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Abstract: In recent times, there has been a swift advancement in the field of cryptocurrency. The
advent of cryptocurrency has provided us with convenience and prosperity, but has also given
rise to certain illicit and unlawful activities. Unlike classical currency, cryptocurrency conceals the
activities of criminals and exposes their behavioral patterns, allowing us to determine whether
present cryptocurrency transactions are legitimate by analyzing their behavioral patterns. There are
two issues to consider when determining whether cryptocurrency transactions are legitimate. One is
that most cryptocurrency transactions comply with laws and regulations, but only a small portion
of them are used for illegal activities, which is related to the sample imbalance problem. The other
issue concerns the excessive volume of data, and there are some unknown illegal transactions, so the
data set contains an abundance of unlabeled data. As a result, it is critical to accurately distinguish
between which transactions among the plethora of cryptocurrency transactions are legitimate and
which are illegal. This presents quite a difficult challenge. Consequently, this paper combines mutual
information and self-supervised learning to create a self-supervised model on the basis of mutual
information that is used to improve the massive amount of untagged data that exist in the data set.
Simultaneously, by merging the conventional cross-entropy loss function with mutual information, a
novel loss function is created. It is employed to address the issue of sample imbalance in data sets. The
F1-Score results obtained from our experimentation demonstrate that the novel loss function in the
GCN method improves the performance of cryptocurrency illegal behavior detection by four points
compared with the traditional loss function of cross-entropy; use of the self-supervised network that
relies on mutual information improves the performance by three points compared with the original
GCN method; using both together improves the performance by six points.

Keywords: cryptocurrency; mutual information; loss function; self-supervision; GCN

1. Introduction

People became increasingly interested in cryptocurrency on 16 February 2020, as
Bitcoin broke through the USD 50,000 mark.Bitcoin is one of the most popular cryptocur-
rencies. Cryptocurrency is mainly characterized by its decentralized nature, as it facilitates
peer-to-peer transmission for transactions. Unlike classic currency, cryptocurrency is issued
by a proprietary algorithm rather than a specific organization. The cryptocurrency is then
created through a lengthy and never-ending calculation. The cryptocurrency records and
confirms all transaction activities via a distributed database composed of nodes across
the entire peer-to-peer network, and employs cryptographic techniques to guarantee the
security of every stage [1] in the currency circulation process. In general, cryptocurrency
serves as a decentralized distribution system for currency and a network for currency circu-
lation and settlement. It not only addresses the issue of excessive issuance of conventional
credit currency, while enables inexpensive and nearly instantaneous currency settlement.
Cryptographic currency has the characteristics of anonymity, decentralization, strong cross-
border circulation, difficult supervision, and opaque transaction information, which brings

Electronics 2023, 12, 1542. https://doi.org/10.3390/electronics12071542 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12071542
https://doi.org/10.3390/electronics12071542
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0144-4589
https://orcid.org/0000-0002-5013-7422
https://orcid.org/0000-0002-1458-8744
https://doi.org/10.3390/electronics12071542
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12071542?type=check_update&version=1


Electronics 2023, 12, 1542 2 of 15

convenience but also many problems, such as money laundering, illegal transactions in
secret networks, and online extortion. The emergence of cryptocurrency provides a natural
umbrella for criminals, and criminals adore it. The emergence of cryptocurrency provides
a natural umbrella for criminals, and criminals adore it. Furthermore, its value is rising
precisely because it provides a safe and dependable trading method for criminals [2]. For
example, when the once-famous online black market “Silk Road” was shut down, the
price of Bitcoin fell precipitously. Cryptocurrency transactions are linked to one another.
In recent years, graph neural networks (GNNs) get increasingly popular in the realm of
deep learning, exhibiting impressive outcomes in the processing of graph structures. In
graph neural networks, there are two common methods. One such type is the spatial-based
graph convolutional network, which utilizes data from neighboring nodes to carry out
graph convolutions. The other is a spectrum-based graph convolution network. As this
methodology regards graph convolution as a mechanism for eliminating noise from an
image signal, this paper regards graph convolutional network (GCN) as well as graph
attention network (GAT) as the foundational models for monitoring illegal cryptocurrency
transactions [3–5]. The number of transactions in the cryptocurrency trading network is
extremely high, reaching tens of thousands per minute. It is extremely difficult to distin-
guish between legal and illegal addresses in these transactions [6,7]. Consequently, the
training data comprises a significant volume of untagged data. Furthermore, the detection
of cryptocurrency is an abnormal detection. Most cryptocurrency holders use it legally,
but also a minority engaging in illicit transactions such as money laundering or extortion.
Consequently, it is challenging to precisely classify a little quantity of unlawful transactions
within an extensive array of cryptocurrency transactions. This is a common data imbalance
issue. To tackle these problem, this article suggests two potential solutions. The first solu-
tion involves implementing a self-supervised approach grounded in mutual information
to address the issue of a vast quantity of untagged data in the training dataset. Previous
studies usually use classical methods to try to solve the second problem, including weight
adjustments for legal and illegal usage categories and the replacement of the original loss
function with Focal loss [8], and so on. To overcome the challenge posed by data imbalance,
this study explores a loss function that relies on mutual information.

