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Abstract: Background: This paper investigates the impact of data quality on the performance of
models predicting effort on software testing. Data quality was reflected by training data filtering
strategies (data variants) covering combinations of Data Quality Rating, UFP Rating, and a threshold
of valid cases. Methods: The experiment used the ISBSG dataset and 16 machine learning models. A
process of three-fold cross-validation repeated 20 times was used to train and evaluate each model
with each data variant. Model performance was assessed using absolute errors of prediction. A
‘win–tie–loss’ procedure, based on the Wilcoxon signed-rank test, was applied to identify the best
models and data variants. Results: Most models, especially the most accurate, performed the best
on a complete dataset, even though it contained cases with low data ratings. The detailed results
include the rankings of the following: (1) models for particular data variants, (2) data variants for
particular models, and (3) the best-performing combinations of models and data variants. Conclu-
sions: Arbitrary and restrictive data selection to only projects with Data Quality Rating and UFP
Rating of ‘A’ or ‘B’, commonly used in the literature, does not seem justified. It is recommended not to
exclude cases with low data ratings to achieve better accuracy of most predictive models for testing
effort prediction.
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1. Introduction

The lifecycle of the software development process usually consists of various phases
or activities related to project planning, requirements specification, analysis and designing,
programming, testing, integration, deployment, and additional supportive activities. Since
software projects are usually complex, time consuming, and costly, supporting them with
a reliable prediction of the required effort is essential. The area of software development
effort prediction has been extensively studied in software engineering literature [1–5]. Most
of this research has been focused on the prediction of the total effort for the project. Limited
literature focuses on predicting effort for particular phases, like testing, even though it is a
significant and challenging area [6,7]. Thus, the first motivation for this study is related to
the importance of the outcome variable for prediction, i.e., testing effort.

Studies on software development prediction use various private and publicly avail-
able datasets. This particular study used the widely known ISBSG dataset [8] because
it contains critical data relevant to the goal of this study: Data Quality Rating and UFP
Rating. These attributes reflect the data quality of a project in this dataset. In most studies
on software effort prediction involving the ISBSG dataset, the authors follow the ISBSG
guidelines [9] and filter the data by only including projects with Data Quality Rating and
UFP Rating classified as A or B, denoting at least good quality [7,10–17]. Generally, per-
forming analyses on the best possible data seems reasonable. However, such data filtering
causes the dataset to be reduced, and predictions may be too optimistic as they are based
on, and performed only for, projects with high data ratings. Still, projects with lower ratings
also exist in the raw dataset but are rarely considered in predictive studies. On the other
hand, machine learning models usually perform better when they are trained on larger
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datasets. Thus, using such a reduced dataset means that these models may not reveal
their potential.

Existing literature on the treatment of missing values for effort prediction is limited,
especially concerning the testing area. There are various approaches to solving this problem.
A simple, and frequently followed solution, is to use only those attributes that have no
missing values. The opposite solution is to include all available attributes, even though
some may have a high proportion of missing values, i.e., very few valid values. Most
popular, and generally regarded as accurate, machine learning models require the training
data to have no missing values. Then, these values may be replaced according to some
rules. Thus, the spectrum of possible solutions to the problem with missing values ranges
from setting a threshold of valid values from 1, indicating that only attributes with no
missing values are included, down to 0, indicating that all attributes are included regardless
of their fractions of missing values. Intermediate values are also possible. For example, if a
threshold of valid values equals 0.3, only attributes for which the proportion of valid values
is at least 0.3 would be included. The impact of these strategies for solving the problem of
missing values on software testing effort prediction has yet to be explored in the literature.

