based ceramics are employed as energy-storage components in
high-power pulsed capacitors, because of their superior Wrec. More details in [29–32]
provide an overview of the energy-storage capabilities of lead-based ceramics, including
RFE and AFE.

• Lead-Based-Relaxor-Ferroelectrics

It has been suggested that a variety of lead-based RFEs, including Pb(Mg1/3Nb2/3)O3-
PbTiO3 (PMN-PT), Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZN-PT), and (Sr,Pb,Bi)-TiO3 (SPBT)-based
materials, might be used to make energy-storage capacitors [33–41]. In the investigation of
the relaxation behavior and energy-storage capabilities of the ceramic (1-x)PMN-xPT, [34] it
was discovered that Wrec = 0.47 J cm−3 at ambient temperature. The findings in [42] demon-
strate how the domain structure of 0.2PMN-0.8Pb(SnxTi1-x)O3 (PMN-PSxT1-x) ceramics af-
fected Wrec and thermal stability. The 0.2PMN-0.8PST ceramics showed Wrec = 0.85 J cm−3

with outstanding thermal robustness due to the existence of ferroelectric material and PNRs.

• Lead-Based-Antiferroelectrics

The earliest known AFE is PbZrO3 (PZ), which displays a double P-E hysteresis loop
beneath TC. However, the applications for energy storage are limited by the large critical
switching field needed for an AFE-FE phase transition at room temperature. A successful
solution to the issue is chemical substitution, and several well-known PbZrO3-based compo-
sitions are evaluated: (Pb,La)(Zr,Ti)O3 (PLZT) [43–46], (Pb,La)(Zr,Sn,Ti)-O3 (PLZST) [47–59],
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and (Pb,La)(Zr,Sn)O3 [60,61] are three examples of this compound (PLZS). On the basis of
PbHfO3, Pb(Lu0.5Nb0.5)O3, Pb(Yb0.5Nb0.5)O3, and Pb-(Tm0.5Nb0.5)O3, several novel AFEs
have also been discovered [62,63].

• (Pb,La)(Zr,Sn,Ti)O3(PLZST)

Sn might be replaced on the PLZT B-site, in accordance with the phase transition from
1989, to increase the chemical variety of AFE and the capacity of PLZT ceramics for energy
storage [64].

• (Pb,La)(Zr,Ti)O3 (PLZT)

The PLZT is present in the PbZrO3-PbTiO3 solid solution as homogenous compositions
throughout a broad range of mol % La [64,65].

• (Pb,La)(Zr,Sn)O3 (PLZS)

An unusual E-induced multistage transition in PLZS is said to occur when a conven-
tional AFE-FE phase transition at low E is followed by a second FE phase transition
at a higher E, increasing polarization, according to the authors of article [30]. Addi-
tionally, 400 kV cm−1 produced 131 Wrec of 10.4 J cm−3 and dielectric loss of 87% for
(Pb0.98La0.02)-(Zr0.55Sn0.45)0.995O3 ceramics, as well as an improved discharge current den-
sity of 1640 A.m−2 and an ultrafast discharge speed (75 ns discharge time).

1.4.2. Lead-Free-Ceramics

Over the past few decades, a lot of research has focused on lead-free electro-ceramics
due to worries about the toxicity of lead and lead oxide-based compounds [66–68]. The
performance of their energy storage has been slowly but steadily improved, replacing the
old lead-based materials. For energy-storage applications, a variety of lead-free ceramic
systems, including those based on BT, ST, KNN, BF, NBT, AgNbO3 (AN), and NN, are
being researched as prospective alternatives for PLZT.

• BaTiO3-Based-Ceramics

Since they were first developed, BT-based dielectric ceramics have dominated the
ceramic capacitor industry [69,70].

• SrTiO3-Based-Ceramics

ST is a potential applicant for energy-storage applications, an emerging ferroelectric, due
to its relatively high permittivity (εr~300) and low dielectric loss (1% at ambient temperature).

• K0.5Na0.5NbO3-Based-Ceramics

When the energy-storage capabilities of KNN-(Bi,Na)HfO3 solid solutions were ini-
tially studied in 2016, Wrec of ~ 0.54 J cm−3 was attained at 129 kV cm−1.

