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Abstract: This paper evaluates the L1 adaptive model predictive control (AMPC-L1) method in
terms of its control performance and computational load. The control performance is assessed on the
basis of the nonlinear simulation of a fly-back booster conducting stage separation and re-entry, and
compared to baseline nonadaptive MPC and as a pole placement controller in both longitudinal and
lateral control tasks. Simulation results show that AMPC-L1 exhibits superior control performance
under nominal conditions, and aerodynamic and guidance law uncertainties. The computational load
of AMPC-L1 is also evaluated on an embedded platform to demonstrate that AMPC-L1 preserves
the efficiency properties of AMPC while improving its performance.
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1. Introduction

Adaptive control and model predictive control (MPC) are two historically separate
areas of control theory that provide different performance benefits to the control problem of
an uncertain system. At each control update, MPC solves a finite-horizon optimal control
problem with a receding horizon principle. The solution to the optimal control problem is
the control input calculated on the basis of the prediction of future states [1,2]. MPC is a
control method with predictive capability and superior constraint handling compared to
those of classical PID controllers, thereby improving control performance [3,4]. As a form
of optimal control, MPC seeks minimal tracking errors while abiding by the constraints of
the system model [5,6]. Moreover, the predictive element of MPC means that the controller
acts pre-emptively to squash tracking errors instead of waiting to react to errors as in PID
control. An excellent review of MPC studies in aerospace systems was provided by Eren
et al. [7]. With respect to re-entry vehicles, Van Soest et al. implemented MPC for the
re-entry simulation of the X-38 unpowered crew return vehicle (CRV) at 10 Hz [8], and
Pascucci et al. implemented MPC for a re-entry vehicle undergoing powered descent using
thrust vectoring [9].

The field of adaptive control addresses a different issue. The inherent presence of
uncertainties in a system model results in a mismatch between the model that is used to
synthesise the control algorithm and the real system, resulting in performance degradation
for classical and optimal control methods [10–13]. Adaptive control seeks to compensate
for uncertainties in the system model by either (i) estimating the system model explicitly
and modifying the control law accordingly or (ii) estimating the representative matched
and unmatched uncertainties present in the system, and compensating for them in the
control law [14–18]. Both categories aim to retain the nominal design performance of the
nonadaptive controller in the presence of model uncertainties.

Adaptive control has seen much activity within the aerospace community. Banerjee
et al. applied an L1 augmentation to a pole placement controller for the longitudinal
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dynamics of hypersonic gliders. Simulation studies found that adaptive augmentation
improved control performance [19]. An optimal control modification was applied to a
model reference adaptive controller (MRAC) for a fighter aircraft [20]. Compared to the
baseline controller and simple MRAC, the optimal control modification performed better.
Zhou et al. presented a sliding-mode adaptive control algorithm based on a backstepping
approach [21]. In that study, the sliding-mode control law was used to suppress the effects
of parameter variations and disturbances in the attitude rate loop. Liu et al. designed a
high-performance adaptive controller for hypersonic flight vehicles [22]. The simulation
results showed that the developed control technique could improve the transient response
of hypersonic flight vehicles compared to other adaptive strategies, focusing on parametric
uncertainty and asymptotic tracking.

Despite the different historical roots of adaptive control and MPC, there have been
many attempts to derive algorithms that combine elements of the two, resulting in adaptive
MPC. Various forms of adaptive MPC exist in the literature that have been applied to
aerospace control problems. Chowdary et al. propose a concurrent learning algorithm
combined with constrained model predictive control [23,24]. Feedback linearisation is
used to linearise a nonlinear aircraft wing-rock model. Concurrent learning (CL) is a
modified direct model reference adaptive control (MRAC) scheme that relaxes the persistent
excitation requirement by utilising the long-term memory of past parameter estimates and
tracking errors. The CL controller is used online to identify the plant parameters. Upon
convergence, a switching rule is used to switch to an MPC control algorithm that utilises
the estimated plant parameters in its optimisation routine. Improvements to roll tracking
performance were observed when the concurrent learning converges and MPC is switched
on. If the parameters deviate substantially while MPC is switched on, the algorithm
switches back to concurrent learning to relearn the correct parameters.