1. Aiming at a large amount of unlabeled data in the training data, a self-supervised
method is used to alleviate it.

2. Data imbalance problem is addressed through application of the novel loss function
by considering mutual information.

3. Experiment is conducted on real data sets.

The transaction record data type of cryptocurrency enables it to be modeled through
the data structure of the graph. As a new method to process graph structure data, graph
neural network is used in this paper. We verify the validity of our loss function and other
loss functions through the model constructed by the graph neural network. At the same
time, self-monitoring method is used to alleviate the imbalance between labeled data and
unlabeled data. The experimental results verify the validity of our model.

With rapid development in the graph neural network, which provides better data
feature extraction and analysis for cryptocurrency trading, this paper studies this method
with two problems existing in the field of illegal transactions detecting in cryptocurrency.
The paper is divided into five sections. The first chapter provides an in-depth investi-
gation on the illegal behavior detection of cryptocurrency based on mutual info-graphic
neural network from the aspects of background and significance. In Section 2, we review
existing research methods for cryptocurrency violation detection, self-supervision, and
data imbalance oriented improvements. In Section 3, we introduce the cryptocurrencies
illegal detection using a novel loss function considering mutual information prior and the
cryptocurrencies illegal detection based on mutual information self-supervised module
learning. In Section 4, experiments are conducted on the cryptocurrency data sets and
the superiority of the proposed model is verified. Section 5 summarizes and provides
concluding remarks.
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2. Related Work

The detection of cryptocurrency violations is critical to maintaining network financial
security, controlling network financial chaos, and avoiding network financial risks [9–12].
At the moment, the detection of cryptocurrency violations is involved in a variety of fields,
including finance, economics, law, and even politics. The detection of cryptocurrency
violations has numerous applications and significant research significance in both the
financial and scientific and technological fields. However, the issue of severe data imbalance
in illicit cryptocurrency transactions persists, and the primary objective of researchers is
to devise effective strategies to mitigate the challenge of data imbalance. Following that,
this paper will provide a brief overview of existing research on cryptocurrency violations
detection, self-supervised of graphs, and Enhancing loss functions has emerged as a
promising approach to tackle the problem of data unbalance.

2.1. Detection in Cryptocurrency Violation

Akcora C [13] proposed a solution based on topological data analysis. The bitcoin net
was divided into day scaled windows, and the features such as income and neighbor were
extracted for each address. This approach is designed to identify new addresses associated
with established ransomware families and predict the emergence of addresses linked to
unknown ransomware families. The new tda-based tool significantly improves ransomware
detection accuracy. Chen w et al. [14] used a model to address the class imbalance issue in
phishing fraud identification, which involves a cascade feature extraction technique relied
on transaction graph as well as the double sampling integrated method using lightGBM.
Its goal is to improve whole blockchain [15] ecosystem. Additionally, provide user of early
phishing fraud warning. Weber et al. [16] proposed several methods for authenticating
cryptocurrency transactions, particularly for Bitcoin, to combat criminal activity. These
efforts aim to improve human analysis and explanation capabilities while accelerate the
global financial system more secure and reliable. Although neural networks were not tested
in this research, their structure is suitable for modeling complex nonlinear data.

