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Abstract: Task-oriented dialogue systems depend on dialogue state tracking to keep track of the
intentions of users in the course of conversations. Although recent models in dialogue state tracking
exhibit good performance, the errors in predicting the value of each slot at the current dialogue turn
of these models are easily carried over to the next turn, and unlikely to be revised in the next turn,
resulting in error propagation. In this paper, we propose a revisable state prediction for dialogue
state tracking, which constructs a two-stage slot value prediction process composed of an original
prediction and a revising prediction. The original prediction process jointly models the previous
dialogue state and dialogue context to predict the original dialogue state of the current dialogue turn.
Then, in order to avoid the errors existing in the original dialogue state continuing to the next dialogue
turn, a revising prediction process utilizes the dialogue context to revise errors, alleviating the error
propagation. Experiments are conducted on MultiWOZ 2.0, MultiWOZ 2.1, and MultiWOZ 2.4 and
results indicate that our model outperforms previous state-of-the-art works, achieving new state-
of-the-art performances with 56.35, 58.09, and 75.65% joint goal accuracy, respectively, which has a
significant improvement (2.15, 1.73, and 2.03%) over the previous best results.

Keywords: revisable state prediction; dialogue state tracking; error propagation; joint goal accuracy;
task-oriented dialogue systems

1. Introduction

Based on the great improvement of natural language human–computer interaction
technology, task-oriented dialogue systems (Google Assistant, Tmall Genie, and Apple
Siri et al.) are playing the part in ticket booking, restaurant reservations, and other prac-
tical scenarios. A classical pipelined task-oriented dialogue system involves four kernel
modules: natural language understanding (NLU), dialogue state tracking (DST), dialogue
policy learning (DPL), and natural language generation (NLG) [1–3]. DST is a critical task
aiming at keeping track of the intents of users at each conversation turn and representing
them in the forms of a group of (slot, value) pairs, i.e., dialogue state [4,5]. Additionally,
the information in the state is utilized to determine the next system actions of DPL and
NLG [3,6]. Figure 1 shows an example of dialogue ID PMUL2279 from the dataset, dialogue
states extracted from conversations are a group of (slot, value) pairs, such as (attraction-name,
corpus christi), (restaurant-area, centre), (restaurant-food, African), and so on.

Over the past few years, a great number of approaches about DST have been proposed,
making significant improvements [3,7,8]. Traditional DST methods predict the value of
every slot on the basis of a predefined ontology which is composed of all candidate (slot,
value) pairs [4,9,10]. They encoder the dialogue history or current utterance, and then
score all potential (slot, value) pairs of which the highest scoring value is the predicted
value for the slot. Based on the advantage of exploiting the previous dialogue state as
a compact representation of the previous dialogue history, some approaches model the
previous dialogue state and dialogue context jointly when predicting the current dialogue
state, achieving good performance [11,12]. Recently, approaches based on open vocabulary
have been proposed to address the problem of unseen slot values. They divide DST into

Electronics 2023, 12, 1494. https://doi.org/10.3390/electronics12061494 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12061494
https://doi.org/10.3390/electronics12061494
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12061494
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12061494?type=check_update&version=1


Electronics 2023, 12, 1494 2 of 18

two sub-tasks: state operation prediction and value generation [13–16]. The results of the
state operation prediction at each turn determine whether the state of the previous dialogue
turn should be revised or not. Though previous state-of-the-art (SOTA) DST approaches
exhibit satisfactory performance, we observed that the errors in the prediction of the value
of the slots in the current dialogue turn of these models are easily carried over to the next
turn, and unlikely to be revised in the next turn, resulting in error propagation. Actually,
these models perform a one-time slot value prediction process, lacking a double-checking
process to detect and revise the errors of the current dialogue turn. The absence of such a
revision process can result in some potential errors not being identified and revised. As
shown in Figure 1, some existing models predict the value of slot restaurant-pricerange
is none at the fourth dialogue turn, while the ground truth label is expensive. Because of
lacking a double-checking process, the wrong dialogue state is continued to the next turn,
leading to error propagation.

System User Dialogue State Tracking

Hi, what can do for you?

My friends said that I must visit corpus christi, can you 

please give me some more information about it?

I certainly can. Corpus christi is a college located in the 

center of town, on king's parade. There's a 2 pound 

entrance fee. Do you need any additional information?

Yes. What is the postcode?

Are there any african restaurants  in the centre?

The postcode is cb21rh. Do you need anything else?

I have 1 listing for bedouin would that work for you?

Is this listing in the expensive price range?

Yes, it is in the expensive price range, shall i book you 

a table?

Please book a table for 4 at 15:30 on Saturday.

Your reference number is 57kudr6y. Do you need 

anything else?

No, that is great, thanks!

