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Abstract: In recent years, Transformer has shown great performance in speech enhancement by
applying multi-head self-attention to capture long-term dependencies effectively. However, the
computation of Transformer is quadratic with the input speech spectrograms, which makes it com-
putationally expensive for practical use. In this paper, we propose a low complexity hierarchical
frame-level Swin Transformer network (FLSTN) for speech enhancement. FLSTN takes several
consecutive frames as a local window and restricts self-attention within it, reducing the complexity
to linear with spectrogram size. A shifted window mechanism enhances information exchange
between adjacent windows, so that window-based local attention becomes disguised global attention.
The hierarchical structure allows FLSTN to learn speech features at different scales. Moreover, we
designed the band merging layer and the band expanding layer for decreasing and increasing the
spatial resolution of feature maps, respectively. We tested FLSTN on both 16 kHz wide-band speech
and 48 kHz full-band speech. Experimental results demonstrate that FLSTN can handle speech with
different bandwidths well. With very few multiply–accumulate operations (MACs), FLSTN not only
has a significant advantage in computational complexity but also achieves comparable objective
speech quality metrics with current state-of-the-art (SOTA) models.

Keywords: speech enhancement; frame-level Swin Transformer; shifted window mechanism; low
complexity

1. Introduction

Speech enhancement (SE) is a technology for recovering clean speech signals from
noisy backgrounds [1], which covers a wide range of applications, including voice calls,
teleconferencing, hearing aid devices, etc. [2]. Although SE technology appears to be
a simple process of speech recovery, the algorithms involved are extensive and diverse.
Traditional SE approaches such as spectral subtraction [3] and Wiener filtering [4] can
effectively deal with stationary noise but are powerless to suppress the non-stationary noise
that is widely present in the natural environment. In recent years, with the introduction of
deep learning, SE technology based on deep learning has attracted extensive attention [5,6].
The method based on deep learning has strong modelling ability for nonlinear complex
signals, which can effectively make up for the shortcomings of traditional methods, and
has become the current mainstream.

Convolutional neural networks (CNNs) have a relatively large advantage in extracting
local features but have limitations in modelling a wider range of dependencies for low-
level features [7]. Traditional models which use CNN block as their backbone network
cannot learn global and long-term information well. But the information is necessary and
important for many SE tasks. Encouraged by the success of Transformer [8] in the field of
natural language processing (NLP), speech enhancement Transformer (SETransformer) [9]
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applied Transformer to speech enhancement tasks for the first time. And with the deepen-
ing of research, advanced Transformer-based models such as two-stage transformer neural
network (TSTNN) [10] and Uformer (Unet based dilated complex & real dual-path con-
former) [11] have been gradually developed. However, Transformer has a limitation that
the high computational complexity makes it difficult to implement on some devices with
limited computing power. Recently, researchers developed a hierarchical Swin Transformer
architecture in [12], which takes the Swin Transformer as the visual backbone and achieves
SOTA performance in semantic segmentation, object detection, and image classification.
In the audio field, Chen [13] first employed Swin Transformer for audio classification and
achieved SOTA results on several audio datasets. This implies that Swin Transformer also
has high research value in the field of audio processing.

In order to explore the application potential of Swin Transformer in speech enhance-
ment tasks, we propose a novel frame-level Swin Transformer architecture for speech
enhancement. Specifically, the frame-level Swin Transformer takes several consecutive
frames as a local window and restricts self-attention within it to make the complexity
becomes linear to spectrogram size. A shifted window mechanism is adopted to strengthen
the information exchange between adjacent windows. The authors of [13] continued the
processing method used in the image field by employing square windows to construct
local windows. However, the time frequency features of speech are usually rectangular
in shape, so the operation of padding a large number of zeros at the boundaries increases
the amount of invalid computation. Our proposed frame-level Swin Transformer can
adapt to different sizes of feature maps and directly process rectangular time frequency
windows, so it is more computationally efficient. These ingenious designs not only consider
the global modelling ability of Transformer, but also greatly reduce the computational
cost of self-attention. We use frame-level Swin Transformer modules as the backbone of
the proposed model FLSTN. Furthermore, the band merge layer and the band expand
layer are designed for the reduction and restoration of the spatial resolution of the feature
maps, respectively. The multi-scale and long-term speech feature information extracted
by FLSTN is beneficial for the recovery of target speech in strong noise environments [14].
Experimental results show that FLSTN achieves the best performance while maintaining
low complexity compared to other SOTA models.