• BiFeO3-Based-Ceramics

Due to its high TC and considerable change requires, BF-based ceramics, best known
as multiferroics, have been explored for high temperature ferroelectric and piezoelectric
purposes [71–74].

• Na0.5Bi0.5TiO3-Based-Ceramics

Due to their high Pmax and Tc, NBT-based ceramics are interesting options for lead-
free dielectrics.

• AgNbO3-Based-Ceramics

AFEs have long been recognized as the ideal material for energy-storage capacitors
due to their high Pmax and low Pr. The fact that AN has a high-saturation polarization
of 52 C cm−2 under an E max of 220 kV cm−1 makes it stand out among the few lead-free
AFE systems.

• NaNbO3-Based-Ceramics
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AFE NN has recently drawn interest as a possible contender for energy-storage appli-
cations. Due to the tiny bandgap energy between both the AFE phase and the field-induced
FE phase and the metastability of the E-induced FE phase, it is challenging to detect an
AFE double hysteresis loop in NN.

1.5. Glass Ceramics

One or more uniformly dispersed crystalline phases (ceram-ics) in an amorphous
phase are what make up glass-ceramics (glass). Based on the formed crystalline forms and
their micro-structural features, they typically display the combination qualities of ceramics
and glass. To manufacture glass-ceramics, the essential raw materials are first melted,
then allowed to cool to room temperature to form a glass. Finally, the glass-ceramics
are twice annealed to promote crystal nucleation and growth above the glass transition
temperature (Tg).

1.6. Ceramic Multilayers

As illustrated in [75–77], a variety of processing stages are used to create ceramic MLs.
These procedures include slurry preparation, tape-casting, screen printing, laminating,
co-sintering, and termination. This manufacturing method, which is based on powder,
allows for the scaling-up of laboratory research to industrial manufacturing. The market
for ceramic MLs, which are used in electronic applications, including as mobile phones,
computers, and automobiles, was $5.3 billion in 2017 but is estimated to grow to $7.8 billion
by 2024. Figure 4 summarizes the energy-storage characteristics for several ceramic MLs.

Figure 5a,b show the temperature [78] and frequency-dependence [79] Wrec for some
reported electro-ceramic materials used in high-energy-density capacitors. Advanced
high-energy-density ceramic MLs are being created to support power electronics in hybrid
electric vehicles which demand greater Wrec and operating temperatures. These materials
are based on AFEs and RFEs. In order to develop the most effective ceramics, research into
low-cost internal electrodes is also necessary.
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2. MLCC and Its Fabrication Process

The exact structure and manufacturing procedure of the MLCCs are shown schemati-
cally in Figure 6. MLCCs are constructed by alternately layering numerous dielectric layers
in tandem with inner electrodes. The inner electrodes are connected to the outside terminal
for surface installation. In place of expensive Pd, base metals like Ni and Fe are increasingly
used as inner electrode materials. The exterior termination is constructed of layers of Cu
or Ag, Ni plating, and Sn plating. It is possible to express the MLCC capacitance as in
Equation (1). When choosing the chip size and dielectric materials, the thickness of the
dielectric layer and the number of stacked layers are important design considerations for
MLCCs with high capacitance [92].