{ ( attraction-name ,  corpus christi ) ;  ( restaurant-area ,  centre ) ; 

(restaurant-food, african); (restaurant-name, bedouin); (restaurant-

pricerange, expensive)}

    (restaurant-pricerange, none)

{ ( attraction-name ,  corpus christi ) ; ( restaurant-area ,  centre ) ; 

(restaurant-food, african)}

{(attraction-name, corpus christi)}

{(attraction-name, corpus christi)}

{ ( attraction-name ,  corpus christi ) ;  ( restaurant-area ,  centre ) ; 

(restaurant-food, african); (restaurant-name, bedouin); (restaurant-

pricerange, expensive); (restaurant-book day, saturday); (restaurant-

book people, 4); (restaurant-book time, 15:30)}

    (restaurant-pricerange, none)

{ ( attraction-name ,  corpus christi ) ;  ( restaurant-area ,  centre ) ; 

(restaurant-food, african); (restaurant-name, bedouin); (restaurant-

pricerange, expensive); (restaurant-book day, saturday); (restaurant-

book people, 4); (restaurant-book time, 15:30)}

    (restaurant-pricerange, none)

Figure 1. An example of dialogue state tracking. Each turn consists of a system response (grey) and a
user utterance (orange). The blue colour denotes the new state appearing at that turn. The dialogue
state tracker (green) tracks all the (slot, value) pairs until the current turn. “

⊗
” represents the incorrect

result marked with red colour which is predicted by some existing methods.

To address the above problem, we propose the revisable state prediction for dialogue
state tracking (RSP-DST), which constructs a two-stage slot value prediction process con-
sisting of an original prediction and a revising prediction. Specifically, the first stage of
RSP-DST jointly models the previous dialogue state and dialogue context to predict original
dialogue states, then the second stage leverages the dialogue context to revise the original
dialogue state. The second stage plays the role of reviser which is expected to detect and
revise the errors existing in the original dialogue state. With the help of such a two-stage
prediction process, RSP-DST is unlikely to carry erroneous dialogue states over to the next
turn, alleviating the error propagation. Figure 2 represents an example of a two-stage
dialogue state prediction process of RSP-DST. In this example, the revising prediction
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process detects the error of slot restaurant-pricerange existing in the original dialogue state
and revises it with the right value.

Slot Value

attraction-name corpus christi

restaurant-pricerange none

Original Dialogue State

Slot Value

attraction-name corpus christi

restaurant-area centre

Previous Dialogue State

Slot Value

attraction-name corpus christi

restaurant-pricerange expensive

Revised Dialogue State

Hi, what can do for you?

My friends said that I must visit corpus

christi, can you please give me some
more informationabout it?

Is this listing in the expensive price range?

Dialogue Context

Revising Prediction

Original Prediction
Dialogue Context

Dialogue Context
I have 1 listing for bedouin would 

that work for you?

Figure 2. An example of a two-stage dialogue state prediction process of RSP-DST. The user wants
to book an expensive restaurant by “Is this listing in the expensive price range”. In the two-stage
dialogue state prediction process, the mistake of slot restaurant-pricerange existing in the original
dialogue state is revised with the right value in the revising prediction process.

Comprehensive experiments are conducted on three benchmark datasets: Multi-
WOZ 2.0 [17], MultiWOZ 2.1 [18], and MultiWOZ 2.4 [19]. Results show that RSP-DST
consistently outperforms all prior works and achieves a new SOTA performance with
joint goal accuracy of 56.35, 58.09, and 75.65%, respectively, which has a significant im-
provement (1.82, 1.73, and 2.03%, respectively) on the top of the previous best model.
Additionally, we provide a series of ablation studies to demonstrate the effectiveness of the
revising prediction.

The rest organization of this paper is as follows. We introduce the research back-
ground and related work in Section 2. In Section 3, we introduce our method RSP-DST
in detail. Section 4 provides some information about experiments, including datasets,
evaluation metrics, baselines, and other implementation details during the training process.
In Section 5, we report experimental results on three benchmark datasets and analyse the
results in detail. Finally, we present our conclusions and future works in Section 6.

2. Related Work

Traditional statistical DST models combine semantic features extracted by the NLU
module or jointly learn speech understanding to predict the current dialogue states [20–24].
However, these methods tend to be highly dependent on complex domain-specific lexicons
and hand-crafted features, making them difficult to scale to new dialogue domains.

With the development of deep learning-based dialogue systems, deep neural
networks such as CNN, RNN, LSTM, GRU, and so on attract researchers to apply it in
DST [3,7–9,14,21,25–29]. The performance of these models achieves obvious improvement
over the previous statistical DST models. Owing to the success of the pre-trained language
models such as BERT [30] and GPT-2 [31] in the field of natural language processing (NLP),
recent studies in DST focus on building a new model on the basis of these pre-trained lan-
guage models and achieve good performance [10,12,13,15,32–37]. DST in those approaches
is considered to be a classification or generation problem.

Classification methods usually consist of an encoder and a classifier. The encoder
outputs the representation of the conversation context, and the classifier scores all potential
values which come from the predefined ontology. The highest scoring value is chosen
to be predicted to the slot. Based on the advantage of exploiting the previous dialogue
state as a compact representation of the previous dialogue history, some approaches model
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the previous dialogue state and dialogue context jointly when predicting the current
dialogue state, achieving good performance. SUMBT [10] applies BERT [30] and a slot-
word attention mechanism to learn the relationships between dialogue context and slots.
CHAN [32] enhances the interaction between dialogue history and slots by constructing
a hierarchical attention network. DST-picklist [33] constructs a reading comprehension
framework to match the values of categorical and non-categorical slots from ontologies.
STAR [12] extracts slot-specific information with a slot self-attention mechanism and
achieves a good performance.