The main contributions of this paper can be summarized as the following three points:

• Our study is the first work to explore the application of Swin Transformer structure in
speech enhancement tasks.

• We propose a novel frame-level Swin Transformer structure suitable for speech pro-
cessing tasks, which adopts the frame-level shifted window mechanism for attention
calculation. The proposed structure greatly saves computing resources, facilitates
the construction of speech stream processing, and provides a new solution for future
speech enhancement systems.

• The proposed FLSTN model utilizes frame-level Swin Transformer modules
as the backbone, maintaining low computational complexity and achieving
outstanding performance.

2. Related Work
2.1. CNN-Based Speech Enhancement Methods

Early speech enhancement methods were mainly based on traditional signal pro-
cessing algorithms. With the development of deep CNN, many excellent CNN-based
speech enhancement models have emerged, such as temporal convolutional neural net-
work (TCNN) [15], deep complex U-Net (DCUNet) [16] and deep complex convolution
recurrent network (DCCRN) [14]. Although CNN and its variants remain the main back-
bone architecture for speech enhancement tasks, the Transformer architecture with more
powerful modelling capabilities has shown great potential. Our work is to explore a more
suitable Transformer architecture for speech enhancement.
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2.2. Transformer-Based Speech Enhancement Methods

Transformer was first proposed by [8] to solve machine translation problems. Not
only limited to the field of NLP, current Transformer-based approaches have achieved
SOTA performance in almost all fields. But Transformer also has its drawbacks. Taking
speech enhancement as an example, most methods based on Transformer are complex, slow,
and require high hardware requirements, which make them difficult to train. Therefore,
it is imperative to find a variant Transformer structure that is more suitable for speech
enhancement tasks. In our work, we try to utilize the Swin Transformer from image field
as a new backbone for speech enhancement model.

3. Problem Formulation

Let us take a speech signal contaminated by independent additive noise as an example.
Given a clean speech signal s(t) and a background noise signal c(t). The mixed noisy speech
signal can be expressed by the following equation:

y(t) = s(t) + c(t) (1)

Assume the speech is quasi-smooth [17], so it can be analyzed frame-by-frame using
short-time Fourier transform (STFT). The STFT of the noisy speech is given by Equation (2).

Y(n, k) =
∞

∑
m=−∞

y(m)w(n−m)e−j2πkm/L (2)

Here w(n) denotes an analysis window function. k is the index of the discrete acoustic
frequency, and the range is {1, 2, . . . , L}. L is the length of frequency analysis. n is the index
of time-frame, and the range is {1, 2, . . . , N}. So, after STFT, we can represent the noisy
speech signal as:

Y(n, k) = S(n, k) + C(n, k) (3)

We take Y(n, k) as the input feature of the model and output the real mask Mr(n, k) and
imaginary mask Mi(n, k). Complex ratio mask (CRM) [18] is employed to obtain the plural
form of estimated speech. Inverse short-time Fourier transform (ISTFT) is responsible for
converting Ŝ(n, k) to a time domain signal ŝ(t).{

Ŝr = MrYr −MiYi
Ŝi = MrYi + MiYr

(4)

Signal approximation (SA) minimizes the difference between the estimated and clean
speech by applying a loss function L = Loss[ŝ(t), s(t)], which usually gives better enhance-
ment than direct estimation.

4. Method
4.1. Architecture Overview

The overall architecture of FLSTN is illustrated in Figure 1. Firstly, complex spectral
features are extracted from the noisy speech by STFT, and then mapped to a real number
field by a complex-real mapping module. Equivalent rectangular bandwidth (ERB) scale is
adopted to reduce the frequency dimension to 32 bands, which greatly reduces redundant
calculation in high frequency bands. Figure 2a–c show the structures of encoder, bottleneck
layer and decoder, respectively. The encoder responsible for down-sampling is composed of
hierarchical frame-level Swin Transformer layers and band merging layers. The bottleneck
layer is stacked by lightweight temporal-frequential convolution modules (TFCM) to
enhance the long-term information learning ability of FLSTN. We also design a real decoder
and an imaginary decoder symmetric to the encoder for up-sampling, which consist
of frame-level Swin Transformer blocks and band expanding layers. Multi-scale low-
level features and high-level features are fused by add-skip connections, thus retaining
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more abundant speech details. A deep filter [19] is employed to eliminate residual noise,
especially nonlinear noise. Each module is elaborated in the following.