Mehndiratta et al. presented a learning-based adaptive nonlinear MPC (NMPC)
implementation for a ground robot and a small unmanned aerial vehicle (UAV) with
experimental results [25]. The learning algorithm was a nonlinear moving horizon estimator
(NMHE) that estimated the state variables and plant parameters. The estimated state and
parameters were then used in the NMPC algorithm to compute the optimal control input.
For the UAV experiment, the NMHE estimated the velocities and mass of the vehicle. The
estimated velocities and mass were used in the position hold NMPC to compute the desired
vertical force and attitude angles. Experimental results showed that, with the NMHE
updating the parameter estimates, the UAV tracked the desired trajectory with less tracking
error than that in the case with NMHE off, especially in altitude.

Pereida and Schoellig presented an adaptive MPC scheme using L1 adaptive control
for the trajectory tracking of an agile quadrotor [26]. The implementation of the L1 adaptive
control method estimated the matched uncertainties of the system using an adaptive law,
but did not account for unmatched uncertainties. MPC was used to generate reference com-
mands that were augmented with the L1 adaptive control law. This resulted in improved
experimental performance in contrast to that of nonadaptive and nonpredictive methods
despite dynamic environmental disturbances.

While MPC provides many performance benefits, autonomous aerospace vehicles
impose form factor requirements on computing hardware, which has led to a drive for
efficient control algorithms. This has led to research in reducing the computational com-
plexity of MPC. Explicit MPC involves precomputing solutions to optimal control problems
offline and storing them into multidimensional look-up tables. Explicit MPC was applied
to a spacecraft control problem [27]. Another approach to reducing the computational
requirements of MPC is to reduce the number of prediction points over the finite horizon.
Algebraic MPC is a form of efficient MPC first proposed by Gibbens and Medagoda to
reduce the computational burden of conventional MPC by replacing the Taylor series
expansion of the state transition matrix with an eigendecomposition, allowing for the exact
evaluation of the state transition [28]. This eliminates the truncation error associated with
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large time steps in Taylor series approximation, thereby allowing for a reduced number of
prediction time steps without the usual penalties.

Chai et al. proposed an adaptive and efficient MPC scheme based on algebraic MPC
and L1 adaptive control, and applied the algorithm on a fly-backk booster re-entry longitu-
dinal linear time-varying (LTV) model [29]. AMPC-L1 combines the efficiency benefits of
AMPC with the performance guarantees of L1 adaptive control in the presence of uncer-
tainties. AMPC-L1 retains the nominal design performance of AMPC despite disturbances
and model mismatch, while baseline AMPC experiences degraded performance. Although
Chai et al. presented the derivation for AMPC-L1 and demonstrated the performance of
the algorithm on an LTV model, this paper extends the existing research by: (i) including
stage separation in the mission scenario, (ii) using a high-fidelity nonlinear simulation
model with both longitudinal and lateral dynamics, and (iii) describing the implementation
of AMPC-L1 on an embedded Linux computer. Specifically, the contributions of this paper
are as follows:

• Presenting an AMPC-L1 controller design for longitudinal and lateral control of a
re-entry vehicle undergoing stage separation and re-entry maneuvers.

• Evaluating AMPC-L1 against baseline AMPC and pole placement through nonlinear
simulation of booster separation and re-entry with modeling and input uncertainties.

• Presenting an overview of a software implementation of AMPC-L1.
• Demonstrating AMPC-L1 implemented for a representative embedded computer and

characterising the computational expense.

2. Fly-Back Booster Dynamic Model

The fly-back booster model is based on a dynamic aircraft model provided by Zipfel
with different vehicle-specific aerodynamics, gravimetrics, and mission profiles [30]. The
fly-back booster is intended as the first stage for a second-stage scramjet-powered acceler-
ator [31]. More details on the development of the fly-back booster model may be found
in [32,33].