Overall, existing literature does not provide clear information and recommendations
on using particular predictive models and strategies for dataset filtering. Therefore, based
on the explained motivations, the goal of this paper was to investigate the impact of
training data quality on the performance of models for software testing effort prediction.
The general research question for this study is: Which of the following is it better to use
to train predictive models for software testing effort prediction: (1) the entire available
dataset containing some low-quality data or (2) on a subset of the entire dataset contain-
ing selected higher-quality data? This study covered three aspects of data quality related
to data filtering: two attributes in the ISBSG dataset, namely Data Quality Rating and UFP
Rating, and a threshold of valid values. These three elements were used in the definitions
of data handling strategies, named data variants herein. These data variants reflect the
extreme options of these strategies and the intermediate alternatives. Thus, this study
explored how using particular data variants influences the accuracy of predictions from
various predictive models.

The main contribution of the paper is the investigation of the performance of frequently
used predictive models for software testing effort prediction and several data variants.
Specifically, this paper investigates model performance for particular data variants and the
performance of data variants for particular models, and identifies the best-performing com-
binations of models with data variants. Existing literature, neither generally on software
project effort prediction, nor, specifically, on software testing effort prediction, does not
report results of such experiments, especially at the scale employed herein, which inves-
tigates several predictive models and 40 data variants. Furthermore, this study justifies
using particular data variants for each model to achieve better predictive accuracy.

This study investigates the following three main, and two supportive, specific research
problems:

RP1: The performance of particular models for testing effort prediction—This in-
volved creating a ranking of models based on a comparison of prediction accuracy
between the models, both for each data variant and across all of them. In addition,
the performance of models for various conditions reflected in training data variants
was explored.
RP1A: The stability of performance of models across passes—As a follow-up to the
RP1, this was motivated by previous analyses that investigated a different outcome
attribute [18], and which revealed the fluctuating performance of most predictive
models depends on a particular iteration of data split into CV and test subset.
RP2: Identification of good and poor data variants for particular models for testing
effort prediction—This involved ranking data variants, based on comparing predic-
tion accuracy achieved with various training data variants for each predictive model.
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RP2A: The stability of performance of data variants for particular models between
CV and test data subsets—As a follow-up to the RP2, this involved investigating
whether the data variants that delivered predictions at the specific rank (accurate or
inaccurate) for particular models in the cross-validation subphase also delivered a
similar rank of predictive accuracy on the test data subset. This was investigated for
each model in each pass.
RP3: Identification of the best combinations of models and data variants— Investi-
gation of the previous RPs delivered partial answers, as they focused on identifying
the best-performing models for given data variants and best-performing data variants
for given models. For a complete picture, it was also necessary to identify the best
combinations of models and data variants.

This paper is organized as follows. Section 2 describes the data used in this study and
the research process followed. Section 3 presents the obtained results. Section 4 discusses
the obtained results and presents ideas for future work. Section 5 draws up the conclusions.

2. Materials and Methods
2.1. Overview of the Research Process

An overview of the research process followed in this study is illustrated in Figure 1.
The main phases of this process were the following:

1. Data preprocessing—Section 2.2; the outcome of this phase, i.e., a prepared dataset—
Section 2.3;

2. Preparation of the environment—Section 2.4; the outcomes of this phase, i.e., the defi-
nitions of data variants–Section 2.5, predictive models—Section 2.6, hyperparameter
tuning grids—Section 2.7;

3. Model training and evaluation—Section 2.8;
4. Analysis of results—Section 2.9.

2.2. Data Preprocessing

The dataset used in this study was the ISBSG 2020 R1 [8]. The raw format contains
data on 9592 software projects described by 253 attributes related to project size, effort,
schedule, development and application environment, used documents and techniques, etc.
Preparing this dataset for use in this study required performing data preprocessing. This
phase was divided into two subphases: general and specific preprocessing. The former
involved the whole raw dataset. The latter was specific to the goal of this study and, thus,
was performed on the subset of the original dataset.