Figure 1. The overall architecture of FLSTN.

Figure 2. (a) The detail of encoder. (b) The proposed lightweight TFCM. (c) The detail of decoder.
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4.2. Complex-Real Mapping Module

Although the performance of complex networks is slightly better than real networks,
their complexity is usually much higher. Therefore, in order to balance complexity and
performance, we design a module that maps the complex features of speech to real features.
The complex-real mapping module consists of a complex convolution layer, a complex-to-
real projection layer, and a feature compression layer. In our experiment, the compression
factor is set to 0.5.

4.3. Frame-Level Swin Transformer

As shown in Figure 3a, a frame-level Swin Transformer layer is composed of
two successive frame-level Swin Transformer blocks. Each Swin Transformer block [12]
contains two layer normalization layers and a two-layer multi-layer perceptron (MLP)
with Gaussian Error Linear Unit (GELU) activation function. The difference from tradi-
tional Transformer is that the multi-head self-attention (MSA) is replaced by frame-level
window-based MSA (FL-WMSA) or frame-level shifted window-based MSA (FL-SWMSA).
FL-WMSA restricts attention to each window, resulting in a lack of information interac-
tion between windows, which makes FL-WMSA ineffective when used alone. Therefore,
FL-SWMSA adds shifted window mechanism based on FL-WMSA to compensate for
this deficiency. For FL-WMSA, we first split the feature map into N non-overlapping
(F ×WT) windows, as shown in Figure 3b. Then we compute the self-attention limited to
each window instead of the global self-attention calculation, so we can obtain N window
self-attention matrices. In this study, WT = 4. For FL-SWMSA, the window shifts towards
past time by WT/2 in length each time. It can be clearly found that frame-level Swin Trans-
former removes the square window limitation of the original Swin Transformer, which
greatly enhances its universality. By analogy with [12], the complexity of traditional MSA
and FL-WMSA can be described as follows.{

Ω(MSA) = 4FTC2 + 2(FT)2C
Ω(FL−WMSA) = 4FTC2 + 2F2TWTC

(5)

where F, T and C denote the number of frequency bands, frames, and the channel dimension,
respectively. For the complexity of the above two, FL-WMSA reduces the dominant second
term by T/WT times. The complexity of MSA is quadratic to T, while FL-WMSA is linear,
and WT is much small than T. As a result, the complexity of FL-WMSA is far less than that
of MSA, which cannot be ignored in practical applications.

Figure 3. (a) The structure of a frame-level Swin Transformer layer. (b) The illustration of the window
self-attention mechanism of a frame-level Swin Transformer.
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4.4. Band Merging and Expanding

Band merging and expanding layers reduce and restore the resolution of speech feature
maps, respectively. For example, the band merging layer transforms a feature of shape
(C × F × T) into (2C× F

2 × T), while the band expanding layer is responsible for restoring
the feature size. Then the feature map is fed into frame-level Swin Transformer modules
for deep representation learning. Notably, the band merging and expanding layers require
almost no additional parameters, which further reduces the complexity of FLSTN. The
graphical illustration of band merging and expanding is illustrated in Figure 4.

Figure 4. The illustration of band merging and expanding layers.

4.5. Lightweight TFCM

Long short-term memory (LSTM) can effectively model time series, but it requires
many parameters, so we design a lightweight temporal-frequential convolution module as
the basic unit of bottleneck layer instead of LSTM. The structure of the proposed lightweight
TFCM is shown in Figure 2b. Firstly, the input channel C is compressed to C′ by a 1 × 1
2D pointwise convolution (P-Conv2d). Then we use a two-branch 2D dilated convolution
(D-Conv2d) instead of D-Conv1d for multi-scale modeling along time dimension with
a kernel size of 3 × 3. The output of one branch is restricted to (0, 1) by a sigmoid
function and multiplied by the output of the other branch. In this experiment, we use
3 stacked lightweight TFCM blocks to form the bottleneck layer and each TFCM block
consists of 6 TFCMs. The dilation rates of the two branches are 2i, 2L−i, where L = 6 and
I ∈ {0, 1, 2, 3, 4, 5}. Complementary dilation rates enable the two branches to learn long-term
and short-term dependencies simultaneously.

