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Abstract: A dependable and robust technique for nanomachining is ion implantation. In this work,
hydrogen (H) ion implantation was used, for the first time, to passivate p-GaN, except for the gate
area, in order to create a normally off p-GaN/AlGaN/GaN high-electron-mobility transistor (HEMT).
Ion implantation passivation reduces H ion diffusion in p-GaN, allowing it to withstand temperatures
above 350 ◦C. Through experiments and analyses, the H ion implantation energy and dosage required
to passivate p-GaN, by generating Mg-H neutral complexes, were determined to be 20 keV and
1.5 × 1013 cm−2, respectively. After conducting annealing procedures at various temperatures, we
discovered that 400 ◦C was the ideal temperature to effectively obtain a normally off p-GaN HEMT.
A threshold voltage of 0.8 V was achievable. The p-GaN HEMT also had a breakdown voltage of
642 V at a gate voltage of 0 V, maximum transconductance of 57.7 mS/mm, an on/off current ratio of
108, an on-resistance of 8.4 mm, and a maximum drain current of 240.0 mA/mm at a gate voltage of
6 V after being annealed at 400 ◦C.

Keywords: p-GaN; AlGaN/GaN HEMT; passivation; hydrogen ion implantation

1. Introduction

Due to its wide bandgap and high electron mobility, AlGaN/GaN high-electron-
mobility transistors (HEMTs) are advantageous for power electronics [1–4]. The conven-
tional HEMT is a normally on device [3–6]. However, a normally off device is more
secure [7–10]. The p-GaN gate [11–13] is one of the most common methods of preparing a
normally off HEMT. In some studies, etching p-GaN [14,15] and passivating p-GaN using
hydrogen plasma [16,17] are effective techniques to realize the p-GaN gate via the selective
shedding of p-GaN. Nevertheless, etching can easily cause interface damage. Additionally,
hydrogen will diffuse at high temperatures after hydrogen plasma treatment. There are still
some difficulties associated with the stability and controllability of using these techniques
in practice [18].

In this work, to obtain a p-GaN gate, H ion implantation, which is a reliable and stable
method, was conducted to selectively shed the p-GaN layer. The Mg acceptors in p-GaN
can form Mg-H neutral complexes [16,17] via H ion implantation. Then, the p-GaN becomes
a high-resistance GaN. H ion implantation also can be applied to introduce spin carriers
or p-GaN-based spintronics [19–21]. The H concentration is accumulated on the surface
after H plasma treatment. H is easily diffused into the p-GaN gate. When exposed to high
temperatures, the device will fail [16]. Due to the modicum of H ion on the surface due
to ion implantation passivation, p-GaN can withstand temperatures above 350 ◦C. After
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conducting our experiments and analyses, the factors of H ion implantation containing
the implantation energy, ion dose, and annealing conditions to passivate p-GaN were
ascertained. The p-GaN HEMT with H ion implantation successfully achieved normally
off operation. A maximum drain current of 240 mA/mm was found to be larger than that
of p-GaN gate HEMTs using selective plasma etching and metallization technologies [12].

2. Materials and Methods

The p-GaN/AlGaN/GaN heterojunction was grown via metal-organic chemical vapor
deposition on a 6-inch Si substrate. As shown in Figure 1a, the epitaxy material was
composed of a GaN buffer layer, a GaN channel layer, an AlN space layer, an Al0.2Ga0.8N
barrier layer, and a p-GaN cap layer with 3 × 1019 cm−3 Mg doping. The device was
isolated first. Before source (S) and drain (D) deposition, the p-GaN was graphically etched
using inductively coupled plasma. Then, Ti/Al/Ni/Au metals were deposited on the
source and drain regions, and ohmic contacts were formed after annealing at 875 °C for
30 s. Additionally, Ni/Au metals were evaporated at the gate electrode (G) [16,17]. The
devices were coated with silicon nitride (SiNx) as the sacrificial layer. After that, the p-GaN
cap layer was deactivated via H ion implantation, except for the gate regions, as shown in
Figure 1a. Finally, the SiNx was removed via reactive ion etching, and the p-GaN HEMT
shown in Figure 1b was prepared. Figure 1c displays an optical image of the p-GaN HEMT.
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Figure 1. Schematic diagram of p-GaN HEMTs: (a) H ion implantation; (b) p-GaN selective passiva-
tion; (c) optical image of the p-GaN HEMT.