This process is commonly used to create MLCCs. Firstly, the balling procedure is used
to homogeneously blend fine ceramic powders used for dielectric layers with a binder,
solvents, and additives like dopants and sintering aids. To improve the dependability
and performance of MLCCs, the composition of the starting materials is strictly controlled.
The slurry-like shapes of the combinations make them easy to handle and process. Using
the tape-casting method, the slurry is cast into a thin, continuous film. After drying and
being cut into equal-sized sheets, the green sheets are then screen printed with metal
paste. The required number of green sheets are stacked using inner electrodes, and the
stack is subsequently compressed to produce a laminate by applying pressure [93]. The
laminated sheets are cut into appropriate bits for chips. For stacking and cutting, extremely
high mechanical and alignment precision is required. After cutting, the chips’ binder is
burned away, and the chips are then sintered. Since the chips have a multi-layered structure
of dielectric layers and inner electrodes, controlling the sintering temperature and the
environment is essential to preventing shrinkage and failures during the sintering process.
To connect the internal electrodes in parallel on the chip, termination is made using the
tumbling, dipping, and firing operations. The manufacture of MLCC chips is finished after
electrical testing to ensure quality. The manufacture of high-capacitance MLCCs is fraught
with problems. Fine raw powders (o300 nm) are needed for thinner and smoother inner
electrode layers and dielectric layers. As a result, there has been a lot of study into the
manufacturing of tiny particles for the metal inner electrode and the dielectric layer [94].
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Functional ceramic devices have reduced in size and become thinner, more refined, and
more integrated in recent years, making it challenging to implement their fast prototyping
and low-cost manufacture using conventional techniques. Multi-material 3D printing is
an emerging technology that offers greater complexity and more creative freedom in the
design of functional ceramic devices due to its singular capacity to instantly create 3D
parts that incorporate various material constituents without the need for a time-consuming
procedure or expensive tools [102–105]. However, strip lines, micro-strip lines, and vias are
typically present in functional ceramic devices with composite structures that are made
of two or more materials. In addition to improving the spatial resolution and printing
speed, numerous issues relating to the raw materials, printing strategies, and sintering
process still need to be resolved. Functional ceramic devices are now being developed via
multi-material 3D printing, which has considerable research motivation and application
promise [106,107]. Some popular 3D printing processes are shown in Figure 7.
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Conventional MLCCs based on BaTiO3 have been fabricated with noble metals such as
platinum (Pt) or palladium (Pd) as internal electrodes which can be fired with dielectrics in
air at 1300 ◦C or higher. With an increased number of stacked layers due to miniaturization
and higher capacitance of MLCCs, the proportion of the electrode cost to the overall cost
increases steeply. Thus, a cost reduction of the internal electrodes has been intensively
investigated for reducing the cost of MLCCs [108]. Methods for reducing the internal
electrode cost are classified into:

(1) The use of silver (Ag)/Pd alloy electrodes having a high Ag content (more than 70%)
to achieve low temperature sintering of the dielectrics.

(2) The use of base metals such as nickel (Ni) and copper (Cu) as internal electrodes by
using a nonreducible dielectric that can be fired in a reducing atmosphere [109].
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Table 2 shows the physical properties and price ratio of various electrode materials
for MLCCs.

Table 2. Different electrodes’ physical characteristics and price ratio.

Metals Melting Point (◦C) Resistivity (mΩ) Price Ratio

Ag 961 1.62 3
Cu 1080 1.72 1
Ni 1453 6.9 1
Pd 1552 10.4 80

The performance, dependability, and functionality of the electrode materials used in
MLCCs are negatively impacted by residual stress, mechanical cracking from sintering
shrinkage, and metal diffusion into the dielectric layer, all of which are caused by high
sintering temperatures for dielectric materials. In order to avoid the oxidation of the base
metal inner electrode, the green chips are additionally co-fired at low oxygen pressure.
During sintering in a reducing environment, dielectric layers can experience a significant
compositional change and defect development. The sintering environment must be meticu-
lously regulated to minimize decrease of the dielectric material and to limit oxidation of
the inner electrodes [33,95].

3. Reliability

In actuality, temperature, frequency, voltage fluctuation, and many other factors that
affect the cyclic charge and discharge process are related with dielectric capacitors and
their integrated systems as well as the operating circumstances. Therefore, strong fatigue
resistance, often known as outstanding dependability, ensures the physical integrity of
pulsed systems made up of dielectric capacitors, enabling energy-storage performance
under demanding situations. By studying the characteristics of polarization hysteresis loops
under particular conditions, one may gauge the capacity to withstand shocks [78]. Dielectric
capacitors are a common illustration of a device that has a crucial need for thermal stability
of energy-storage performance at high temperatures. Due to its thermo-decomposition
temperature being below 105 ◦C, the best commercially available polymer, BOPP, must be
used in power inverters of hybrid and electric vehicles with secondary cooling systems.
This has constraints on the quantity of accessible space, adds weight and volume, raises
production costs, and wastes energy [95]. From this point on, ultra-high dependability with
little to no instability or fluctuation is urgently required for energy-storage dielectrics in
pulse circuits under demanding conditions.
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4. MLCCs Failure Mechanisms, Testing Strategies and Fault Diagnosis