4.6. Apply Gains

The pre-estimated speech is generated by CRM, and it should be noted that we convert
the mask to polar coordinates. The Cartesian coordinate representation of mask can also be
expressed in polar coordinates:{

Mmag =
√

M2
r + M2

i
Mpha = arctan2(Mi, Mr)

(6)

The pre-estimated clean speech Sp can be calculated as below:

Sp = Ymag•Mmag• expYpha+Mpha (7)

where Ymag and Ypha represent the magnitude and phase of noisy speech, respectively.

4.7. Deep Filter

We believe that the dot product operation of the mask-based method is inherently
more inclined to remove linear noise, so we introduce a deep filter module to remove
residual nonlinear noise. In deep filter module, each TF bin of the output spectrogram
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is mapped from adjacent local TF bins of the pre-estimated spectrogram. A deep filter is
defined as follows:

S(t, f ) =
N

∑
i=0

D(i, t, f )•Y(t− i, f ) (8)

Sout(t, f ) = θ•S′out(t, f ) + (1− θ)•Sp(t, f ) (9)

where D is the complex coefficients of the Nth order filter of the input spectrogram Y, and θ
is the weighting factor. Previous studies [19,20] have shown that a deep filter can effectively
enhance the harmonics of speech.

4.8. Loss Function

Both objective and subjective results reveal that better speech enhancement perfor-
mance can be achieved *-96+when using suitable power compress loss. The spectrogram
after power compression can be expressed as Sp = |S|αeiθ , Thus, the real and imaginary
parts can be formulated by {

Sp
r = |S|α cos θ

Sp
i = |S|α sin θ

(10)

The loss function LRI(Ŝ, S), used to describe the similarity of the estimated complex
spectrogram and the clean complex spectrogram can be given as

LRI(Ŝ, S) =
∥∥∥Ŝp

r − Sp
r

∥∥∥2

F
+
∥∥∥Ŝp

i − Sp
i

∥∥∥2

F
(11)

where Ŝ, Ŝp
r and Ŝp

i denote the estimated spectrogram, compressed estimated real part and
compressed estimated imaginary part, respectively. ‖•‖F is the Frobenius norm. Because
magnitude is much more important than phase in speech enhancement tasks, we add
compressed magnitude loss.

Lmag(Ŝ, S) =
∥∥∥∣∣Ŝ∣∣α−∣∣S∣∣α∥∥∥2

F
(12)

Total loss can be given by the following equation, where α = 1
3 in this paper.

Loss = LRI(Ŝ, S) + Lmag(Ŝ, S) (13)

5. Experiment
5.1. Experiment I
5.1.1. Dataset and Evaluation Metric

We first evaluate the enhancement effect of FLSTN on wideband speech at 16 kHz. All
clean utterances come from the training set si_tr_s of Wall Street Journal (WSJ0) corpus [21],
which consists of 9321 utterances from 101 speakers. We randomly select six speakers
(three male and three female) for the validation set, and the clean speech for evaluation
set is selected in the same way. The remaining samples from 89 speakers are used for
training. The noises of training and validation sets are from Interspeech 2021 deep noise
suppression (DNS) noise set [22], and each clean utterance is corrupted with three types
of noises randomly selected from 65303 noises at signal-to-noise ratios (SNRs) between
−5 dB and 15 dB with an interval of 1 dB. In order to evaluate the model performance
under various unknown noises, we use the babble and factory1 noises from NOISEX92 [23]
for evaluation set. The SNR levels are {0 dB, 5 dB, 10 dB}.

We select perceptual evaluation of speech quality (PESQ) [24], short-time objective
intelligibility (STOI) [25] and composite metrics CSIG, CBAK, COVL [26] as evaluation
metrics. The typical values for PESQ range from −0.5 to 4.5 and STOI values range from 0
to 1. Three other composite metrics: CSIG for signal distortion MOS (Mean Opinion Score),
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CBAK for background noise interferences, and MOS and COVL for overall speech quality
MOS. All MOSs range between 1 and 5, i.e., 1-bad, 2-poor, 3-fair, 4-good, 5-excellent.

5.1.2. Experimental Setup and Baselines

In our experiments, the window length and hop size of STFT are 25 ms and 12.5 ms,
and the FFT length is 400. We use the Adam optimizer with an initial learning rate of 0.001
as the optimizer. A dynamic strategy is used in the training stage. More specifically, the
learning rate is halved when the loss of validation set does not improve for 3 consecutive
epochs. The model is selected by early stopping. If there is no loss improvement for
10 consecutive epochs, the training stage will stop and the best performing model will be
taken. All models are trained for a maximum of 100 epochs to avoid over-adaptation.