Most generation methods are based on open vocabulary and do better in handling the
problem of unseen slot values and domains. They divide DST into two sub-tasks: state
operation prediction and value generation. Specifically, the state operation prediction task
plays the role of encoding dialogue context and previous dialogue state and outputting
the result of the state operation, then the value generation task predicts the value of each
slot based on the result of the state operation prediction [13–15]. TripPy [13] utilizes three
copy mechanisms to fill slots and the values of slots are obtained from the dialogue context.
TRADE [14] is made up of three modules: dialogue context encoder, slot gate, and value
generator. This method encodes utterances with GRU and predicts the value of slots from
the dialogue context with a copy mechanism. SOM-DST [15] consists of a state operation
predictor and a slot value generator. State operation predictor jointly encodes the last
two turns of conversation and the previous dialogue state with a BERT and outputs the
state operations on each slot. The slot value generator predicts the value of the slot of
which the result of state operation is UPDATE. SimpleTOD [34] formulates DST as a single
causal language model to generate system response, system action, and dialogue state.
It encodes the dialogue context with GPT-2. Seq2Seq-DU [29] is a sequence-to-sequence
approach that handles the unseen domain problem by applying schema descriptions. It
encodes utterance and schema with BERT and generates dialogue state with an LSTM
state decoder. SAF [35] constructs a self-supervised attention flow framework composed of
DRS (dialogue response selection) and DST to learn dependencies among the dialogue and
domain/slot. SPSF-DST [36] proposes a stack-propagation framework and a slot-masked
attention mechanism to enhance the performance of DST.

Moreover, advances in technologies, such as reading comprehension [38], knowledge
graph [39–42], graph attention network [11,43–46], and reinforcement learning [47,48],
have led researchers to see more potential in DST research. Some studies formulate the
DST task as a reading comprehension task and achieve a good performance [24,49,50].
DSTQA [42] formulates the DST task as a question-answering problem and learns the
correlations among (domain, slot) pairs with a dynamically evolving knowledge graph.
SST [44] is a classification method, it constructs a schema graph and then fuses information
from dialogue utterances and the schema graph with a graph attention network.

All the aforementioned DST approaches perform a one-time slot value prediction
process and are unlikely to detect and revise the errors of the current dialogue turn. Fur-
thermore, errors are easily carried over to the next turn, resulting in error propagation.
The proposed RSP-DST model constructs a two-stage dialogue state prediction process,
which can detect and revise errors existing in the current turn, alleviating the error propa-
gation problem.

3. Methods

In this section, we introduce the proposed method RSP-DST in the following aspects:
problem definition, the original dialogue state prediction, the revising dialogue state
prediction, and the training objective. Figure 3 represents the architecture of RSP-DST.
RSP-DST-base outputs the original dialogue state, removing the revising prediction process.
The symbols used in this section are listed and described in Table A1.
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Figure 3. The overview of RSP-DST. BERT_tunable indicates that we will fine-tune the parameters of
the BERT-base in the process of training. Dt denotes the current dialogue context composed of the
system response and the user utterance, and Pt−1 represents dialogue history. The input sequence
at turn t is [CLS]⊕ Pt−1 ⊕ Bt−1 ⊕ [SEP]⊕ Dt ⊕ [SEP]. BERT_fixed is utilized to encode values and
slots, freezing the parameters in the training phase.

3.1. Problem Definition

Suppose that D = {D1, D2, D3, . . . , DT} represents a dialogue with T turns where
Dt = (Rt, Ut), Rt symbolizes the system response and Ut symbolizes the user utterance at
turn t, respectively. Furthermore, S = {S1, S2, S3, . . . , SM} is a predefined slot set where M
denotes the total number of slots in all dialogue domains. Bt =

{(
Sm, Vt

m
)
| 1 ≤ m ≤ M

}
represents the dialogue states at turn t, where Sm ∈ S is the m-th slot and Vt

m is the
corresponding value of Sm. Following previous works [10,12,51], the slot Sm is made up
of the domain and slot names connected with a special token (i.e., < domain-slot >) to
include both domain and slot information. For instance, “hotel-stars” represents the slot
“stars” in the “hotel” domain rather than “stars”.

Consequently, in the task of DST, our work is to train a dialogue state tracker T :
D → Bt that makes full use of the dialogue context D to predict the dialogue state Bt as
accurately as possible at turn t [12].

3.2. Original Dialogue State Prediction
3.2.1. Dialogue Context Encoder

Following previous works [10,12,15], the pre-trained language model BERT-base [30]
is applied to encode the dialogue context to obtain semantic vector representations.

As introduced before, Dt = Rt ⊕Ut denotes the dialogue utterance at turn t, where ⊕
denotes the operation of sequence concatenation. Furthermore, Pt = D1 ⊕ D2 ⊕ . . .⊕ Dt
represents the dialogue history until t. To a certain degree, Bt−1 can be seen as a compact
representation of the dialogue history [15]. Considering this, we treat the Bt−1 as part of
the input as well in the training phase. Bt =

[
Bt

1; Bt
2; . . . ; Bt

M
]

where ; is a special token
playing the part of discriminating different dialogue states and Bt

m =
[
Sm, Vt

m
]

in which
only non-NONE slots are considered.
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Consequently, the entire input sequence of dialogue context at turn t can be repre-
sented as:

Xt = [CLS]⊕ Pt−1 ⊕ Bt−1 ⊕ [SEP]⊕ Dt ⊕ [SEP], (1)

where [CLS] is a special token and usually has a role in aggregating all token-specific
representations of the sequence, and [SEP] is an auxiliary token for separation and also
plays the part in marking the end of the sentence. Hence, feeding Xt to BERT, we have:

Ht = BERTfine-tune(Xt), (2)

where Ht ∈ R|Xt |×d, |Xt| and d denote the number of total tokens in Xt and the BERT
output dimension, respectively. Note that BERTfine-tune indicates that we will fine-tune the
parameters of the BERT-base in the process of training.