The general data preprocessing was performed to correct the dataset so that it could be
used in this and other studies. Specifically, missing values originally encoded by states like
‘don’t know’, ‘not available’, ‘NA’, etc., were encoded as a special indicator of a missing
value (NA in R language). Obvious mistakes were corrected, e.g., spelling/typographical,
inconsistent capitalisation for nominal attributes, and incorrect decimal places for numeric
attributes. For major nominal attributes, similar states were encoded under a common
value, e.g., Application Type states, like ‘CRM’, ‘Contact Management’, ‘Customer Man-
agement’, and ‘Customer relationship management’, were all encoded as the last of these
states. An important step covered removing discrepancies between two or more attributes.
For example, for a given project, there was data on effort spent on a particular development
phase reported, but the attribute Project Activity Scope originally did not contain information
that the particular activity (phase) had even been performed. The attributes with a very
low fraction of valid cases (usually <10%) and many states but very few counts per state
were removed. Attributes with unclear interpretation, no valid value, having only one
state, and evident inconsistencies that could not be resolved were also removed. After this
step, there were 191 attributes left in the dataset.
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Figure 1. Overview of the research process.

The first important step of the data preprocessing specific to this study involved
subsetting the dataset. There are no universally established attribute selection criteria
involving the ISBSG dataset because they depend on the goals and methods used in the
particular study. After investigating criteria used in other studies [7,14,17,19] the following
inclusion criteria were applied:

• Effort Test > 0—the outcome value for prediction must be known;
• Resource Level = 1—only development team effort was included for effort-related

attributes;
• Count Approach = ‘IFPUG 4+’—projects in which size was estimated using IFPUG 4+

technique;
• Adjusted Function Points != NA—projects with no missing values for Adjusted Function

Points, because it was not reasonable to predict effort without data on project size.

While including other categories for Resource Level and Count Approach would be an
exciting path for the analysis, there were significantly fewer counts for these categories,
and, thus, they were excluded. After this filtering, 1242 projects remained in the dataset.

The ISBSG dataset contains two essential attributes: Data Quality Rating, defined as
“Project Rating. This field contains an ISBSG rating code of A, B, C or D applied to the project
data by the ISBSG quality reviewers”, and UFP Rating, defined as “Unadjusted Function
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Point Rating. This field contains an ISBSG rating code applied to the Functional Size
(Unadjusted Function Point count) data by the ISBSG quality reviewers”, also expressed
on a 4-point ordinal scale from A do D [8]. Category A denotes that nothing suspicious
was found in the data, category D denotes little data credibility for a given project, and
categories B and C denote intermediate states. Precise data evaluation and rating criteria
with these categorisations are not publicly available. In addition, preliminary analyses
of the dataset and earlier studies [20] led to the observation that, for Data Quality Rating,
this classification mainly indicates data completeness for a given project, i.e., higher rating
when there are fewer critical attributes with missing values. For UFP Rating, it mainly
reflects data integrity between variables describing project size. In many studies, the
dataset was filtered to include only projects with categories A or B for one or both rating
attributes [7,10–15] or with even stricter filtering including only projects with Data Quality
Rating in the A category [16,17]. Furthermore, the ISBSG guidelines [9] recommend using
projects for statistical analyses with Data Quality Rating A or B, because of the uncertainty
about some of the size or effort values for projects with ratings C or D. However, arbitrary
data filtering, based on these ratings, may be too conservative or too optimistic [21]. The
current study investigated the impact of data filtering, according to these categories, on
predictions. Hence, no such upfront data filtering was performed.

At this stage, several attributes were further removed, e.g., those having a low fraction
of valid values (<0.3), attributes with project sizing expressed in units other than Adjusted
Function Points, attributes reflecting or based on the total effort for the project, effort
breakdown attributes for phases following software testing, and attributes with unclear
interpretation. Note that some actions were performed at the general and the specific
preprocessing stages because attribute removal criteria were less strict at the former than at
the latter subphase. Attributes unsuitable as predictors and unrelated to the testing effort
were also removed because, usually, it is better to have fewer but better attributes [22].

There were several attributes of the multinominal type, which had multiple values
encoded as a single value for some projects. For example, a project might have a 1st
Language defined as “C++; Java;” which means that both these languages were used in
the project as the main ones. As the predictive models cannot operate directly on such
multinominal values, all attributes of this type were converted to a set of logical attributes
(e.g., 1st Language: C++, 1st Language: Java, etc.) with values 0/1.