DTLN: a real-time noise suppression method based on stacked double signal transfor-
mation LSTM network [27]. It has less than 1 M parameters.

DCUNet: a variant UNet based on the complex domain [16]. We use DCUNet-16 for
comparison, and the channels in the encoder are set to {32, 32, 64, 64, 64, 64, 64, 64}.

Conv-TasNet: a deep learning framework for end-to-end full convolutional time-
domain speech separation [28]. We set the number of speakers to one and apply the
framework to speech enhancement tasks.

DCCRN: a deep complex convolutional recurrent network [14]. It ranks first on the
real-time track for the Interspeech 2020 DNS challenge. We use DCCRN-CL for comparison,
and the channels in the encoder are set to {32, 64, 128, 256, 256, 256}.

PHASEN: a phase-and-harmonics-aware speech enhancement network [29]. It is a two-
stream network composed of an amplitude stream and a phase stream for simultaneously
predicting amplitude and phase.

5.1.3. Experimental Results

We use the utterances polluted by babble and factory1 noises as the evaluation set
to test the generalization of the model under different SNRs. The results are shown in
Table 1. We can intuitively see that the results show consistency for the two different
noises. FLSTN demonstrates excellent performance in terms of both PESQ, STOI and the
three MOSs when compared with other SOTA models. For babble noise, compared with
unprocessed noisy speech, PESQ improves by 0.78 on average, STOI improves by 10.9% on
average, and the three MOSs improve by 0.94, 0.97, and 0.91, respectively. Similarly, for
factory1 noise, PESQ and STOI are improved by 0.84 and 11.3%, and the three MOSs are
improved by 0.97, 1.00 and 0.95, respectively. Among all the metrics, CSIG and CBAK show
more improvement than others. This means that our method introduces less interference
noise and recovers speech components effectively during the enhancement process. It
also suppresses background noise strongly and improves the overall quality and listening
effect of speech, making speech distortion and background noise hardly detectable. At
low SNRs, the speech enhancement performance of all models under factory1 noise is
lower than that under babble noise, which may be attributed to the effect of the spectral
structure of different noise sources. Because babble noise is dominated by human voice,
its spectral structure is very similar to that of clean speech. This increases the difficulty of
distinguishing noise from clean speech, especially at low SNRs. In addition, the advantage
of our method is not weakened compared with other methods at 0 dB, indicating that
our model also has good performance at low SNR. Better speech quality indicates the
effectiveness of the proposed frame-level Swin Transformer structure.

An illustrative diagram of the number of parameters and MACs for the proposed
FLSTN and all competing baselines is shown in Figure 5. FLSTN requires only 1.42 M pa-
rameters and 0.36 G MACs per second, which provides a significant complexity advantage
over other baselines except DTLN. Although the complexity of FLSTN is slightly higher
than that of DTLN, we believe that it is well worthwhile to increase the computational
effort by a small amount in exchange for a great improvement in performance.
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Table 1. Experimental results on WSJ0-babble and WSJ0-factory1 evaluation sets.

Model SNR
Babble Factory1

PESQ STOI CSIG CBAK COVL PESQ STOI CSIG CBAK COVL

Noisy

0 dB

1.09 0.684 2.30 1.40 1.58 1.06 0.683 2.22 1.43 1.54
DTLN 1.29 0.780 2.65 1.94 1.89 1.34 0.805 2.61 2.06 1.92

DCUNet 1.31 0.794 2.54 2.02 1.84 1.36 0.820 2.59 2.14 1.91
Conv-TasNet 1.32 0.838 2.85 2.12 2.03 1.32 0.837 2.78 2.15 2.01

DCCRN 1.35 0.828 2.52 1.65 1.86 1.33 0.836 2.44 1.72 1.83
PHASEN 1.33 0.810 2.67 1.60 1.92 1.43 0.830 2.76 1.74 2.04

FLSTN(Pro.) 1.45 * 0.825 3.04 2.20 2.19 1.54 0.843 3.09 2.33 2.27

Noisy

5 dB

1.18 0.799 2.68 1.73 1.85 1.13 0.803 2.58 1.74 1.79
DTLN 1.63 0.886 3.19 2.32 2.36 1.62 0.889 3.04 2.37 2.30

DCUNet 1.68 0.895 3.11 2.47 2.34 1.70 0.903 3.03 2.53 2.32
Conv-TasNet 1.68 0.915 3.34 2.49 2.48 1.64 0.912 3.21 2.49 2.40