2.2. Graph Self-Supervised

Xiao liu [17] and colleagues summarized four major kinds of self-supervised methods
based on production, the last in which is the hybrid of the first three methods, and the
third, ae method, should be used more frequently in the field of graph learning. The auto-
encoder model is similar to the principal component analysis method in that it maps the
original feature into new dimensions then back to initial dimensions. This operation, like
the principal component analysis method, must ensure that the mapped target retains some
properties (nodes with high similarity should still have high similarity after mapping),
while also reducing noise. Kaveh Hassani [18] put forward a technique for self-supervised,
which aims to acquire nodes-hierarchy and graph-hierarchy expression through contrast
configurable view in the graph. In contrast to visual representation learning, this paper
contends that generating views quantity to exceed two or comparing multi-level coding
will not enhance performance. Excellent performance can be obtained through comparing
first order neighbor coding as well as graph diffusion. In the field of graph neural networks,
Jie Zhong Qiu [19] developed a pre-training framework called graph comparison coding
(GCC) as a self-supervised approach to learning representations of nodes and graphs by
analyzing and capturing the underlying structural similarities across multiple networks. By
using comparative learning, the graph neural network can learn intrinsic and transferable
structural representations, with GCC’s pre-training task specifically designed to distinguish
subgraph instances within and between networks. Experimental results demonstrate that
GCC pre-trained on various data sets could obtain excellent or superior performance for its
particular tasks compared to training from scratch.
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2.3. Improvement for Data Imbalance Problem

Cao k et al. [20] proposed a theoretically sound marginal ldam loss of label distribution
that seeks to minimize the generalization boundary based on the edge. The proposed
approach involves using a new loss function in place of the cross-entropy target when
train the model. This loss function could be used with existing kind imbalance training
polices such as re-weighting as well as re-sampling. Additionally, a novelty training policy
is proposed where re-weighting is deferred until the initial stage. This enable the model
to acquire the original expressions without the added complexity of re-weighting or re-
sampling. Buda m et al. [21] conducted a systematic study on how sample imbalance
affects model ability for classification assignments on three general datasets of different
scales, namely MNIST, CIFAR-10, and ImageNet. They also explored various ways to take
care of sample imbalance problem, including oversampling, downsampling, two-stage
training, as well as threshold-based methods. The sample imbalance was discovered. At
the moment, the mainstream method is primarily over-sampling; however, it is not always
the case that over-sampling results in over-fitting for general networks. Lin t y et al. [8]
introduced a loss function called focal loss, which was developed to address the issue of
category imbalance and improve the performance of one-stage methods in comparison
to two-stage methods. Focal loss operates by incorporating a modulating factor into the
cross-entropy loss function that focuses on hard examples while reducing the weight of easy
negatives. This model considering mutual information prior has significant implications
for cryptocurrency illegal behavior detection, as it effectively addresses the serious sample
imbalance Bitcoin, leading to improved precision as well as recall rates for illegal category.

The illegal detection of cryptocurrency is an anomaly detection [22] because of the
data imbalance and large amount of unlabeled data. Existing studies usually use classical
methods to solve the problem of data imbalance, such as changing legitimate weights as
well as illegal cryptocurrency categories, or using more effective Focal loss fuction, etc.
Instead, this article will consider using a loss function by considering mutual information
solving data imbalance problem. At the same time, different from the existing work based
on graph self-supervised learning, this paper uses the self-supervised method based on
mutual information in graph neural network to address the issue of an abundance of
unlabeled data in training dataset.

3. Method
3.1. Question Raised

The task of identifying illegal cryptocurrency transactions can be approached as a
standard machine learning problem by treating it as a binary classification issue. This means
the transaction could be classified as legal or illegal based on the information available to
an unknown node.

In this paper, the problem is formally defined as:
Input: P ∈ R|J|∗K ,where |J| refers to node number and K refers to feature dimension.

Output: O ∈ {0, 1}. Where 0 is the legal class and 1 is the illegitimate class.
To overcome the difficulties posed by lager amount of unknown nodes as well as

severe data imbalance within legal and illegal categories, this study proposes using mutual
information as the prior loss function through a self-supervised model.

3.2. Monitoring Illegal Transactions of Cryptocurrency Relied on GNN

The graph structure on cryptocurrency transactions is commonly modeled using graph
structures, and graph neural network (GNN), which gain popularity in the field of deep
learning, have proven effective in processing such structures. Therefore, in this study, the
graph convolutional network (GCN), as the fundamental model of GNN, is considered as a
model for monitoring illegal cryptocurrency transactions.