The system states of a fly-back booster during stage separation and re-entry are posi-
tion (sN , sE, sD), velocity (u, v, w), attitude (φ, θ, ψ), and body rates (p, q, r). The nonlinear
system state dynamics equations are as follows: u̇

v̇
ẇ

 = −

 0 −r q
r 0 −p
−q p 0

u
v
w

+
1
m

 fa,x
fa,y
fa,z

+ Tb
l

 0
0

mg

, (1)

ṡN
ṡE
ṡD

 = (Tb
l )

T

u
v
w

, (2)

 ṗ
q̇
ṙ

 =

I11 I12 I13
I12 I22 I23
I13 I23 I33

−1(
−

 0 −r q
r 0 −p
−q p 0

I11 I12 I13
I12 I22 I23
I13 I23 I33

p
q
r

+

ma,x
ma,y
ma,z

), (3)

φ̇
θ̇
ψ̇

 =

1 sin φ tan θ cos φ tan θ
0 cos φ −sin φ
0 sin φ/cos θ cos φ/cos θ

, (4)

where I is the inertia matrix, m is the mass, g is the gravitational force, fa is the aerodynamic
forces, ma is the aerodynamic moments, and Tb

l is the transformation matrix from local-level
coordinates to body coordinates. Written in full, Tb

l is expressed as follows:
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Tb
l =

 cos ψ cos θ sin ψ cos θ −sin θ

cos ψ sin θ sin φ− sin ψ cos φ sin ψ sin θ sin φ + cos ψ cos φ cos θ sin φ

cos ψ sin θ cos φ + sin ψ sin φ sin ψ sin θ cos φ− cos ψ sin φ cos θ cos φ

. (5)

As the booster was unpowered during stage separation and re-entry, no propulsive
forces were accounted for in this model. The aerodynamic forces and moments were
defined using the following equations: fa,x

fa,y
fa,z

 = q̄S

CX
CY
CZ

, and (6)

ma,x
ma,y
ma,z

 = q̄Sb

Cl
Cm
Cn

 (7)

where CX, CY, and CZ are the aerodynamic force coefficients, and Cl , Cm, and Cn are the
aerodynamic moment coefficients computed on the basis of a combination of look-up tables
and aerodynamic derivatives based on a first-order Taylor series expansion. q̄ is dynamic
pressure, S is the reference area, and b is the reference length for the lateral coefficients. The
aerodynamic derivatives were stored in look-up tables as functions of the Mach number
(M) and angle of attack (α). The equations for the aerodynamic coefficients are as follows:

CX = CX0(M, α) + CXδe
(M, α)|δe|+

c
2V

CXq(M, α)q, (8)

CY = CY0(M, α) + CYδr
(M, α)δr + CYβ

(M, α)β +
b

2V
(CYr (M, α)r + CYp(M, α)p), (9)

CZ = CZ0(M, α) + CZδe
(M, α)δe + CZβ

(M, α)β +
c

2V
Czq(M, α)q, (10)

Cl = Cl0 (M, α) + Clβ
(M, α)β + Clδa

(M, α)δa + Clδr
(M, α)δr +

b
2V

(Clr (M)r + Clp (M)p), (11)

Cm = Cm0(M, α) + Cmδe
(M, α)δe +

c
2V

Cmq(M, α)q, (12)

Cn = Cn0(M, α) + Cnβ
(M, α)β + Cnδr

(M, α)δr +
b

2V
(Cnr (M, α)r + Cnp(M)p), (13)

where V is the vehicle velocity magnitude, c is the reference area for longitudinal coeffi-
cients, and β is the side-slip angle. The control inputs are aileron (δa), elevator (δe), and
rudder (δr).

3. Controller Design

In this section, the controllers are presented for both the longitudinal and the lateral
cases using the AMPC-L1 control algorithm, which consists of a state predictor, the L1
adaptive law, the L1 control law, and the AMPC optimal control law.