3.2.2. Slot and Value Encoder

Following previous works [10,32], the fixed BERT-base is leveraged to encode slot Sm
and its corresponding value Vt

m. Note that we will freeze the parameters of BERT-base in
the course of training which is different from the dialogue context encoder. Additionally,
[CLS] is an auxiliary special token for aggregating all token-specific representations of
the sequence. In terms of slots and their values, we adopt the aggregated representation
of the whole input sequence which is represented by the vector representation of [CLS].
As follows:

h[CLS]
sm = BERTf ixed([CLS]⊕ Sm ⊕ [SEP]), (3)

h[CLS]
Vt

m
= BERTf ixed([CLS]⊕Vt

m ⊕ [SEP]). (4)

3.2.3. Slot Attention

We employ a multi-head attention mechanism [52] to extract slot-relevant informa-
tion from the dialogue context. We treat the slot representation h[CLS]

sm as query vector.
Furthermore, the key and value vectors are represented as Ht. We have:

hsm ,t = MultiHead
(

h[CLS]
sm , Ht, Ht

)
, (5)

where hsmt ∈ Rd. Then, we concatenate the hsm ,t and h[CLS]
sm to retain the information of slot

name and transform the merged vector with a feedforward neural network (FFN) which
has two fully connected layers with a ReLU activation function in between, as follows:

h̃sm ,t = FFN
(

Concat
(

hsm ,t, h[CLS]
sm

))
, (6)

where h̃sm ,t ∈ Rd. Following this operation, we obtain the complete token-aware slot
representations H̃s,t =

[
h̃s1,t, h̃s2,t, h̃s3,t, . . . , h̃sM ,t

]
, while each slot representation in H̃s,t

does not fully share information. For this reason, we adopt a transformer encoder [52] to
learn the correlation among slots. There are L identical layers in the transformer encoder
module and each of which has two sub-layers. Specifically, the self-attention layer is the
first sub-layer, which is used to obtain interacted information, and the feedforward neural
network (FFN) is the second sub-layer. Formally, we have:

Ĥs,t = Trans f ormerEncoder
(
H̃s,t

)
, (7)

where Ĥs,t =
[
ĥs1t, ĥs2,t, ĥs3,t, . . . , ĥsM ,t

]
represents the mutual interaction information, and

ĥsm ,t means the slot-related representation of the slot Sm at turn t which is expected to be
the closest to the semantic vector representation of the true value of the slot Sm. In light
of the output of the BERT-base is normalized by layer normalization [53], we feed ĥsm ,t
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to a normalization layer preceded by a linear transformation layer. The process can be
formulated as:

ot
sm = LayerNorm(Linear(Dropout(ĥsm ,t))). (8)

3.2.4. Value Prediction

In this part, we predict the value of slot Sm according to ot
sm and the semantic vector

representation of value V′m ∈ Vm, i.e., h[CLS]
V′m

, where Vm denotes the value space of the slot

Sm. Firstly, we calculate the distance between ot
sm and h[CLS]

V′m
. After this, the prediction

of slot Sm is determined according to the distance of the candidate value, choosing the
smallest one. In accordance with [27], our distance metric is the L2-norm. In this way, the
probability distribution of the value prediction can be formulated as follows:

p
(
Vt

m | Pt−1, Dt, Bt−1, Sm
)
=

exp
(
−
∥∥∥ot

sm − h[CLS]
Vt

m

∥∥∥
2

)
∑V′m∈Vm

exp
(
−
∥∥∥ot

sm − h[CLS]
V′m

∥∥∥
2

) . (9)

Based on the value prediction probability distribution, we obtain the dialogue state
B̃t at turn t which is the original dialogue state. Then, the complete process of original
dialogue state prediction can be formulated as:

B̃t = OriginalState(Pt−1, Dt, Bt−1). (10)

3.3. Revising Dialogue State Prediction

In order to revise the potential errors in B̃t at turn t, we utilize a revising dialogue state
prediction module which takes the original dialogue state and the dialogue context as input
and obtains the revised state. The complete process of revising dialogue state prediction
process can be formulated as:

Bt = RevisedState
(

Pt−1, Dt, B̃t
)
. (11)

where Bt is the revised dialogue state, the new input sequence of the revising dialogue
state prediction module is made up of the original dialogue state and context. The revising
prediction module shares the same parameters with the original prediction module.