2.3. Prepared ISBSG Dataset

After performing two subphases of data preprocessing, the prepared ISBSG dataset
contained 1242 projects described by 52 attributes, including 7 numeric, 9 nominal, 3 ‘natural’
logical, and 28 logical predictors converted from 6 multinominal attributes and 5 additional
non-predictor attributes (identifier, two rating attributes, Year of Project and the target for
prediction).

Table 1 presents key summary statistics for the numeric attributes. The Year of Project
reflects a year of project completion. The target predicted attribute is called Effort test.
As mentioned earlier, the raw dataset also contains other attributes describing effort in
a project, but this study used only those listed in this table. They reflect the effort on
development phases earlier than testing because only these may serve as explanatory
attributes for the Effort test. While the lowest value for Effort test is four hours, there were
projects with zero effort on earlier phases. It should also be noted that the Adjusted Function
Points is the only numeric predictor across the dataset with no missing values.

The main two attributes in this study are Effort test, as the outcome, and project
size (Adjusted Function Points), as the primary predictor. Figure 2 illustrates a density
distribution of testing effort and the relationship between these two attributes. We can
observe high skewness of these attributes. Hence, later, when building predictive models, a
log10() transformation was applied. While the relationship between project size and testing
effort exists, it is not very strong, as other attributes influence the testing effort.
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Table 1. Summary statistics for numeric variables.

Attribute N Mean SD Median Min Max Skew

Year of Project 1242 2005.0 6.4 2005.0 1992 2019 0.0
Adjusted Function Points 1242 267.6 645.1 106.0 3 16148 13.7
Value Adjustment Factor 714 1.0 0.1 1.0 0.7 1.4 −0.3

Effort Plan [hours] 832 320.7 1042.8 94.5 0.0 17,668.0 11.1
Effort Specify [hours] 1072 602.7 1726.7 223.0 0.0 32,657.0 10.5
Effort Design [hours] 646 595.3 1139.3 225.5 0.0 10,759.0 4.6
Effort Build [hours] 1196 1820.9 3300.6 824.0 0.0 35,520.0 5.2
Effort Test [hours] 1242 1382.6 2789.5 489.0 4.0 37,615.0 6.0

Max Team Size [# people] 1073 26.9 37.0 12.0 0.5 468 3.7

(a) (b)
Figure 2. (a) Density of testing effort. (b) Scatterplot of size vs. testing effort. (Note the logged scale
for size and testing effort).

Table 2 presents summary statistics for nominal and logical attributes. The first
two, Data Quality Rating and UFP Rating, were used to define the variants of input data
(Section 2.5), and they were not predictors. All other attributes were used as predictors.
Note that the usage of programming languages was reflected by the Primary Programming
Language and the 1st Language—the former describes a single language while the latter is a
set of the main languages used.

2.4. Preparation of the Environment

Preparation of the environment for the use of predictive models involved definitions
of data variants, predictive models, and hyperparameter tuning grids (Sections 2.5–2.7). It
is important to highlight that, at this stage, only the definitions of these three elements were
prepared (as functions in the script). However, they depended on the actual dataset used as
the input to the tasks. This actual dataset was created later in the research process, i.e., in
the repeated loop of cross-validation and testing. Therefore, these definitions were created
during this preparation phase, but their executions (function calls in a script) occurred
inside this loop.

2.5. Data Variants

Data variants define the scope of the dataset used to train predictive models and, thus,
provide a data filtering strategy. Three dimensions were used to define data variants: Data
Quality Rating, UFP rating, and the threshold for a fraction of valid values. The first two
were provided as attributes in the raw dataset. Table 3 presents the number of projects per
category of Data Quality Rating and UFP rating. These counts were used to determine data
variants used to train predictive models. Specifically, there were very few projects with
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UFP Rating C or D and slightly more for these categories of Data Quality Rating. Hence,
there was no substantial justification for defining data variants for all combinations of
these attributes. Instead, based on these counts, the following combinations of ratings and
selection criteria for projects in the training subset were used:

• A-A: Data Quality Rating ∈ {A} ∧UFP Rating ∈ {A},
• A-B: Data Quality Rating ∈ {A} ∧UFP Rating ∈ {A, B},
• B-A: Data Quality Rating ∈ {A, B} ∧UFP Rating ∈ {A},
• B-B: Data Quality Rating ∈ {A, B} ∧UFP Rating ∈ {A, B},
• D-D: Data Quality Rating ∈ {A, B, C, D} ∧UFP Rating ∈ {A, B, C, D}.