3.1. Summary of AMPC-L1 Algorithm

An overview of the AMPC-L1 architecture is shown in Figure 1. The details of the
AMPC-L1 algorithm are found in [29]. The dashed box shows the L1 adaptive control
structure that interacted with AMPC via the desired closed-loop dynamics matrix Am,
reference yr, and state x(t).

The main results from the AMPC-L1 derivation are summarised below in algorithm
form and may be interpreted as pseudocode. The full derivation and list of assumptions
associated with AMPC-L1 are not repeated here, but may be found in [29]. Algorithm 1
describes the required computation for a single update of AMPC-L1 on the k-th iteration.
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It was assumed that, prior to these computations, the system dynamics matrices were
updated on the basis of the current flight condition.

AMPC L1 Control Law State Predictor

Partial Closed-loop Plant

Adaptive Law

yr(t) Kyr(t)

Am

uad(t) x̂(t) −

x(t)

x̃(t)σ̂1(t), σ̂2(t)x(t)

Figure 1. AMPC-L1 control structure for systems with uncertainties σ̂1(t), σ̂2(t).

Algorithm 1: A single update of AMPC -L1 for the k-th iteration
Data: Reference command (yr), current state (xk), state prediction from previous

update (x̂k), unmatched state from previous update (xum,k)
Result: Optimal control input with uncertainty compensation ufull, updated state

prediction (x̂k+1), updated unmatched state (xum,k+1)
Compute AMPC optimal gain K:

Φ(δt) = S diag(eλ1(δt), . . . , eλk(δt)) S−1

G ← CA−1(Φ(δt)− I)Bm
F ← CΦ(δt)
K ← (GTQG + R)−1GTQ

Compute desired closed-loop system dynamics:
Am ← A− BmKF

Update estimated uncertainties (σ̂) on the basis of the predicted state (from the last
update):

B← [Bm Bum]
Φad(Ts) , A−1

m (eAmTs − In),
x̃k ← x̂k − xk, and
µk ← eAmTs x̃k,
σ̂k,1 ← −ImB−1Φ−1

ad (Ts)µk

σ̂k,2 ← −In−mB−1Φ−1
ad (Ts)µk

Compute control input on the basis of the estimated uncertainties:
Hm,inv ← (1/− (CA−1

m Bm))
η1 ← σ̂k,1
η2 ← σ̂k,2
η2m ← Hm,invCxum,k
uraw ← η1 + η2m − Kyr
uad ← LowPassFilter(−uraw, ∆t, ωk)
ufull = uad − KFxk

Update the unmatched state:
ẋum ← Amxum,k + Bumη2
xum,k+1 ← xum,k + ẋum × ∆t

Compute state prediction for next update x̂k+1:
˙̂xk ← Am x̂k + Bm(uad + σ̂k,1) + Bumσ̂k,2
x̂k+1 ← x̂k + ˙̂xk × ∆t
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Matrix G describes the forced response, Q is the matrix of output error weights, and
R is a matrix of control input weights. F is the free-response matrix with F ∈ R1×n, and
G ∈ R. δt is the prediction horizon, and A, Bm, and C are the state dynamics, control input,
and measurement matrices, respectively, for a linear model as formulated below:

ẋ = Ax + Bmu (14)

y = Cx (15)

State transition matrix Φ(δt) was calculated using an eigendecomposition with S that
defined a set of eigenvectors of the system λ1 to λk. K is the optimal control matrix based
on AMPC and was used to update the desired closed-loop dynamics (Am) matrix, which is
used by L1 adaptive control to predict the system response. The mismatch between the
predicted and actual states was used to calculate the uncertainties (σ̂k,1, σ̂k,2). The calculated
uncertainties were then used to compute the adaptive control input that compensated for
the uncertainties.