3.4. Training Objective

In the original state prediction module, the training objective is the negative log-
likelihood loss, we have:

Ldist_original =
M

∑
m=1
− log

(
p
(
Vt

m | Pt−1, Dt, Bt−1, Sm
))

. (12)

Similar to the original state prediction module, the loss of the revising dialogue state
prediction module is also the negative log-likelihood. Thus, we have:

Ldist_revised =
M

∑
m=1
− log

(
p
(
Vt

m | Pt−1, Dt, B̃t, Sm
))

. (13)

The total loss of model RSP-DST is to minimize the sum of the above two losses:

Ldist = Ldist_original + Ldist_revised (14)
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4. Experiments
4.1. Datasets

We assess the performance of RSP-DST on three progressive datasets: MultiWOZ 2.0 [17],
MultiWOZ 2.1 [18] and MultiWOZ 2.4 [19]. MultiWOZ 2.0 (https://www.repository.cam
.ac.uk/bitstream/handle/1810/280608/MULTIWOZ2.zip?sequence=3&isAllowed=y, ac-
cessed on 23 April 2022) is a publicly available and large-scale task-oriented dialogue
dataset in multiple domains, which contains more than 10,000 dialogues and spans seven
distinct domains. MultiWOZ 2.1 (https://www.repository.cam.ac.uk/bitstream/handle/18
10/294507/MULTIWOZ2.1.zip?sequence=1&isAllowed=y, accessed on 23 April 2022) and
MultiWOZ 2.4 (https://github.com/smartyfh/MultiWOZ2.4/blob/main/data/MULTI
WOZ2.4.zip, accessed on 12 August 2022) are revised versions of MultiWOZ 2.0. Specifically,
MultiWOZ 2.1 corrected approximately 32% of the dialogue state annotation errors in Multi-
WOZ 2.0. On the basis of MultiWOZ 2.1, MultiWOZ 2.4 kept the training set unchanged
and manually corrected dialogue state annotation errors in verification and test sets.

Following previous works [10,11,14,15,32], five domains (train, taxi, hotel, attraction,
restaurant) will be utilized in our experiments, while the other two domains (police, hospital)
will not be used because they appear infrequently in the training set and not contained
in the test and validation sets. The resulting datasets include 30 domain-slot pairs and
17 different slots in five domains. Table 1 reports the data statistics in detail. The data
pre-processing procedures we used on MultiWOZ 2.0, 2.1, and 2.4 are similar to [14].

Table 1. Data statistics of MultiWOZ 2.1. Three columns on the right summarize the total number of
dialogues in every domain.

Domain Slots Train Valid Test

Train
arriveby, leaveat, day, book people, destination,
departure 3103 484 494

Taxi arriveby, leaveat, destination, departure 1654 207 195

Hotel
area, parking, type, stars, book people, book day,
book stay, pricerange, name, internet 3381 416 394

Attraction area, type, name 2717 401 395

Restaurant
area, book people, book time, book day, name,
pricerange, food 3813 438 437

4.2. Evaluation Metric

The evaluation metric we adopt in our model is joint goal accuracy (JGA) [14]. Joint
goal accuracy is the ratio of dialogue turns of which slots have been filled with correct
values according to the ground truth. In particular, the ground truth value will be set to
none if its slot is not presented in a turn. Furthermore, note that we also need to predict all
none slots. The joint goal accuracy is 1.0 if, and only if, all slots are correctly predicted at
every turn, otherwise it is 0. As well as joint goal accuracy, we also calculate slot accuracy
and various other evaluation metrics for a more detailed and comprehensive analysis of
the RSP-DST model.

4.3. Baselines

We make a comparison with the following approaches.
TRADE: TRADE [14] is made up of an utterance encoder, a slot-gate, and a dialogue

state generator. The method generates a dialogue state from the input utilizing a copy
mechanism, handling the cross-domain phenomenon.

SOM-DST: SOM-DST [15] is an open vocabulary-based approach. The method treats
the dialogue state as an explicit fixed-sized memory and overwrites the memory selectively
at each turn.

https://www.repository.cam.ac.uk/bitstream/handle/1810/280608/MULTIWOZ2.zip?sequence=3&isAllowed=y
https://www.repository.cam.ac.uk/bitstream/handle/1810/280608/MULTIWOZ2.zip?sequence=3&isAllowed=y
https://www.repository.cam.ac.uk/bitstream/handle/1810/294507/MULTIWOZ2.1.zip?sequence=1&isAllowed=y
https://www.repository.cam.ac.uk/bitstream/handle/1810/294507/MULTIWOZ2.1.zip?sequence=1&isAllowed=y
https://github.com/smartyfh/MultiWOZ2.4/blob/main/data/MULTIWOZ2.4.zip
https://github.com/smartyfh/MultiWOZ2.4/blob/main/data/MULTIWOZ2.4.zip
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SimpleTOD: SimpleTOD [34] is an end-to-end model based on GPT-2, which generates
system responses, system actions, and dialogue states by changing sub-tasks in task-
oriented dialogue tasks into a single causal language model.

TripPy: TripPy [13] utilizes three copy mechanisms to fill slots and the values of slots
are obtained from the dialogue context.

Seq2Seq-DU: Seq2Seq-DU [29] is a sequence-to-sequence approach that handles the
unseen domain problem by applying schema descriptions.

SAF: SAF [35] constructs a self-supervised attention flow framework composed of
DRS (dialogue response selection) and DST to learn dependencies among the dialogue and
domain/slot.

SPSF-DST: SPSF-DST [36] proposes a stack-propagation framework and a slot-masked
attention mechanism to enhance the performance of DST.