Electronics 2023, 12, 1542 5 of 15

Graph Convolution Network

The GCN is a multi-layer graph convolution algorithm that, like the cognitive algo-
rithm, takes spectral convolution to gather neighbor information. The cryptocurrency
transaction graph from the data set is assumed to be G = (X, Y), where X refers to node
characteristics as well as Y refers to edge characteristics in the graph. Then, the inputs
of each layer in the GCN are node characteristic matrix M as well as adjacency matrix N,
while the output is matrix M updated by the weight matrix W. The adjacency matrix N
represents the flow between two cryptocurrency transactions. A value of 1 in the matrix
means there is a connection between the two transactions, and a value of 0 means there is no
connection. H and W may differ at each level, but the adjacency matrix N remains constant.
The mathematical formula for the graph convolution network is defined in Equation (1):

M(l+1) = σ
(

D̃−
1
2 ÑD̃−

1
2 M(l)W(l)

)
(1)

where l represents the layer number, and σ refers to Relu function. The input characteristic
matrix adopts the characteristics of graph nodes, so M(0) = P. Ñ Represent adjacency
matrix plus self-linking to represent degree matrix, and the Formula (2) is, and the specific
formula is: D̃ÑD̃

Ñ = N + I, D̃ = diag

(
∑

j
Ñij

)
(2)

Hypothetically, a GCN is used for node classification, setting up a graph convolution l
layer with ReLU as the activation function and a softmax output as the final output layer.
The node’s features M(0) and adjacency matrix A are first input. Convolution through
layer l graph and finally output M(l) through softmax. The M(l) consists of the predicted
probabilities. Each layer of the graph convolution varies from its feedforward counterpart
solely by incorporating the product of the preceding N̂. The layer could be perceived as a
collection of transformed embeddings of neighboring nodes. The spectral filter drives the
layer and is obtained by applying a linear function to the Laplacian matrix. The weight
to be optimized is W(l). The 2-layer graph convolution network (GCN) is mathematically
formulated in Equation (3).

M(2) = softmax
(

N̂ · ReLU
(

N̂PW(0)
)
·W(1)

)
(3)

3.3. Self-Supervised Learning

Yann lecun said in their speech, “Analogously speaking, self-supervised learning forms
the major portion of the cake in the field of artificial intelligence, while supervised learning
acts as the icing on top. Reinforcement learning (RL) can be considered as the cherry
on the cake.” Although it cannot be said that what he said is completely correct, it can
also show that Self-supervised learning has become increasingly important in artificial
intelligence [23,24]. Self-supervised refers to the conversion of unsupervised machine
learning problems to supervised machine learning problems, and then deal with it by using
the supervised learning method. Generally speaking, pseudo-labels are constructed by using
the characteristics and attributes of data sets to replace the labels set by human beings.

3.3.1. Mutual Information

Self-supervised learning extracts useful information from large-scale unlabeled data
sets using a predefined auxiliary task, then creates its own labels using this information,
feeds it into a neural network for training, and learns valuable information. Mon et aldim.’s
theory can determine whether the learned information is valuable. The theory holds that
the reconstruction error is small, which cannot account for the good learned features.
Good features should be the samples’ most distinct and specific information, and mutual
information should be used. Mutual information is the statistical metric which quantifies
the amount of dependence or correlation between two random variables, i.e., the degree
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to which the uncertainty of O is reduced after a given P. If P and O have no relationship,
value of mutual information is zero, and if the given random variable P could fully remove
the nondeterminacy of another random variable O, and the value of mutual information
between P and O is equal to the maximum entropy value in P.

Formula (4) provides the mathematical expression for the entropy of a discrete
random variable.

S(A) = −
n

∑
i=1

p(ai) logb(p(ai)) (4)

In which event A has n states, I represents the state number, as well as base b is usually
takes 2, and can also be set to 10 or e. For a set of random variables (a, v), the joint entropy
is defined similarly to that of a single discrete random variable S(A; V). Equation (10)
provides formula for the joint entropy.

S(A; V) = − ∑
v∈V

∑
a∈A

p(a, v) log(p(a, v)) (5)

where, the joint probability distribution function of two random variables A and V is
denoted as p(a, v), and the marginal probability distribution functions of A and V are
denoted as p(a) and p(v). Equation (11) provides the equation for mutual information:

G(A; V) = S(A) + S(V)− S(A, V) (6)

where S(A),S(V),S(A, V) is greater than 0 and G(A; V) must also be greater than 0.
By introducing the Formula (10) into the Formula (11), it can be obtained

G(A; V) = ∑
v∈V

∑
a∈E

p(a, v) log
p(a, v)

p(a)p(v)

= ∑
v∈V

∑
a∈A

p(v | a)p(a) log
p(v | a)

p(v)

(7)

With Equation (12) it can be observed that mutual information value needs to max and
p(v|a)
p(v) will also be as large as possible, which means that p(v) will be smaller than p(v | a).