3.2. Longitudinal Control

While the model used for the simulation and performance comparison in this paper
was nonlinear, the longitudinal controller used the linearised angle of attack dynamics [30],
which are as follows:

ẋ(t) = A(t)x(t) + Bm(t)u(t)[
q̇(t)
α̇(t)

]
=

[
Mq(t) Mα(t)

α̇q −Nα(t)/V(t)

][
q(t)
α(t)

]
+

[
Mδe(t)
−Nδe (t)

V(t)

]
u(t) (16)

y(t) = Cx(t) =
[
0 1

][q(t)
α(t)

]
, (17)

where

Mα =
q̄S̄c
I2

Cmα , Nα =
q̄S̄
m̄

CNα , Mq =
q̄S̄c2

2I2V
Cmq , Mδe =

q̄S̄c
I2

Cmδe
,

Nδe =
q̄S̄
m̄

CNδe
.

Parameter α̇q is the pitch rate to the angle of the attack map. The linearisation of
nonlinear models for aerospace vehicles is used to obtain linear time-variant models. Thus,
system parameters are updated considering the current flight condition during each control
update. The AMPC design parameters are shown in Table 1. Q was chosen to prioritise
performance. The same tuning parameters were used for all AMPC algorithms assessed in
this paper.

Table 1. Design parameters of AMPC for longitudinal control.

Parameter Description Value

Q Weight for tracking error 0.99
R Weight for control input 0.001

δtp Prediction horizon 0.5 s

The design parameters of L1 adaptive control are shown in Table 2. The adaptive
update time step is simply the control update rate for a control scheme that adapts at every
control update. The low-pass filter cut-off frequency was selected to ensure the L1-norm
condition [34].
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Table 2. Design parameters of L1 adaptive control for longitudinal control.

Parameter Description Value

ωc Cut-off frequency of the low-pass filter 20 Hz
δtad Time step for adaptive update 0.002 s

3.3. Lateral Control

The lateral control design used for AMPC and AMPC-L1 in this study utilises a model
with combined roll and yaw dynamics with yaw rate r, side-slip angle β, roll rate p, and
roll angle φ [30]. The linear state-space model for lateral dynamics is as follows:

ẋ = Ax + Bmu (18)
ṙ
β̇
ṗ
φ̇

 =


LNr LNβ LNp 0

−1
Yβ

V 0 g
V

LLr LLβ LLp 0
0 0 1 0




r
β
p
φ

+


0 LNδr

0 Yδr /V
LLδa 0

0 0

[δa
δr

]
(19)

y = Cx =

1 0 0 0
0 1 0 0
0 0 0 1




r
β
p
φ

, (20)

where

LNβ =
q̄S̄b
I3

Cnβ
, LNr =

q̄S̄b2

2I3V
Cnr , LNp =

q̄S̄b2

2I3V
Cnp , Yβ =

q̄S̄
m̄

Cyβ
,

LLr =
q̄S̄b2

2I1V
Clr , LLp =

q̄S̄b2

2I1V
Clp , LLβ =

q̄S̄b
I1

Clβ
.

Algorithm 1 was applied generically to both longitudinal and lateral dynamics. The
design parameters for lateral control using AMPC-L1 are shown in Tables 3 and 4. The
prediction time horizon was chosen to balance the need for aggressive short- and long-term
corrections.

Table 3. Design parameters of AMPC for lateral control.

Parameter Description Value

Qφ Tracking error penalty weight for roll angle 0.99
Qβ Tracking error penalty weight for side-slip angle 0.9
Qr Tracking error penalty weight for yaw rate 0.5
Rδa Control input penalty weight for aileron 0.001
Rδr Control input penalty weight for rudder 0.001
δtp Prediction horizon 0.5 s

Table 4. Design parameters of L1 adaptive control for lateral control.

Parameter Description Value

ωc Cutoff frequency for the low pass filter 20 Hz
δtad Time step for adaptive update 0.002 s
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4. Results and Discussion

Three different control algorithms are assessed for their control performance under var-
ious simulated conditions in this section. The control algorithms were pole placement [33],
baseline AMPC, and AMPC-L1 [29].