CHAN: CHAN [32] proposes a hierarchical attention network to enhance the interac-
tion between dialogue history and slot. The approach also applies an adaptive objective to
alleviate the slot imbalance problem.

SST: SST [44] constructs a schema graph and then fuses information from dialogue
utterances and the schema graph with a graph attention network (GAT) [43].

DST-picklist: DST-picklist [33] constructs a reading comprehension framework to
match the values of categorical and non-categorical slots from ontologies.

STAR: STAR [12] is an ontology-based approach, which employs a slot self-attention
module to automatically learn the correlation among slots.

4.4. Implementation Details

We employ the BERT-base-uncased (https://huggingface.co/bert-base-uncased, ac-
cessed on 23 April 2022) model as encoders of RSP-DST, of which the weights of the
dialogue context encoder need to be fine-tuned and the weights of the slot names encoder
and slot values encoder are fixed. The BERT-base has 12 layers with 768 hidden units and
12 self-attention heads. For multi-head attention in our experiments, we set the head counts
to four and the hidden size as 768. The transformer encoder module has six layers (i.e.,
L). During the training process, the AdamW [54] optimizer is adopted and the warm-up
proportion is set to 0.05. We utilize different learning rates in regard to different parts of our
model. Specifically, the peak learning rates of the dialogue context encoder in RSP-DST are
set to 4× 10−5 and other parts of the model are 1× 10−4 since the dialogue context encoder
is a pre-trained BERT model which does not need to be trained from scratch. We set the
training batch size to 16 and the dropout [55] rate to 0.1. The maximum length of the input
sequence is 512. Additionally, the word dropout [56] method is employed in our approach
by randomly replacing the dialogue utterance tokens with a special token [UNK] with a
rate of 0.1. We apply the same hyperparameter settings on MultiWOZ 2.0, MultiWOZ 2.1,
and MultiWOZ 2.4. All experiments were performed on one NVIDIA Tesla V100 32G card.

5. Results and Discussion
5.1. Main Results

Table 2 shows the performance of our RSP-DST model in comparison to various
baselines. As reported in Table 2, our model RSP-DST consistently outperforms all baselines
on both joint goal accuracy and slot accuracy, achieving a new SOTA performance. RSP-
DST-base removes the revising dialogue state prediction module and achieves 54.42, 56.31,
and 74.64% joint goal accuracy, respectively. With the help of the revising prediction process,
RSP-DST achieves 56.35, 58.09 and 75.65% joint goal accuracy, respectively, with a great
improvement (1.93, 1.78, and 1.01%, respectively) on the top of RSP-DST-base. The results
of RSP-DST also have a significant improvement (2.15, 1.73 and 2.03%, respectively) on
the top of the previous best model, STAR [12]. Meanwhile, RSP-DST also achieves 97.54,
97.75 and 98.95% slot accuracy, respectively. The outstanding performance illustrates the
effectiveness of RSP-DST in dialogue state tracking tasks.

https://huggingface.co/bert-base-uncased
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Table 2. Joint goal accuracy of RSP-DST and baselines on test sets of MultiWOZ 2.0, MultiWOZ 2.1,
and MultiWOZ 2.4.

Model
Joint Goal Accuracy (%) Slot Accuracy (%)

MWZ2.0 MWZ2.1 MWZ2.4 MWZ2.0 MWZ2.1 MWZ2.4

TRADE [14] 48.62 45.60 55.05 96.92 96.55 97.62
SOM-DST [15] 51.72 53.01 66.78 - 97.15 98.38

SimpleTOD [34] 51.37 51.89 - - - -
TripPy [13] 53.51 55.18 59.62 - 97.48 97.94

Seq2Seq-DU [29] - 56.10 - - - -
SAF [35] - 51.60 - - 97.50 -

SPSF-DST [36] 54.88 54.32 - - - -
CHAN [32] 53.06 53.38 68.25 - 97.39 98.52

SST [44] 51.17 55.23 - - - -
DST-picklist [33] 54.39 53.30 - - 97.40 -

STAR [12] 54.20 † 56.36 73.62 97.33 † 97.59 98.85

RSP-DST-base * 54.42 56.31 74.64 97.44 97.62 98.87
RSP-DST 56.35 58.09 75.65 97.54 97.75 98.95

† The results reproduced using the source code and other results reported in the literatures. * RSP-DST-base
outputs original dialogue state, removing the revising prediction module.

In addition, we represent the performance of RSP-DST in the single- and multi-
domains in Figure 4. Conversation scenarios in practice usually involve multiple domains.
DST encounters the challenging phenomenon of domain migration in the multi-domain
conversation scenario. As shown in Figure 1, the conversation involves two domains (attrac-
tion, restaurant). In Figure 4, we compare our model RSP-DST with STAR [12], TripPy [13],
and SOM-DST [15]. STAR is a classification approach and is the previous best baseline
model. TripPy and SOM-DST are generation approaches based on open vocabulary. TripPy
utilizes three copy mechanisms to fill slots and the slot values are obtained from the dia-
logue context. SOM-DST treats the dialogue state as an explicit fixed-sized memory and
overwrites the memory selectively at each turn. Both of them achieve great improvements
in DST, and they are often used as baseline models for comparison in various performance
experiments in recent DST studies. From Figure 4, it is obvious that the RSP-DST model
achieves better performance in comparison to STAR, TripPy, and SOM-DST, in single- and
multi-domain conversation scenarios. RSP-DST-base achieves 68.28% in the single-domain
and 54.32% in the multi-domain. Furthermore, with the help of the revising prediction
process, the joint goal accuracy reaches 70.66% in the single-domain and 55.99% in the
multi-domain, with improvements of 2.38% and 1.67%, respectively.