3. Results and Discussion

Firstly, the H ion implantation energy was determined. In this work, 15 keV and
20 keV implantation energies were applied to p-GaN HEMTs. Figure 2a shows the transfer
curves of devices with H ion implantation energies of 15 keV and 20 keV, without annealing.
The drain current (IDS) of the device with an implantation energy of 15 keV is 85.5 mA/mm
at a gate voltage (VG) of 6 V, which is 38% more than that with a H ion implantation energy
of 20 keV. Additionally, the values of peak transconductance (Gm) are 31.7 mS/mm and
26.7 mS/mm for p-GaN HEMTs with H ion implantation energies of 15 keV and 20 keV,
respectively. The average threshold voltages (VTh) of the p-GaN HEMT, defined as VG at
IDS = 10 µA/mm, are −0.4 V and −0.2 V after H ion implantation of 15 keV and 20 keV.
Additionally, the gate leakage at the negative bias of devices with H ion implantation
energies of 15 keV and 20 keV are shown in Figure 2c. The gate leakage current (IG) of the
p-GaN HEMT with a H ion implantation energy of 15 keV is 68% lower than that with a H
ion implantation energy of 20 keV at VG = −8 V. Therefore, 15 keV is more suitable than
20 keV as a H ion implantation energy in the p-GaN HEMT.
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Figure 2. (a) Transfer characteristics; (b) average values and errors of threshold voltages; (c) gate
leakage curves at the negative bias of p-GaN HEMTs with H ion implantation energies of 15 keV and
20 keV, without annealing.

Thus, this H ion implantation dose is indispensable for passivating p-GaN completely.
During simulation, the H ion dose is about 1.0 × 1013 cm−2 in this work. To further
determine the dose in p-GaN HEMTs, H ion doses of 1.0 × 1013 cm−2 and 1.5 × 1013 cm−2

were experimented with. Figure 3a contrasts the transfer characteristics at the log scale of
devices without H ion implantation, and with H ion implantation doses of 1.0 × 1013 cm−2

and 1.5 × 1013 cm−2, without annealing. Before H ion implantation, the device is a normally
on HEMT. The average value of VTh is −0.2 V after 1.0 × 1013 cm−2 H ion implantation.
This means a H ion implantation dose of 1.0 × 1013 cm−2 cannot passivate p-GaN entirely.
Fortunately, as shown in Figure 3b, the average value of VTh is 0.1 V in the p-GaN HEMT
after a H ion implantation dose of 1.5 × 1013 cm−2. This indicates that after a H ion
implantation dose of 1.5 × 1013 cm−2, the device is a normally off HEMT. Figure 3c shows
the output characteristics at VG = 6 V of p-GaN HEMTs without H ion implantation, and
with H ion implantation doses of 1.0 × 1013 cm−2 and 1.5 × 1013 cm−2. The maximum
drain current of the device at VG = 6 V with a H ion implantation dose of 1.5 × 1013 cm−2

is 53.7 mA/mm, which is less than that with a dose of 1.0 × 1013 cm−2 (81.1 mA/mm) and
without H ion implantation (228.9 mA/mm).
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Figure 3. (a) Transfer characteristics in log scale; (b) average values and errors of threshold voltages;
(c) output characteristics at VG = 6 V of p-GaN HEMTs without H ion implantation and with H ion
implantation doses of 1.0 × 1013 cm−2 and 1.5 × 1013 cm−2, without annealing.

To passivate p-GaN completely, sufficient dosage and energy are required. Never-
theless, the lattice damage increases as the energy and dose of ion implantation increase,
resulting in an increase in the device’s on-resistance and a decrease in the saturation
current. To obtain a high saturation current, lattice damage must be repaired through
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high-temperature annealing. Three temperatures (350, 375, and 400 ◦C) were adopted in
this work. As shown in Figure 4a, the transfer characteristics of p-GaN HEMTs during H
ion implantation, after annealing at three temperatures, can be compared. After annealing
at 350, 375, and 400 ◦C, the average values of the threshold voltages in Figure 4b are 0 V,
0.6 V, and 0.7 V, respectively. In Figure 4c, the gate leakage values of p-GaN HEMTs with
H ion implantation at VG = −8 V, after annealing at 350, 375, and 400 ◦C, are 1.2 × 10−4

mA/mm, 6.3 × 10−6 mA/mm, and 1.3 × 10−6 mA/mm, respectively. Compared with the
three annealing treatments, 400 ◦C is the optimal temperature.
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Finally, the p-GaN HEMT obtained via H ion implantation with energy of 15 keV and
a dose of 1.5 × 1013 cm−2, after annealing at 400 ◦C, was measured. The on/off current
ratio is ~106, as shown in Figure 4a. From the transfer curve in Figure 5a, it can be seen that
the value of Gm is 57.7 mS/mm. The maximum drain current at VG = 6 V is 240.0 mA/mm,
as shown in Figure 5b. Additionally, the on-resistance (RON) is calculated to be 8.4 Ω·mm.
As shown in Figure 5c, the breakdown voltage is 642 V at VG = 0 V.
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4. Conclusions

In summary, we investigated the H ion implantation of a p-GaN HEMT to passivate p-
GaN, except for the gate region. The H ion implantation energy was 15 keV. Additionally, to
passivate p-GaN completely, the H ion implantation dose was 1.5 × 1013 cm−2. Annealing
treatment was implemented after H ion implantation to improve the crystal damage caused
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by implantation. Compared with 350 and 375 ◦C, 400 ◦C was an ideal temperature for
annealing treatment in this work. After annealing at 400 ◦C, the normally off device with H
ion implantation succeeded, with a threshold voltage of 0.8 V and an on/off current ratio
of 108.
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