At the start of stage separation, the booster was assumed to have an initial attitude of
φ = 90◦, θ = 0◦, and ψ = 0◦. First, the booster must undergo a stage separation maneuver
to detach itself from the launch stack quickly and safely. Then, it performs a reorientation
to an attitude of φ = 90◦. Lastly, it decelerates in a controlled manner, performing a pull-up
maneuver to further decrease its speed. In a practical scenario, the vehicle then deploys
wings for a fly-back phase, landing at the launch site. However, the final fly-back phase
was not considered in this analysis. Figure 2 shows the nominal commands assumed to
come from the guidance law for stage separation, reorientation, and descent.

0 10 20 30 40 50 60 70 80 90

0

20

40

60

80

0 10 20 30 40 50 60 70 80 90

0

2

4

6

8

Figure 2. Nominal guidance commands for a fly-back booster during re-entry.

The stage separation phase lasts from t = 0 to t = 18 seconds. This is marked by
a ramp-up of commanded α while keeping φ = 90◦. The reorientation phase involves
ramping the commanded roll to zero while keeping the α = 0. The pull-up consists of
ramping the commanded α to 7◦. For the AMPC controllers, side slip (β) and yaw rate (r)
are regulated, but only the yaw rate is regulated for the pole placement.

4.1. Nominal Case

In the nominal case, the control algorithms were assumed to have perfect knowledge
of the dynamic model with a deterministic set of guidance commands. The guidance and
control loops were updated at 500 Hz. Figures 3–6 show the control performance of the
pole placement, AMPC, and AMPC-L1 under nominal conditions.

Figure 3 shows that all controllers had similar levels of performance, with AMPC-L1
exhibiting slightly less error during the ramping up and down. This was due to the ability
of the L1 adaptations to compensate for the model mismatch arising from the nonlinearities.
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0 10 20 30 40 50 60 70 80 90 100

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 3. Angle-of-attack tracking error for nominal case.

Figure 4 shows that the baseline AMPC had the worst performance, accumulating
errors of over 20◦ during the reorientation maneuver before converging back to zero
during the pull-up maneuver. The pole placement controller resulted in steady-state error
throughout the stage separation phase. Arguably, the AMPC and pole placement controllers
may be tuned further to produce better error tracking. However, the AMPC-L1 controller,
which had the same tuning parameters as those of the baseline AMPC, could eliminate the
steady-state error and keep the tracking error well below 5◦.

0 10 20 30 40 50 60 70 80 90 100

-25

-20

-15

-10

-5

0

5

Figure 4. Roll tracking error for the nominal case.

The side-slip regulation performance is shown in Figure 5. The stage-separation and
reorientation maneuvers produced perturbations in lateral velocity, which translated into
disturbances to the side-slip angle. All controllers performed acceptably, keeping the
tracking error below 2◦.



Electronics 2023, 12, 1488 10 of 18

0 10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

1

1.5

2

Figure 5. Sideslip regulation error for the nominal case.

The yaw-rate regulation performance is shown in Figure 6. The stage-separation and
reorientation maneuvers produced perturbations in the yaw rate. All controllers performed
acceptably, keeping the tracking error below 1◦/s.

0 10 20 30 40 50 60 70 80 90 100

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 6. Yaw-rate regulation error for the nominal case.

4.2. Aerodynamic Uncertainties

Although the control algorithms performed acceptably under nominal conditions, it is
important to consider the effects of aerodynamic uncertainty on the control performance.
In reality, the controller always has imperfect knowledge of the aerodynamic parameters.
The control performance of the pole placement, AMPC, and AMPC-L1 was assessed in the
presence of an aerodynamic model mismatch. Aerodynamic errors were introduced into the
nonlinear simulation model on the basis of past research pertaining to the relative accuracy
of modern aerodynamic prediction methods for re-entry vehicles [35]. The aerodynamic
errors are shown in Table 5.
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Table 5. Aerodynamic errors injected into the simulation model [35].