5.2. Domain-Specific Joint Goal Accuracy and Per-Slot Accuracy

In this section, we further explore the performance of RSP-DST in domain-specific and
each slot. We provide the results of domain-specific accuracy in Figure 5 where we compare
RSP-DST with STAR [12], TripPy [13], and SOM-DST [15]. The accuracy of domain-specific
is measured on a subset of the predicted dialogue state containing all slots belonging to
the specific domain. Furthermore, for each domain, only the dialogues that are domain-
active are considered. From Figure 5, it is clear that RSP-DST consistently outperforms the
comparison approaches, achieving a joint goal accuracy 77.11% in the attraction domain,
60.36% in the hotel domain, 74.07% in the restaurant domain, 67.35% in the taxi domain, and
80.47% in the train domain.
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Figure 4. Joint goal accuracy of the single- and multi-domain on the test set of MultiWOZ 2.1.
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Figure 5. Domain-specific joint goal accuracy on the test set of MultiWOZ 2.1.

Figure 6 represents the per-slot accuracy of RSP-DST and TripPy [13]. The dialogues of
the domain to which the slot belongs are used to calculate the per-slot accuracy. As shown
in Figure 6, RSP-DST outperforms TripPy [13] in most slots, while we notice that RSP-DST
is inferior to TripPy [13] for the “attraction-name”, “hotel-name”, and “restaurant-name” slots
which are associated with entity names. In terms of these slots, their values in practical
applications are so multifarious that they cannot be completely predefined. In addition,
these values are usually directly informed by the user during the conversation. TripPy [13]
is an open vocabulary-based method that generates values of slots from the dialogue
context with three copy mechanisms, which is likely to be more efficient to predict these
values. This observation encourages us to enhance the extraction of entity names with the
copy mechanism in our future work.
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Figure 6. Per-slot accuracy on the test set of MultiWOZ 2.1. In Figure, the “attraction” domain is
represented as “att.” for short and the “restaurant” domain is represented as “res.”.

5.3. Each Turn Joint Goal Accuracy

Usually, the conversation with a longer turn is likely to be more difficult to correctly
predict the dialogue state of every turn. The reason is that the longer the turn, the more
complex the conversation, and the more dialogue history needs to be taken into account
when predicting the dialogue state. Furthermore, the errors of the dialogue state at the
current turn are more likely to be carried over to the next turn. Figure 7 shows the
performance of RSP-DST at different conversation depths. The histogram in Figure 7
represents the proportion of conversations of different depths in MultiWOZ 2.1 with more
than 60% of the dialogues having a conversation depth of six or more turns. It is obvious
that the joint goal accuracy decreases as the number of dialogue turns increase. Additionally,
we observe that the accuracy of RSP-DST achieves great improvement based on the RSP-
DST-base at each turn due to the revising prediction process, effectively alleviating error
propagation. The excellent performance on different dialogue turns further illustrates the
effectiveness of our approach.
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Figure 7. Joint goal accuracy at each turn on the test set of MultiWOZ 2.1.
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5.4. Effect of Dialogue History and Previous Dialogue State

We design four types of input sequences: only current turn dialogue (Dt), previous
dialogue state and current turn (Dt, Bt−1), history and current turn dialogue (Dt, Pt−1),
previous dialogue state and context (composed of dialogue history and current turn) (Dt,
Pt−1, Bt−1). The results are provided in Table 3. It can be found that the structures with
previous dialogue states outperform the other structures. Furthermore, simultaneously
taking the previous dialogue state, history, and current turn as part of the input sequence
can lead to a better result. In addition, if only the current turn dialogue is used, the
performance of RSP-DST drops significantly, with only 18.96% joint goal accuracy. Figure 8
shows the training loss of different structures in the training set of MultiWOZ 2.1. By
simultaneously using the previous dialogue state, history and current turn, the best loss
can be obtained in a short time, confirming that we have made the best input sequence
composed of the previous dialogue state, history and current turn.

Table 3. Different structures’ joint goal accuracy on the test set of MultiWOZ 2.1.

Structure Joint Goal Accuracy(%) Slot Accuracy(%)

(Bt|Dt) 18.96 86.33
(Bt|Dt, Bt−1) 56.43 97.63
(Bt|Dt, Pt−1) 55.85 96.68
(Bt|Dt, Pt−1, Bt−1) 58.09 97.75
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Figure 8. Train loss of different structures on the training set of MultiWOZ 2.1.

5.5. Error Analysis

Finally, we further explore the error rate of each slot. Figure 9 shows the results of
RSP-DST-base and RSP-DST on the test set of MultiWOZ 2.1. From Figure 9, we notice
that the error rates of most slots significantly reduce due to the revising prediction process,
which further demonstrates the effectiveness of our approach. We also observe that error
rates of some number-related slots such as “hotel-book stay” in RSP-DST are higher than RSP-
DST-base. This is probably because the values of these slots are confusing. In addition, we
find that error rates of some place-related slots such as “attraction-name” are at a high level,
though error rates have reduced with the help of the revising prediction process. Values of
these slots are multifarious and some of them never appear in the training set. In terms
of unseen values, adopting an open vocabulary-based method would be efficient. This
observation encourages us to enhance the revising prediction process with open vocabulary
in our future work.
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Figure 9. The error rate of every slot on the test set of MultiWOZ 2.1.