The most frequent cause of failure is a short circuit caused by the spread of ceramic
cracks that start at the end caps of the device. MLCC failures frequently start during
PCB manufacturing due to mechanical stress brought on by the equipment used for PCB
assembly, or thermal stress brought on by the soldering process, which can be compounded
by using the wrong solder fillet profile. The placement of MLCCs on a PCB might affect their
dependability because those parts that are close to the edge of the board may experience
excessive mechanical stress during PCB de-paneling. Figure 8 presents the most common
reasons for MLCC failures.
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Therefore, it is important to ensure that there is no excessive mechanical stress caused
by the de-paneling procedure, the component mounting, or PCB mounting method. The
same holds true for various connections and PCB components. These parts will have a
decreased likelihood of failing due to cracking since MLCCs for automotive and aerospace
applications are built with softer resin material in the capacitor end caps, which lessens the
mechanical stresses on the actual ceramic device region. The functioning of these pieces is
shown in Figure 9a,b, which also show how employing them will reduce the likelihood of
fractures forming during manufacture and the susceptibility of the devices to temperature
cycling and ambient vibration when in operation [28]. In the wake of environmental stress
testing, MLCCs are frequently checked for cracking. The capacitors are often subjected to
micro-sectioning to identify any fractures. However, this analytical method by itself has the
potential to cause device fractures [79,99]. High-resolution CT X-ray component analysis
can offer a more accurate evaluation of cracking in MLCCs, albeit a slower and possibly
more expensive procedure. When used, MLCCs are frequently subjected to a constant
DC bias, which can induce electrochemical migration and, in cases where silver is present
in the component interconnects, a short circuit failure mode. The introduction of COTS
components that are ROHS compliant increases the chance of silver being present within
these space applications. Operation in an environment with high humidity will amplify
this impact. Utilizing PCBs with conformal coatings may help to reduce the impact, but this
is not a guarantee. Additionally, electro migration may take place below the components,
accelerated by the presence of trapped flux residues, in which case visual inspection of the
components (for example, as part of high temperature and humidity stress testing) will not
be able to find the fault [28,100].



Electronics 2023, 12, 1297 13 of 23

Electronics 2023, 12, x FOR PEER REVIEW 13 of 23 
 

 

Therefore, it is important to ensure that there is no excessive mechanical stress caused 

by the de-paneling procedure, the component mounting, or PCB mounting method. The 

same holds true for various connections and PCB components. These parts will have a 

decreased likelihood of failing due to cracking since MLCCs for automotive and aerospace 

applications are built with softer resin material in the capacitor end caps, which lessens 

the mechanical stresses on the actual ceramic device region. The functioning of these 

pieces is shown in Figure 9a,b, which also show how employing them will reduce the 

likelihood of fractures forming during manufacture and the susceptibility of the devices 

to temperature cycling and ambient vibration when in operation [28]. In the wake of en-

vironmental stress testing, MLCCs are frequently checked for cracking. The capacitors are 

often subjected to micro-sectioning to identify any fractures. However, this analytical 

method by itself has the potential to cause device fractures [79,99]. High-resolution CT X-

ray component analysis can offer a more accurate evaluation of cracking in MLCCs, albeit 

a slower and possibly more expensive procedure. When used, MLCCs are frequently sub-

jected to a constant DC bias, which can induce electrochemical migration and, in cases 

where silver is present in the component interconnects, a short circuit failure mode. The 

introduction of COTS components that are ROHS compliant increases the chance of silver 

being present within these space applications. Operation in an environment with high 

humidity will amplify this impact. Utilizing PCBs with conformal coatings may help to 

reduce the impact, but this is not a guarantee. Additionally, electro migration may take 

place below the components, accelerated by the presence of trapped flux residues, in 

which case visual inspection of the components (for example, as part of high temperature 

and humidity stress testing) will not be able to find the fault [28,100]. 