Table 2. Summary statistics for nominal attributes.

Attribute N Type 1 # States Mode

Data Quality Rating 1242 nominal 4 B
UFP Rating 1242 nominal 4 A

Industry Sector 972 nominal 6 Medical & Health Care
Application Group 452 nominal 4 Business Application
Development Type 1242 nominal 3 Enhancement

Development Platform 480 nominal 4 Mainframe
Language Type 628 nominal 4 3GL

Primary Programming Language 627 nominal 11 COBOL
Team Size Group 1073 nominal 14 5–8

How Methodology Acquired 381 nominal 2 Developed In-house
Architecture 422 nominal 3 Stand alone

Used Methodology 518 logical 2 yes
Upper CASE Used 385 logical 2 no
Metrics Program 533 logical 2 yes

Organisation Type 967 multinominal 7 Medical and Health Care
Application Type 473 multinominal 3 Transaction/Production System

Project Activity Scope 1242 multinominal 3 Specification
1st Language 636 multinominal 10 COBOL

1st Data Base System 389 multinominal 3 DB2
Functional Sizing Technique 572 multinominal 2 Manual supported by a tool

1 After data preprocessing, each attribute denoted as ‘multinominal’ was already transformed to the set of logical
attributes (as explained in Section 2.2). For brevity of the table, these attributes are presented here as single
attributes as in the raw dataset.

Table 3. Counts for Data Quality Rating and UFP Rating.

Data Quality UFP Rating
Sum

Rating A B C D

A 288 52 0 0 340
B 317 489 7 0 813
C 23 8 1 0 32
D 42 12 0 3 57

Sum 670 561 8 3 1242

The third and last dimension of data variants was the arbitrarily defined vector of
values in the range [0.3, 0.5] and a step of 0.1. This value reflects a fraction of valid cases,
i.e., non-missing, for each attribute in the training dataset. If the actual fraction for a given
attribute was lower than a threshold value, then such an attribute was excluded from the
training dataset. Thus, a high value of such a threshold caused fewer predictor attributes
to be left in the training dataset. At the extreme, a value of 1 indicates that only those
attributes with no missing values were left in the dataset. Figure 3 illustrates the number
of predictor variables that met a given value of a threshold for a fraction of valid values
for various data ratings. Note that the presented counts of predictor attributes refer to the
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whole dataset used after data preprocessing and not to the training subset. The predictor
counts for the training dataset actually used to train the models varied, depending on the
pass number and cross-validation repeat, because of random data subsetting. Thus, the
values in the figure are only presented for reference. For some data ratings, there were no
differences (A-A and A-B) in predictor counts for threshold values [0.3, 0.5]. There were
very few differences between ratings A-A and A-B for higher threshold values. Across the
range of the investigated thresholds, usually, the lowest predictor count was for data rating
B-B. The highest predictor count was for data rating D-D, B-A, A-A, or A-B, depending on
the threshold value.

Figure 3. Counts of predictor variables for various threshold values of valid data fractions.

In total, 40 data variants were defined (5 data ratings × 8 thresholds). The following
display format for complete data variants was used throughout the paper: “Q-U-T”, where
Q denotes the lowest acceptable Data Quality Rating, U denotes the lowest acceptable UFP
Rating, and T denotes the threshold value of valid data fractions.