5.6. Visualization

The results in Table 2 show that the revising prediction achieves measurable improve-
ments (1.93, 1.78 and 1.01%, respectively, in joint goal accuracy) over the original prediction.
To further demonstrate the effectiveness of the revising prediction, Figure 10 visualizes
the prediction process at turn four on an example dialogue ID PMUL2279 (Figure 1) from
MultiWOZ 2.1. In this example, dialogue involves two domains (attraction and restaurant),
slots restaurant-name and restaurant-pricerange are new at turn four by “System: I have 1
listing for bedouin would that work for you? User: Is this listing in the expensive price
range?”. The ground truth labels of restaurant-name and restaurant-pricerange are bedouin and
expensive, respectively.

(a) Original Prediction (b) Revising Prediction

Figure 10. Visualization of the (a) original prediction and (b) revising prediction at turn four on
an example of dialogue ID PMUL2279 (Figure 1) from MultiWOZ 2.1. Slots restaurant-name and
restaurant-pricerange are new at turn turn, and the ground truth labels of restaurant-name and restaurant-
pricerange are bedouin and expensive, respectively. In both figures, the ordinate is the slot name, the
abscissa is the input sequence, and “res” represents “restaurant”. Due to space limitations, the ordinate
and abscissa represent only a fraction of the entire data.

In the original prediction process, the slot values of attraction-name, restaurant-area, and
restaurant-food are obtained from the previous dialogue state. However, for restaurant-name
and restaurant-pricerange, the model pays little attention to their values in the dialogue
context at turn four, indicating that the model thinks that the dialogue context has nothing
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to do with the slots restaurant-name and restaurant-pricerange and then predicts their values
as none. In addition, we find that the model pays more attention to the previous dialogue
state for hotel-related slots which are never mentioned in the dialogue context. In the
revising prediction process, RSP-DST jointly models the original dialogue state and context
in order to detect and revise errors existing in the original prediction process. Consequently,
slots restaurant-name and restaurant-pricerange assign high attention weights to their values
in the dialogue context and hotel-related slots which are irrelevant to this dialogue and
successfully reduce the focus on the dialogue state. This result demonstrates that the
revising prediction process can make use of the original dialogue state and context, which
can be considered as a reference, to revise errors in the original dialogue state.

6. Conclusions

In this paper, we propose a novel DST model RSP-DST, which constructs a two-
stage slot value prediction process composed of an original and a revising prediction. In
the original prediction process, RSP-DST jointly models the previous dialogue state and
context to predict the original dialogue state of the current conversation turn. Then, the
revising prediction process utilizes the dialogue context to revise errors existing in the
original dialogue state to avoid the errors carried over to the next turn, alleviating error
propagation. Comprehensive experiments were conducted on MultiWOZ 2.0, MultiWOZ
2.1, and MultiWOZ 2.4 and the results indicate that RSP-DST outperforms previous SOTA
works and achieves a new SOTA performance. In our future work, we intend to enhance
the extraction of entity names with the copy mechanism based on open vocabulary and
explore a novel generative method to improve the performance of DST with knowledge
graphs in the open domain.
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Appendix A. Description of Symbols

Table A1. Description of symbols in this paper.

Symbol Description

D A set of dialogues with T turns
Dt A dialogue at turn t consisting of system response and user utterance
Rt System response at turn t
Ut User utterance at turn t
Pt−1 The dialogue history of turn t

https://www.repository.cam.ac.uk/bitstream/handle/1810/280608/MULTIWOZ2.zip?sequence=3&isAllowed=y
https://www.repository.cam.ac.uk/bitstream/handle/1810/280608/MULTIWOZ2.zip?sequence=3&isAllowed=y
https://www.repository.cam.ac.uk/bitstream/handle/1810/294507/MULTIWOZ2.1.zip?sequence=1&isAllowed=y
https://www.repository.cam.ac.uk/bitstream/handle/1810/294507/MULTIWOZ2.1.zip?sequence=1&isAllowed=y
https://github.com/smartyfh/MultiWOZ2.4/blob/main/data/MULTIWOZ2.4.zip
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Table A1. Cont.

Symbol Description

S A set of M predefined slots
Sm The m-th slot in S
Vt

m The corresponding value of slot Sm at turn t
Bt The dialogue state at turn t consisting of a set of (slot, value) pairs
Xt The input sequence of dialogue context at turn t
Ht The output of BERTf inetune, and it is the matrix form of all tokens’ representations in Xt

h[CLS]
sm The output of BERTf ixed, and it is the is vector representation of slot Sm

hsm ,t The slot attention vector of slot Sm at turn t
h̃sm ,t The token-aware slot vector representation of slot Sm at turn t
H̃s,t The matrix form of all slots’ vector representations at turn t
ĥsm ,t The slot-related representation of slot Sm at turn t
Ĥs,t The matrix form of all slot-related representations at turn t
ot

sm
The final semantic vector representation of slot Sm at turn t
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