DCCRN 1.79 0.916 3.14 1.94 2.43 1.70 0.917 2.95 1.94 2.29
PHASEN 1.77 0.907 3.27 1.90 2.48 1.80 0.912 3.21 1.97 2.47

FLSTN(Pro.) 1.97 0.916 3.65 2.72 2.78 2.00 0.918 3.58 2.76 2.77

Noisy

10 dB

1.37 0.887 3.09 2.13 2.18 1.32 0.894 3.01 2.13 2.13
DTLN 2.10 0.939 3.71 2.70 2.88 2.01 0.938 3.49 2.68 2.73

DCUNet 2.19 0.946 3.69 2.96 2.92 2.18 0.948 3.54 2.98 2.84
Conv-TasNet 2.15 0.954 3.83 2.88 2.98 2.10 0.952 3.69 2.86 2.89

DCCRN 2.39 0.956 3.76 2.27 3.06 2.24 0.958 3.51 2.23 2.86
PHASEN 2.34 0.954 3.83 2.23 3.07 2.30 0.954 3.70 2.25 2.99

FLSTN(Pro.) 2.55 0.957 4.19 3.23 3.36 2.50 0.957 4.04 3.20 3.27

Noisy

AVG.

1.21 0.790 2.69 1.75 1.87 1.17 0.793 2.60 1.77 1.82
DTLN 1.67 0.868 3.18 2.32 2.38 1.66 0.878 3.05 2.37 2.31

DCUNet 1.73 0.878 3.11 2.48 2.37 1.75 0.891 3.05 2.55 2.36
Conv-TasNet 1.72 0.902 3.34 2.50 2.50 1.69 0.900 3.23 2.50 2.43

DCCRN 1.84 0.902 3.14 1.95 2.45 1.76 0.903 2.97 1.96 2.33
PHASEN 1.81 0.890 3.26 1.91 2.49 1.84 0.899 3.22 1.99 2.50

FLSTN(Pro.) 1.99 0.899 3.63 2.72 2.78 2.01 0.906 3.57 2.77 2.77

* In each case, the best result is highlighted by a boldface number.

Figure 5. Complexity comparison with various competing network models.
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5.2. Experiment II
5.2.1. Dataset and Evaluation Metric

In Experiment II, we use the VoiceBank-DEMAND dataset at 48 kHz. The clean speech
in this dataset derives from the VoiceBank corpus [30], which consists of 28 speakers for
training (11,572 utterances) and two additional speakers for evaluation (824 utterances),
where male speakers and female speakers are equal in number. The noises of training
set consist of 8 kinds of noises from DEMAND corpus [31] and two kinds of artificially
generated noises (SNRs are 0 dB, 5 dB, 10 dB and 15 dB respectively). The evaluation set is
generated by five kinds of unseen noises from DEMAND (SNRs are 2.5 dB, 7.5 dB, 12.5 dB
and 17.5 dB respectively).

The evaluation metrics used in experiment II are the same as those in experiment I.

5.2.2. Experimental Setup and baselines

Due to lack of validation set for VoiceBank-DEMAND dataset, our network is trained
on the training set for 50 epochs with a fixed learning rate of 0.0005. The STFT configuration
and parameter settings are the same as in experiment I, except that the sampling rate and
FFT length are changed to 48 kHz and 1200 respectively.

The baseline models for experiment II include RNNoise [32], NSNet2 [33], Percep-
Net [34], DCCRN [14], DCCRN+ [20], S-DCCRN [35], DeepFilterNet [36], and FullSub-
Net+ [37]. It should be noted that the data we use are provided by relevant papers, and the
unreported values of related works are indicated as ‘-‘.