 

Figure 9. (a) MLCC schematic illustrating resin electrodes; (b) Dendritic growth on MLCC [28]. 

There are several different analytical methods that may be used to evaluate capaci-

tors. The following section discusses some of the most helpful strategies, along with their 

Figure 9. (a) MLCC schematic illustrating resin electrodes; (b) Dendritic growth on MLCC [28].

There are several different analytical methods that may be used to evaluate capacitors.
The following section discusses some of the most helpful strategies, along with their
respective benefits and limitations. The primary analytical methods utilized in failure
investigation and component screening are sectioning and CT X-ray imaging because
cracking is the most frequent MLCC failure mechanism. Sectioning must be performed
carefully since the operation itself can cause cracks to emerge in the sample. Consequently,
the capacitor should be removed from the circuit and printed on a wiring board using a
high-speed diamond saw, allowing a reasonable space between the cut and the component.
The portion should then be installed and potted using a material that will not subject
the component to stress [79,99]. A fine grade of abrasive should be used for grinding
to the desired plane. The gadget should be used to analyze many successive planes,
paying close attention to the beginning of fractures from the inner edge of the solder fillet.
MLCCs may be checked for cracks using CT X-ray imaging. This method has the benefit of
being nondestructive, but it also has the drawback of being a sluggish method (although
probably faster than sectioning). It is also conceivable that extremely small/fine cracks are
overlooked since there is a limit to the size of feature that can be resolved. When it comes
to finding fractures in thick materials like ceramic capacitors, scanning acoustic microscopy
(SAM) is quite successful. Unfortunately, the procedure is useless since fractures are likely
to appear below the capacitor end caps. High-frequency transducers (e.g., >100 MHz) are
needed to image materials at a high resolution; however, at these frequencies, sound energy
is easily dispersed and attenuated, making it challenging to quantify any characteristics
beneath the end cap metal acoustically. Table 3 summarizes the MLCCs failure mechanisms
with their specific performances. The paint has conductivity flaws, air bubbles, poor paint
density, and incomplete drying of the coating encapsulation layer.
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Table 3. Summary of MLCCs failure mechanisms.

Failure Modes Schematic Possible Reasons: The Specific Performance Countermeasures

Penetration of ceramic
electrode edges (the
breakdown point is at
the edge of the silver
surface)
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4.1. Humidity’s Impact on Electrical Characteristics’ Degradation

When the air humidity is too high, a water film condenses on the surface of the ca-
pacitor shell, reducing the surface insulation resistance of the capacitor. In semi-sealed
capacitors, moisture can also penetrate the capacitor medium, lowering its insulation resis-
tance and insulation power. As a result, a high-temperature, high-humidity environment
has a significant negative influence on the characteristics of capacitors. After drying and
dehumidifying, capacitors’ electrical characteristics can be improved, but the effects of
water molecule electrolysis cannot be completely eradicated [99,110].

4.2. Consequences of Silver Ion Migration

Most inorganic dielectric capacitors use silver electrodes as their primary material.
Water molecules that infiltrate semi-sealed capacitors that are heated up result in electrolysis
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since they are permeable. When silver ions combine with hydroxide ions to form silver
hydroxide in the anode, a process called oxidation occurs. When silver hydroxide interacts
with hydrogen ions in the cathode—a reaction called a reduction—silver and water are
produced. Discontinuous metallic silver particles are produced by repeatedly decreasing
the silver ions in the anode to the cathode through the electrode reaction. These particles
stretch toward the anode in a tree-like arrangement, connected by the water layer. The
leakage current is increased by the migration of silver ions into the interior of the inorganic
medium as well as on its surface. In severe cases, a full short circuit between the two silver
electrodes might occur, which will destroy the capacitor [79].

In conclusion, silver ion migration can deteriorate the electrical characteristics of
open inorganic dielectric capacitors as well as possibly causing a decrease in the dielectric
breakdown field strength, which will cause the capacitor to fail [97].

It is important to note that due to silver ion migration, low-frequency ceramic mono-
lithic capacitors with silver electrodes fail far more frequently than other varieties of ceramic
dielectric capacitors. The channel is condensed as the silver ions move, which frequently
results in short circuits.