The variable e takes for the input to the neural network, while v can be considered as the
output, i.e., the learned features.

It can be stated that for each input e, the network is capable of identifying the unique
feature v that corresponds to that input. Therefore we can also discriminate the original
sample well by analyzing and learning only the learned feature v.

Mutual information quantifies the amount of information that input and output share,
and if a model can directly learn to maximize mutual information, it can acquire more
essential knowledge than just fitting conditional probability. Since mutual information is a
measure that exposes the fundamental correlation between the input and output.

3.3.2. Maximize Mutual Information

Formula (8) can be obtained by changing the formula of mutual information.

G(A; V) = KL(p(a, v)‖p(a)p(v)) (8)

Mutual information could be refered to KL divergence of the product of joint distri-
bution of variables a, v and their edge distribution. In other words, maximizing mutual
information is to maximize the distance of the product of joint distribution and edge distri-
bution. However, there is no upper bound for KL divergence in theory, so Equation (14)
converts KL divergence into JS divergence.

JS(R, T) =
1
2

KL
(

R‖R + T
2

)
+

1
2

KL
(

T‖R + T
2

)
(9)
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The upper bound of js divergence is log2/2, at this time, we change the problem of
maximizing mutual information into maximizing js divergence.

It is very difficult to directly calculate the divergence of two probability distributions
p and q, because generally speaking, we do not have a mathematical formula or expression
that can describe or represent the two probability distributions r and t, and all we have
is the samples obtained from the two distributions. Equation (15) is a generalized form
of divergence.

D f (R‖T) =
∫

r(A) f
(

r(A)

t(A)

)
dE (10)

Sebastian nowozin et al. [25] proposed a method of estimating various kinds of
divergence by using GAN, which is called f-GAN. By the approach suggested by Sebastian
nowozin et al., the divergence is estimated as Formula (11).

D f (R‖T) = max
U

(
Ea∼p(a)[U(a)]

−Ee∼t(a)[c(U(a))]
) (11)

where c denotes the conjugate of the function f , and the function U(a) is implementable
through a neural network. Equation (11) represents the sampling of two distributions.
By calculating the expectation of U(a) and c(U(a)), optimising U and maximising the
discrepancy between U(a) and c(U(a)), the final result is the estimate of the scatter.

Equation (12) is the estimation formula of js divergence with constant term removed:

JS(R, T) = max
D

(
Ea∼r(a)[log σ(L(a))]

+Ea∼t(a)[log(1− σ(L(a)))]
) (12)

Equation (13) is the objective function of maximizing mutual information:

JS(r(a, v), r(a)r(v)) =
maxL

(
E(a,v)∼r(a,v)[log σ(L(a, v))]+

Eã∼r(a),ṽ∼r(v)[log(1− σ(L(ã, ṽ)))]
)) (13)

where, σ(L(a, v)) is the discriminant network, a and its corresponding v are the positive
sample pairs, a and the randomly selected v are the negative sample pairs, and finally the
likelihood function is maximized for them.

3.3.3. Maximizing Mutual Information of Graphs

Finally, maximize mutual information between local and global features because, in
general, global features are better suited for reconstruction while local features are better
suited for classification.

Each node in the graph contains rich information about nodes. The information
associated with each node is fed into the GCN, and the information of the surrounding
nodes is integrated together as~r.~r is regarded as the local feature of the node.

Global features~c are obtained by averaging all local features in the current graph.
In order to obtain suitable negative samples, we tried several construction methods.

The first one is to change the order of local features without changing the global features.
The second one is to replace the local features of the current graph with those of other
graphs. The third one is to replace the global features of the current graph with those
of other graphs. The fourth one is to replace the local features and global features of the
current graph with those of other graphs. Through experiments, it is found that only the
first and third ones converge.

Using a binary classifier to determine positive and negative, positive samples are local
features and global features of the current graph, and negative samples are composed of
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both local features that alter the arrangement of the current graph, as well as global features
of the current graph. The positive sample pair consists of (~r,~c), whereas the negative
sample pair consists of (~r,~c).

Finally, the loss function of the whole self-supervised part is shown in Equation (14).

B =
1

W + V

(
W

∑
i=1

E(A,N)

[
log D

(−→ri ,~c
)]
+

W

∑
j=1

E(Ã,Ñ)

[
log D

(−→̃
r j,~c

)]) (14)

The equation involves several variables, including D which represents the discrimina-
tor, (A, N) which is the feature matrix and adjacency matrix of positive samples, (Ã, Ñ)
which is the feature matrix and adjacency matrix of negative samples, W which is the
number of positive samples, and V which is the number of negative samples.