5.2.3. Experimental Results

We evaluate the applicability of FLSTN to the more challenging 48 kHz full-band
speech in experiment II. Table 2 shows the comparison results between FLSTN and other
SOTA methods. As can be found, FLSTN requires only a very few parameters and MACs
to achieve the best scores for four metrics. The reason for this superior performance may
be that FLSTN adopts Transformer as the backbone, which has stronger learning ability
than other CNN-based models. It also uses a shifted window strategy to better capture the
long-term features of the speech signal. These techniques enable FLSTN to produce clear
and natural speech outputs with minimal distortion and noise. Although the COVL score
of FLSTN is 0.04 lower than that of FullSubNet+, the complexity of the latter is obviously
much higher. Incidentally, although RNNoise requires the fewest parameters and MACs, it
significantly performs much worse than other methods. In conclusion, FLSTN can achieve
satisfactory quality of enhanced speech while maintaining low complexity, which further
emphasizes its excellent speech enhancement performance.

Table 2. Experimental results on VoiceBank-DEMAND test set.

Model Year Params[M] MACs[G/s] PESQ STOI CSIG CBAK COVL

Noisy - - - 1.97 0.921 3.34 2.44 2.63
RNNoise 2018 0.06 * 0.04 2.33 0.922 3.40 2.51 2.84

PercepNet 2020 8.00 0.80 2.73 - - - -
DCCRN 2020 3.70 14.36 2.54 0.938 3.74 3.13 2.75
NSNet2 2021 6.17 0.43 2.47 0.903 3.23 2.99 2.90

DCCRN+ 2021 3.30 - 2.84 - - - -
S-DCCRN 2022 2.34 - 2.84 0.940 4.03 2.97 3.43

DeepFilterNet 2022 1.78 0.35 2.81 0.942 4.14 3.31 3.46
FullSubNet+ 2022 8.67 30.06 2.88 0.940 3.86 3.42 3.57

FLSTN 2022 1.42 0.38 2.88 0.944 4.18 3.43 3.53

* In each case, the best result is highlighted by a boldface number.
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5.2.4. The Influence of Frame-Level Swin Transformer

To further demonstrate the effectiveness of our proposed frame-level Swin Transformer,
we also designed an additional architecture with FLSTN for an ablation study. In this
comparison model, we replace all frame-level Swin Transformer modules in the encoder
and decoder of FLSTN with 2D convolution and transposed convolution with the same
channel dimension, respectively. Each convolution or transpose convolution layer is
followed by a 2D batch normalization layer and a parametric rectified linear unit (PReLU)
activation function. The remaining configurations are identical to FLSTN. The results of the
ablation study are shown in Table 3 and Figure 6.

Table 3. FLSTN vs. comparison model.

Model PESQ STOI CSIG CBAK COVL

FLSTN 2.88 * 0.944 4.18 3.43 3.53
comparison 2.57 0.939 3.86 3.27 3.20

* In each case, the best result is highlighted by a boldface number.

Figure 6. Enhanced spectrograms of FLSTN and comparison model (samples are saved at 16 KHz).

It is obvious that FLSTN with frame-level Swin Transformer as the backbone out-
performs the comparison model in all metrics. Furthermore, from Figure 6, we can find
that the speech spectrograms enhanced by FLSTN are closer to the clean spectrograms.
Compared with the comparison model, FLSTN has better denoising effect and loses less
spectral information. We think there are three main reasons for the significant difference
in scores between the two methods. First, Swin Transformer can capture long-distance
dependencies in spectrograms, while CNN is limited by local receptive fields. Second, Swin
Transformer can easily fuse multi-scale features, while CNN needs additional upsampling
or downsampling operations. Third, Swin Transformer can adaptively adjust attention
weights, while CNN needs to predefine kernel size and stride. Therefore, we believe that
Swin Transformer is effective for speech enhancement because it can better extract details
and structural information from speech signals and adapt to speech feature changes under
different noise environments.

6. Conclusions

In this work, we proposed FLSTN, a low complexity speech enhancement network
based on frame-level Swin Transformer. FLSTN has a lightweight structure and achieves
SOTA results for both wideband and full-band speech enhancement tasks. The backbone of
FLSTN is the frame-level Swin Transformer, which utilizes frame-level window attention
to replace the global attention of spectrums, thus reducing the computational complexity of
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the network. We believe that the frame-level Swin Transformer has great potential for other
speech processing tasks. Most notably, the frame-level shifted window mechanism can
capture relevant and long-term historical information from adjacent windows, which is very
suitable for building real-time speech streaming processing systems. In our future work,
we will investigate different architectures and hyperparameters of the frame-level Swin
Transformer to further enhance its robustness and performance for speech enhancement
in noisy and reverberant environments. Moreover, we will apply our approach to other
speech processing tasks, such as echo cancellation and speech recognition.
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