2.6. Predictive Models

A total of 16 predictive models were used. Table 4 lists them, together with the
information on the key data handling procedures for each model. The first four models are
not “real” predictive models but various baselines. These baseline models do not use any
values of the predictors but provide predictions purely based on the values of the outcome
variable in the training data subset. Obviously, we should not expect accurate predictions
from such models. On the contrary, we should expect that “real” predictive models should
not perform worse than these baselines. Thus, these baseline models were included in the
study to enable better evaluation of the real predictive models. Without any baseline model,
it would only be possible to compare particular models with each other. Including baseline
models, enables assessing if particular models provide sensible predictions, i.e., if they are
good or poor, not only amongst each other but also in an absolute sense. Some authors
argued that these baseline models are too simplistic and proposed other deterministic
models [23,24]. However, these proposed baselines include some logic to estimate the
outcome attribute based on the values of predictors, so they are not as naive as the four
baselines mentioned above. They are, in fact, “real” models, although still relatively simple,
and they were not used in this study as baselines.

Selected predictive models were widely used in earlier studies on software effort
prediction, and they are popular in such applications (e.g., [7,25–27]). The focus of this
paper is different from how these models operate internally. Therefore, this paper does
not provide their detailed definitions. The model acronyms listed in the first column of
Table 4 are the names of the model implementations in the caret package [28] for the R
language [29], which were used for model training and delivering predictions.

Most models, excluding some tree-based ones, required numeric data with all nom-
inal and logical attributes encoded as numeric attributes with values 0 or 1. When an
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outcome attribute is heavily skewed, several models usually perform better with outcome
and/or predictor attributes transformed by a function that brings values closer to a normal
distribution, and the relationship between the outcome and predictor is closer to linear.
Thus, for some models, log-based transformations were applied, similarly, for example,
to [26,30]. It is impossible to train most models when predictor attributes contain missing
values. Therefore, for most models, data transformation included imputing these missing
values by a mode or median, depending on the attribute type. In this study, we wanted
to use good and fast methods for data preparation. While there are potentially better
imputation methods, they are usually time-consuming. Besides, earlier experiments with
more complex imputation methods did not confirm their clear advantages [31,32]. For
most models, the normalisation of numeric attributes was performed. For some models, an
attribute synthesis, using principal component analysis (PCA), was also applied to reduce
the number of predictors and associations between predictors. The choice of the data
handling procedures for particular models was motivated by common knowledge, earlier
experiments with these models [18,33], and preliminary unpublished experiments on the
subsets of data. While this study attempted to deliver sensible models, it did not attempt
to identify the optimal variant for each model, because that would require significant
additional calculation time and was beyond the scope of this study.

Table 4. Used predictive models.

Model Description Data
Type

Log
Outcome

Log
Predictors 1

Impute
by

Mode 2

Impute
by

Median 3
Normalize PCA 4

bMean baseline model predicting mean(Ytrain) regular + – – – – –
bMed baseline model predicting median(Ytrain) regular + – – – – –

bR baseline model predicting a random value from
Ytrain

regular – – – – – –

bRU baseline model predicting a random value from
Uni f orm(min(Ytrain), max(Ytrain))

regular + – – – – –

enet elastic net [34] numeric + + + + + –
gbm generalized boosted regression [35] numeric – + + + + +

glmnet generalized linear regression with convex penal-
ties [36] numeric – + + + + –

knn k-nearest neighbour regression [37] numeric – + + + + +
lm linear regression [38] numeric + + + + + +

lmStepAIC linear regression model with stepwise feature
selection [39] numeric + + + + + –

M5 model trees and rule learner [40,41] numeric – + + + + +
nnet neural network with one hidden layer [42] numeric + + + + + –
ranger random forest [43] regular – + + + – –
rpart2 recursive partitioning and regression tree [44] regular – + + + – –
svm support vector machines [45] numeric + + + + + +
xgbTree extreme gradient boosting [46] numeric – + – – – –

1 Denotes if numeric predictors with skewed distributions were transformed using a log10(x) or log10(x + 1)
function, the latter was used if, for a particular predictor, its lowest value was 0. 2 Denotes if missing values in
nominal or logical predictors were filled with the mode value of each attribute. 3 Denotes if missing values in
numeric predictors were filled with the median value of each attribute. 4 Denotes if numeric predictors were
converted into one or more principal components to capture at least 85% variability in the attributes.