3.4. Mutual Information as Prior Loss

The loss function in statistics quantifies the error of a system. In a supervised learning
model, the loss function measures the discrepancy between the predicted output of the
model and the true label of a sample. This section will focus on how to enhance the loss
function using mutual information to address the issue of class imbalance.

3.4.1. Cross Entropy

The formula of the cross entropy loss function is

H(r, t) = −∑
i

r(hi) log t(hi) (15)

where, the network’s output, t(hi), represents the result obtained after inputting the samples
into the neural network, whereas r(hi) is the distribution of the expected samples, i.e., the
label of the actual data. This paper primarily focuses on label classification, assuming
that there are k categories, with training data denoted as (a, v) ∼ D and the modeled
distribution as rθ(v | a). The optimization objective is to maximize likelihood or minimize
cross-entropy, with Equation (16) providing the formula of minimizing cross-entropy.

arg min
θ

E(a,v)∼D[− log rθ(v | a)] (16)

3.4.2. Improving the Loss Function Based on Mutual Information

The activation function used in the final layer of a neural network for binary or multi-
classification tasks is often Softmax, which is preferred due to its normalization function
and ease of computation. The generalized Softmax formula is presented in Equation (17):

t
(
hj
)
=

ezj

∑n
i=1 ezi

(17)

The output of the previous layer in neural network, is denoted as zj, while t
(
hj
)

represents the distribution form of the output of this layer. Moreover, ezj represents the
sum of ezj within a batch.

Firstly, it is assumed that the logits are f (a; θ), which is the network’s output.
Equation (18) can be obtained by substituting this into the softmax formula.

rθ(v | a) =
e fv(a;θ)

∑K
i=1 e fi(a;θ)

(18)
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The Equation (19) represents the loss function form of Equation (18).

− log pθ(v | a) = − log e fv(a;θ)

∑K
i=1 e fi(a;θ) =

log
[
1 + ∑i 6=v e fi(a;θ)− fv(a;θ)

] (19)

The Equation (19) refers to the conventional softmax cross-entropy.
Equation (20) presents the model for mutual information:

log rθ(v|a)
r(v) ∼ fv(a; θ)⇔ log rθ(v | a) ∼

fv(a; θ) + log r(v)
(20)

The Equation (21) represents the softmax that has been re-normalized in the form on
the right-hand side.

rθ(v | a) =
e fv(a;θ)+log r(v)

∑K
i=1 e fi(a;θ)+log r(i)

(21)

Equation (22) represents the loss function derived from Equation (21):

− log rθ(v | a) = − log e f v(a;θ)+log r(v)

∑K
i=1 e fi(a;θ)+log r(i) =

log
[
1 + ∑i 6=v

r(i)
r(v) e fi(a;θ)− fv(a;θ)

] (22)

More generally, Equation (23) with the addition of the moderator τ:

− log rθ(v | a) = − log e fv(a;θ)+log r(v)

∑K
i=1 e fi(a;θ)+log r(i) =

log
[
1 + ∑i 6=v

(
r(i)
r(v)

)τ
e fi(a;θ)− fv(a;θ)

] (23)

Although the model uses the same cross-entropy as the loss function, it is effectively
to fit mutual information. Each logarithmic output receives an offset related to label prior
(that is, the result before being activated by softmax).

Combined with the process of training in neural network Figure 1:

Figure 1. Training process in neural network.
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The above procedure begins with randomly disrupting the original samples to obtain
negative samples. After the creation of positive and negative samples, the local variables
are then input into the convolutional neural network. The global variables are obtained
by averaging the positive samples’ local variables and coupling them with the positive
and negative samples’ local variables, respectively. In the model, the global variables are
connected with the local variables of the both kinds samples. The trained network model’s
parameters are scored by feeding them into the discriminator. To clarify, the parameters of
the trained neural network remain fixed, and the positive samples are inputted into the
network to obtain a set of logits. These logits are then subtracted by the logarithm of the
prior probability of each label, denoted by Inp(y), which is a form of regularization. The
resulting values are then passed through a softmax activation layer to obtain the predicted
output y. This process is often used to mitigate the impact of class imbalance in the training
data. In the figure, r̄i, i ∈ (1, n) represents the output combined with the vivid information
of the label, n represents node numbers, xi, i ∈ (1, n) refers to the first node, positive
sign means legal, negative sign means illegal, and the set of positive and negative signs
represents the model’s output y.