4.3. Ceramic Capacitors’ Mechanism of Failure in High-Temperature Environments

When semi-sealed ceramic capacitors are utilized in high-humidity settings, break-
down failure is a regular and significant issue. Surface arcing breakdown and dielectric
breakdown are the two forms of breakdowns that might happen. A dielectric breakdown
can be categorized as either an early breakdown or an old breakdown depending on when it
occurs. Capacitor dielectric material defects are revealed through early failure and manufac-
turing processes. These flaws drastically lower the dielectric strength of ceramic dielectrics.
The capacitor will have an electrical failure either in the resist total power or in the initial
phases of operation due to the influence of the electric field in a high-humidity environment.
The electrochemical disintegration of cells is the most typical kind of aging. Electrolytic age
breakdown has become a highly prevalent problem as a result of the migration of silver in
ceramic capacitors. Due to the formation of conductive dendrites caused by silver migra-
tion, which can increase local leakage current, the capacitor may burn out or rupture due to
thermal failure [78]. The most common geometries for thermal breakdown to occur in are
tubular or disc-shaped small ceramic dielectric capacitors because local heating is intense
during the breakdown and, additionally, thinner tube walls or smaller ceramic bodies are
more likely to burn or shatter. When the titanium dioxide reduction process takes place in
a ceramic medium made primarily of titanium dioxide, the titanium ion may also change
under stress from tetravalent to trivalent. With time, the capacitor’s dielectric strength
significantly decreases, which could result in capacitor failure. Therefore, compared to
ceramic dielectric capacitors without titanium dioxide, these ceramic capacitors experience
more severe electrolytic breakdown [99].

4.4. Improvement of Electrode Materials

Ceramic capacitors have historically used silver electrodes. Silver ion migration and
the subsequent fast aging of ceramic dielectrics containing titanium are the primary reasons
for ceramic capacitor failure. Some manufacturers have utilized nickel electrodes rather
than silver electrodes for making ceramic capacitors, using electroless nickel to plate the
ceramic substrate. Because nickel is both chemically more stable than silver and electrically
less mobile than silver, ceramic capacitor performance and reliability are boosted [28,78].
Due to the extensive use of the silver electrode and the ceramic material being sintered
at 900 ◦C, the monolithic low-frequency ceramic dielectric capacitor (with silver as the
electrode) has a significant amount of porosity, which prevents the ceramic material from
achieving a dense ceramic medium. Depending on the cosolvent barium oxide’s excellent
penetration or “mutual fusion” capability with silver at high temperatures, this will result
in a macroscopically visible “porcelain absorption of silver” occurrence.
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4.5. Fracture of Laminated Ceramic Capacitors

The brittleness of the dielectric determines the most frequent failure mechanism for
laminated ceramic capacitors, which is fracture. The laminated ceramic capacitor, which is
directly fused to the circuit board, could be unable to absorb the mechanical stress. The
leaded ceramic capacitor might be able to do so through the pins. As a result, the principal
cause of laminated ceramic capacitor rupture will be mechanical stress brought on by
varied thermal expansion coefficients or circuit board bending [28].

4.6. Analysis of Laminated Ceramic Capacitors’ Fractures

Once the laminated ceramic capacitor has been mechanically fractured, there will be an
arc discharge between two or more electrodes and a total failure of the laminated ceramic
capacitor because the electrode insulation separation at the fracture will be lower than
the breakdown voltage. Reducing mechanical stress is the primary method of protecting
laminated ceramic capacitors from mechanical fracture. This can be accomplished by
minimizing the circuit board’s bending, reducing the strain placed on the board by the
ceramic chip capacitor, and reducing the difference in thermal expansion coefficient between
the laminated ceramic capacitor and the circuit board [22,28].

By selecting a capacitor with a small package size, users may lessen the mechanical
stress brought on by the discrepancy in the thermal expansion coefficient between the
laminated ceramic capacitor and the circuit board. For the aluminum circuit board, for
instance, the smallest box should be utilized. The issue can be resolved with multiple
parallel connections, lamination, ceramic capacitors in pin packages, or any combination
of these.