Aerodynamic Parameter % Error

CL 21
CD 53
Cm −34

Cmδe
46

Cmq −66
Clβ

4.4
Cnβ

7.3
Cyβ

12.7
Clδa

5.57
Cyδa

−4.52
Cnδr

−6.9
Cyδr

17
Clp −2.85
Clr −80.4
Cnp 50.4
Cnr 23.77

The aerodynamic errors were not intended to capture the worst-case scenario; rather,
they represent a realistic case that is within the bounds of possible errors. The simulations
were run with the aerodynamic errors, and the results are shown in Figures 7–10.

Figure 7 shows that the pole placement controller exhibited large transient and steady-
state errors. The transient error occurred during stage separation and pull-up maneuvers.
Both AMPC and AMPC-L1 exhibited acceptable control performance, while AMPC-L1 had
the lowest tracking error.
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Figure 7. Angle-of-attack tracking error for aerodynamic uncertainty case.

In the roll tracking task, a large transient error of over 50◦ was present when baseline
AMPC was used, as shown in Figure 8. Compared to the results from the nominal case in
Figure 4, the pole placement and AMPC controllers produced double the maximal transient
error in the presence of aerodynamic errors. This is in contrast to AMPC-L1, which retained
the control performance of the nominal case.
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Figure 8. Roll tracking error for aerodynamic uncertainty case.

Compared to the nominal case in Figure 5, all controllers produced similar levels of
side-slip performance, as shown in Figure 9.
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Figure 9. Sideslip regulation error for aerodynamic uncertainty case.

Compared to the nominal case in Figure 6, the pole placement and AMPC-L1 con-
trollers achieved similar performance in yaw-rate regulation as shown in Figure 10. How-
ever, the performance of the baseline AMPC slightly deteriorated.
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Figure 10. Yaw rate regulation error for aerodynamic uncertainty case.

4.3. Guidance Law Uncertainties

The focus of this study was evaluating the attitude control performance of pole
placement, AMPC, and AMPC-L1. So far, the guidance law was assumed to produce a
certain sequence of α and φ commands that were sent to the attitude controllers. However,
in reality, the guidance law might produce different commands to what was originally
planned, reacting to the vehicle’s current state to fulfil a broader mission plan. For instance,
α commands may be increased or decreased in order to change the vehicle drag, thereby
changing its deceleration. The φ commands may also be increased or decreased during the
pull-up phase to allow the vehicle to track a certain heading.

The specifics of the guidance law design and requirements are outside the scope of
this study. However, the uncertainty of the reference commands tracked by the attitude
controllers may be considered. Therefore, a change in guidance commands is considered in
this section. There were no further changes to the controller design parameters (Figure 11).
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Figure 11. Modified guidance commands for a fly-back booster during re-entry.

The control performance plots are shown in Figures 12–15. The three control algo-
rithms show a similar α tracking performance. Baseline AMPC has large roll tracking error
of over 20◦. The pole placement yaw damper results in the largest error in side slip and
yaw rate. In all channels, the AMPC-L1 achieves the best control performance.
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Figure 12. Angle-of-attack tracking error for guidance uncertainty case.
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Figure 13. Roll tracking error for guidance uncertainty case.
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Figure 14. Sideslip regulation error for guidance uncertainty case.
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Figure 15. Yaw rate regulation error for guidance uncertainty case.

4.4. Computational Expense Characterisation

This section characterises the computational expense of running AMPC-L1 on an
embedded Linux computer. A hardware-in-the-loop simulation is configured to examine
the computational loads. The main goal of the study presented in this section is to establish
a set of feasible loop rates given the software, algorithm, and hardware implementation for
both AMPC and AMPC-L1. The embedded computer is Raspberry Pi 3 Model B with a 1.2G
Hz 64-bit CPU and 1 GB RAM. Modern flight computers typically have better processing
and RAM than those, rendering this a conservative test.