4. Experiments and Analysis
4.1. Dataset

Elliptic Company provided the data set used in this paper. The data set consists of
203,769 transactions nodes as well as 234,355 edges. Out of these transactions, approx-
imately 21% (42,019) are labeled legal, 2% (4545) are labeled illegal, and the remaining
transactions are labeled unknown, while they all have other associated characteristics. The
dataset comprise 49 kinds graphs, and none of these graphs are related to each other. The
node can take place of the transaction, and the flow of bitcoins is represented by an edge.
There are currently two issues with this data set. The paper discusses two challenges in
the given dataset. The first challenge is the presence of mass unlabeled nodes. The second
challenge is the data imbalance problem, where the number of nodes labeled as illegal is
only 10% of the nodes labeled as legal, which is a significant difference (Figure 2).

Figure 2. The proportion of different nodes in the data set.
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4.2. Metrics

For the sake of assess approach superiority outlined in this paper in an unbiased
manner, it is necessary to assess the performance when model has finished training. For
comparative analysis, the evaluation indexs used include Precision, Recall, and F1-Score.
The task at hand is binary, with a notable difference in the number of instances between
the legal and illegal categories. The minority category (i.e., the illegal category) is more
important for detecting cryptocurrency violations. As a result, the F1-Score of the illegiti-
mate category will be the focus of this paper. The illegitimate category will be considered a
positive category, while the legitimate category will be considered a negative category.

The precision calculation formula is:

Precision =
TP

TP + FP
(24)

Recall is calculated as:
Recall =

TP
TP + FN

(25)

The formula of F1-score is:

F1-Score =
2 · Precision · Recall

Precision + Recall
(26)

TP is true, which means that the correct number is classified as illegal. Meanwhile,
FP refers to false positive, which means the wrong number is classified as illegal. TN (true
negative) and FN (false negative) are the opposite of TP and FP.

4.3. Experiment with Result Analysis

The environment for this experiment consisted of an Ubuntu operating system, an
Intel Xeon CPU, 318GB of memory, and three NVIDIA GeForce RTX 1080 8G graphics cards.
The GPU acceleration library used was CUDA 10.0, and PyTorch was used as the deep
learning framework. In Elliptic dataset, training set accounts for 60 percent, verification
set accounts for 10 percent, test set accounts for 30 percent, where the first 31 graphs are
take to train, the next 5 graphs are take to validation, and the final 13 graphs are take to
test. The following are the experimental results conducted on the Elliptic dataset. Because
all of the models following graph 43 are ineffective, it is discovered that the United States
has severely cracked down on cryptocurrency crimes during that time period, with only
one or two of the graphs from graph 43 to graph 49 being marked as illegal acts. As a
result, from graph 37 to graph 42, this paper compares data from various models and
loss functions. The training of the GCN model in this paper was performed using the
Adam optimizer with a learning rate of 0.001 for a total of 1000 epochs. The model is
composed of two hidden layers, each comprising 100 nodes. The mutual information-based
loss proposed is compared to the classic solutions to data imbalance (over-sampling and
under-sampling) and the recent solutions to data imbalance. Figure 3 summarizes the
F1-score prediction results.

Figure 3 shows that traditional methods (over-sampling and under-sampling) have
not improved the data imbalance in anti-money laundering, but have resulted in a decrease
in results. Based on the experimental results, the mutual information-based loss proposed
in the paper has shown improvement when compared to traditional solutions such as over-
sampling and under-sampling, as well as recent solutions to data imbalance. Therefore,
it can be concluded that the mutual information-based loss has a significant effect on
improving data imbalance in anti-money laundering tasks. Figure 4 depicts a comparison
of different loss functions after and before self-supervised.
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Figure 3. F1 score of different loss functions.

Figure 4. Experimental results after adding self-supervision.

From Figure 4, it can be seen that cross and prior have improved to some extent
compared with those without self-supervised, while focal loss has declined slightly. The
results indicate that incorporating a self-supervised mechanism can effectively address the
challenge of abundant unlabeled data in cryptocurrency illegal detection.

Relied on the data presented from the Table 1, we can draw the following conclusions:

• Traditional methods for dealing with data imbalance are ineffective in detecting illegal
cryptocurrency transactions. It can be seen that recall is relatively high regardless of
over-sampling or under-sampling, but precision is relatively low, resulting in the final
F1 value having a poor effect.