4.7. Melted of the Electrode Terminals of the Laminated Ceramic Capacitor

When wave soldering laminated ceramic capacitors, the electrode terminals may melt
off. The main factor here is the extremely prolonged contact between the laminated ceramic
capacitors used in wave soldering and the high-temperature solder. There are now two
types of laminated ceramic capacitors available: those that can be wave soldered and
those that can be reflow soldered, the intensely nauseating occurrence [13,22,111]. The
appropriate precautions for laminated ceramic capacitors go into depth on the temporal
characteristics of high-temperature solder that the electrode terminals of laminated ceramic
capacitors may withstand under different welding techniques. The answer is straightfor-
ward: either use laminated ceramic capacitors that conform to the wave soldering technique
as much as is practical while employing it or use wave soldering as little as possible.

5. Conclusions and Outlook

Dielectric capacitors with a ceramic base are crucial energy-storage components in
modern electronic and electrical power systems. Ceramic-based dielectrics have been
demonstrated to be the most promising choices for energy-storage applications, as shown
throughout this study and summarized in Figure 4. Despite the advances made in terms
of creating material systems and structures, further research on improving overall energy
storage performance has to be conducted so as to address the following issues:

(1) The capacity to improve. To identify how to effectively control material and device
fabrication conditions when scaled up, basic research must be undertaken. It must
also be determined whether the cost gradients and the fine-tuning method used in
small-scale energy storage MLCCs can be scaled up for production.

(2) Compatibility with the electrode made of base metal. The internal electrode of contem-
porary, high-energy-density MLCCs is made of precious metals, however base metals
must be used in their stead to significantly cut costs. The dielectric material must
be anti-reducing or low burn in order to be compatible with base metal electrodes.
Additionally, other concerns like high temperature, high frequency, and strong electric
field must be addressed in order to retain high-energy storage performance under
harsh circumstances.
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(3) Great reliability. MLCCs long-term suitability for high-quality industrial applications
is determined by their great dependability. It is necessary to solve the performance
decline and failure caused by the plurality of electrical, thermal, mechanical, and
wet physics. Effective theories, models, approaches, experimental platforms, and
simulation methodologies of rapid deterioration are needed for this.

(4) Application-specific assessment and measurement. For the particular applications
indicated above, the way energy-storage performance is currently measured and
assessed differs from actual usage. As a result, the produced materials and gadgets
cannot presently be used in actual applications. On the basis of collaboration between
researchers and producers, appropriate standards should be set. Despite these diffi-
culties, it is anticipated that high-energy-density MLCCs will eventually be produced
because of their utility in intensive research and development.

(5) By taking into account all the factors that might affect the state of operation or the
state of health, these proposals give a great contribution to the evolution of the state
of the MLCCs. However, certain methods cannot be used because of the limitations of
technological circumstances. For instance, the excessively high breakdown voltage
prevents in-site electron microscopy from directly seeing the dynamic destruction of
microstructure.

Until now, MLCCs have been used in a wide range of products, including electric
vehicles, personal computers, mobile phones, and televisions. Furthermore, their scope
of use has expanded significantly in light of the development of the Internet of Things
(IoT). From the perspective of designing dielectric materials, the present challenges and
recent advancements in creating MLCCs with high capacitance and reliability are outlined
in Figure 10. By taking into account all the factors that might affect the state of operation
or the state of health (frequency, voltage stability, temperature, etc.), the ideas in this
study provide a significant contribution to the development of the state of the MLCCs for
future work.
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Future research will concentrate on using comparable circuit strength and order in
relatively basic models. The constraints of this approach, however, are that it cannot
demonstrate the kinetics of internal reactions, nor the capacitor’s deterioration and the
aging course of the MLCCs. Hence, a fused system would offer great predictive efficiency
in assessing how various factors, such as unknown aging, operating settings, and circum-
stances can affect MLCCs materials. The fused system combines various types of capacitor
models and techniques along with an effective fusion rule, which is based on using the
ESR and ESL of MLCCs as the most crucial characteristic metrics for both evaluating and
extending the performance and longevity of MLCCs.
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