The hardware-in-the-loop simulation in this study used the models and controller
described in Section 3.3. The lateral dynamics with four states and two control inputs are
simulated with the AMPC and AMPC-L1 control schemes, implemented using Algorithm 1.
Two software applications are required: a dynamics simulator that runs on a native x86
computer and the flight controller application that runs on the Raspberry Pi.

The communications between the simulator and the flight controller follow a server-
client model using TCP sockets. However, the send() and recv() methods are repeated
synchronously until the end of the simulation. The simulator application:

1. Receives control input data from the flight controller application.
2. Processes the dynamics and updates the state of the vehicle.
3. Sends the state of the vehicle back to the flight controller application.

The flight controller application similarly performs the following tasks:

1. Receives the state of the vehicle from the simulator application.
2. Computes the best control inputs on the basis of vehicle state.
3. Sends the computed control input data back to the simulator application.

The x86 computer used to run the simulator application was an Intel Core i7-8550U
CPU @ 1.80 GHz with 8 GB RAM. Due to the much faster processor on the x86 computer,
any bottlenecks in computational performance may be attributed to the flight controller
application. Both applications are single-threaded.

A network was set up with Raspberry Pi and the x86 computer. The network router
was isolated from the Internet and any other network traffic in order to create a determin-
istic and fair testing environment. As such, only the two above-mentioned devices were
configured on the network.

The software toolchain used to build the simulator and flight controller applications is
presented in Table 6.
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Table 6. Toolchain for building flight controller and simulator applications.

Simulator Flight Controller

C Compiler GCC 7.5.0 arm-linux-gnueabihf-gcc 8.3.0
C++ Compiler G++ 7.5.0 arm-linux-gnueabihf-g++ 8.3.0

Runtime Optimisation -O3 -O3
Eigen3 3.3.4 3.3.4
cmake 3.14.4 3.14.4
C++ 17 17

Both applications were built on Ubuntu 20. The optimisation compiler option was set
to prioritise run-time performance at the expense of compilation time and executable size.

A Linux programme htop was used to record the CPU % usage. The CPU usage
in one simulation may be averaged to obtain a performance metric for comparing the
computational load at different loop update rates. These results are presented in Table 7.
On the basis of the results in Table 7, even at a 1 KHz loop rate, the average CPU usage of a
single core on the Raspberry Pi 3 was clearly only 39% for AMPC-L1. The L1 augmentation
increased the average CPU load by approximately 3%, less than 10% of the computational
usage due to baseline AMPC, demonstrating the suitability of AMPC-L1 as an adaptive
and efficient model predictive control algorithm for implementation on embedded systems.

Table 7. Comparison of computational load on the Raspberry Pi at various loop update rates.

Control Scheme Loop Rate (Hz) CPU %

AMPC 100 7%
AMPC-L1 100 7.5%

AMPC 200 14.5%
AMPC-L1 200 14.5%

AMPC 333 19.2%
AMPC-L1 333 20.3%

AMPC 500 22.5%
AMPC-L1 500 22.9%

AMPC 1000 36%
AMPC-L1 1000 39%

5. Conclusions

In this paper, the AMPC-L1 adaptive model predictive control algorithm was im-
plemented on a nonlinear simulation of fly-back booster stage separation and re-entry.
The performance of AMPC-L1 was evaluated against baseline AMPC and pole placement
controllers under nominal conditions, aerodynamic uncertainties, and guidance law uncer-
tainties. The controllers are synthesised using linear models for longitudinal and lateral
dynamics, which are successively linearised on the basis of the latest flight condition. In
all cases, AMPC-L1 showed superior control performance compared to baseline AMPC
and pole placement. AMPC-L1 could compensate for model mismatch due to nonlin-
earities and other sources of uncertainty to preserve the nominal performance of AMPC.
The computational load usage of AMPC-L1 was assessed and benchmarked against the
baseline AMPC. AMPC-L1 was capable of being updated up to 1 KHz on a single core of a
Raspberry Pi Model 3 B while utilising an average CPU load of 39%, which demonstrates
the suitability of AMPC-L1 for implementation on resource-constrained systems.
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