• Drawing from the presented table, we can infer that the mutual information-based loss
function outperforms with cross entropy loss and focal loss by 4% and 2%, respectively,
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in terms of F1-score when used with GCN. Thus, it can be inferred that the mutual
information-based loss function has a significant positive impact on the detection of
illegal cryptocurrency transactions.

• The implementation of self-supervised in GCN has alleviated the problem of illegal
cryptocurrency detection. The F1-score of the cross-entropy loss with self-supervised
have rised 3% compare with the F1-score of the cross-entropy loss without self-
supervised. The loss function F1-score with self-supervised increased by 2% when
compared to the loss function F1-score without self-supervised. There is no improve-
ment and no intention of decreasing the F1-score value of focal loss. It demonstrates
that the self-supervised mechanism can effectively reduce the existence of illegal
cryptocurrency transactions.

The chart above provides a visual representation of the effectiveness of the mutual
information-based loss function in addressing the issue of sample imbalance in illegal cryp-
tocurrency activities detection. The introduction of self-supervised mechanisms can also be
seen to alleviate the issue of mass unlabeled data in illegal cryptocurrency transactions.

Table 1. The experimental results of performace metrics on Graph37-42 with different methods
and loss.

Model Loss Precision Recall F1

GCN
Oversampling 0.23 0.86 0.37

Undersampling 0.31 0.81 0.45
cross 0.70 0.52 0.58
focal 0.68 0.55 0.60
prior 0.69 0.58 0.62

SSL
cross 0.57 0.65 0.61
focal 0.53 0.69 0.60
prior 0.66 0.63 0.64

To address the severe class imbalance between legal and illegal categories in cryp-
tocurrency transaction detection, our method combines mutual information as well as cross
entropy loss function to obtain a novel loss function. On illegal cryptocurrency transactions
dataset, we adopt the novel loss function considering prior mutual information and the
classical method of data imbalance processing, Focal loss and cross entropy loss function,
to conduct a comparative experiment.The results showed that F1 value was improved
by using the proposed method by contrast of the previous cross entropy loss function
as well as Focal loss. Meanwhile, we take the self-supervised learning method to deal
with the problem of large amount of unlabeled data in cryptocurrency illegal behavior
detection. On the cryptocurrency illegal transactions dataset, comparative experiments are
conducted on whether mutual information prior loss function is used and self-supervised
learning is used. The performance results demonstrate the traditional methods for dealing
with data imbalance (oversampling and undersampling) are not effective in dealing with
the cryptocurrency data set. After using the mutual information prior loss function, F1
value is improved by contrast of the original cross-entropy loss function and Focal loss.
Compared with without self-supervised learning, the loss function performance is also
improved. In summary, the comprehensive comparison shows that taking advantage both
of the loss function with self-supervision and mutual information prior can achieve the
greatest performance enhancement.

5. Conclusions

To tackle the imbalanced distribution of legal and illegal samples in detecting cryp-
tocurrency violations, this paper proposes a solution that combines mutual information
prior and cross-entropy loss functions, resulting in a novel loss function. Compared with
traditional cross entropy loss, the novel loss function considering mutual information
prior can locate the prior information of the label, and use the prior information to fit
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with the output of the network. This greatly alleviates the problem regarding an exces-
sively large number of legal samples and illegal samples in the illegal detection data
set of cryptocurrency.Meanwhile, to tackle the issue concerning a substantial quantity
of untagged data in the identification of cryptocurrency violations, the solution herein
proposed employs a self-supervised method. Compared with the traditional graph neural
network, the self-supervised model technology based on mutual information uses the
self-supervised method to maximize the mutual information of global variables and local
variables to alleviate issues regarding large amounts of unmarked data present in the illegal
detection data set of cryptocurrency. This in turn, significantly improves the accuracy of
cryptocurrency illegal detection. The use of mutual information prior loss function and
the self-supervised method are compared on the elliptic data set. The results show that
traditional over-sampling and under-sampling methods are ineffective in dealing with
data instability. The F1 score of the proposed mutual information-based loss function has
shown varying degrees of improvement compared to previous cross-entropy loss as well
as focal loss functions. Additionally, all loss functions demonstrated improvement after
the introduction of self-supervised learning. With the proposed loss function relying on
self-supervised and mutual information prior, our method exhibits the highest level of
improvement. Thus, the proposed loss function incorporating self-supervised and mutual
information prior holds significance in detecting cryptocurrency violations.
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