2.7. Hyperparameter Tuning Grids

Some models require the provision of parameters that drive the model training process.
Since they cannot be learnt from the data, they are usually denoted as hyperparameters
and provided explicitly. There are various strategies for choosing the best possible values
of these hyperparameters, like grid search, random selection, simulated annealing, and
other methods [47–49].

This study involved the random grid selection strategy using the CV loop for each
model that required hyperparameters. All possible and sensible combinations of potential
hyperparameter values were initially defined in a grid, where a row represented a unique
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set of values for all considered hyperparameters. Evaluation of all such combinations,
like in a grid search, could be time-consuming for some models. In this study, the global
optimisation of hyperparameters was not the main problem investigated. The hyperpa-
rameter selection was performed on the subset of created grids to keep the calculation
times acceptably short. Specifically, if the tuning grid for a given model was large, a subset
of 100 randomly selected rows was considered. For models using a large number of hy-
perparameters, like ranger, xgbT, and svm, such a filtered tuning grid represented only a
small fraction of the entire grid. Thus, most likely, it did not contain a globally optimum
set of hyperparameters. However, preliminary experiments on small subsets of data and
earlier analyses [18,33] revealed that using more rows from the original grid improved the
accuracy of predictions only to a small degree.

Some models require values for some hyperparameters that depend on the size of the
dataset, which is actually used to train the model. For example, for the ranger model, the
‘number of variables to possibly split at in each node’ (mtry) depends on the number of predic-
tors in the dataset. Thus, a vector of 10 values in the range [ f loor(#predictors/2),#predictors]
was generated. Due to such dependencies at the preparation of the environment stage, only
the functions generating the tuning grids were defined, but the actual creation of tuning
grids was performed inside the CV loop, where the dataset size for a particular model was
already known.

2.8. Model Training and Evaluation

Model training and evaluation was performed by random data splitting into cross-
validation (CV) and test subsets with project counts of 992 and 250, respectively. Performing
such a data split just once would have led to bias in the results. This random data split
was repeated 20 times to avoid bias, as was common in similar studies, e.g., [50]. It
meant that subsequent steps were repeated but with different CV and test subsets. The
term pass used throughout the paper denotes an iteration of steps performed on a single
such data split.

Each data variant and each model was built, trained, and evaluated by performing CV
and independent testing. The CV subset was used in the CV subprocess to determine the
best set of values for model hyperparameters. A 3-fold CV was performed. It meant that
the CV subset was split into three folds. In each iteration of the CV step, two of these folds
were used to train the model, and the remaining one to evaluate it. Thus, in each iteration
of the CV, a different fold was used to evaluate the model.

Building the model involved applying definitions of data variants, predictive models,
and hyperparameter tuning grids to the training subset. Thus, the training subset was
filtered according to the definition of the data variant. Next, the model was built based on
the provided definitions and filtered dataset. Finally, the hyperparameter tuning grid was
built. The detailed steps of model building in a single iteration were the following:

• filter training data by Data Quality Rating and UFP Rating, according to the current
data variant;

• remove attributes not meeting the threshold according to the current data variant;
• apply missing value imputation by median (according to the current model definition);
• apply missing value imputation by mode (according to the current model definition);
• group together least frequent states ( i.e., states with frequency < 0.03 of all cases) of

nominal predictors as state ’other’;
• convert nominal attributes to dummy attributes (if the current model requires numeric

data);
• remove attributes with zero variance;
• log-transform outcome attribute (according to the current model definition);
• log-transform numeric predictors (according to the current model definition);
• normalize numeric attributes (according to the current model definition);
• apply PCA transformation (according to the current model definition);
• prepare the model;
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• save data preparation definitions;
• generate hyperparameter grid.

After performing the above steps, the model was trained on such prepared data. The
validation dataset was transformed using previously saved data preparation definitions (It
is important to note that when transforming the validation subset, these data preparation
definitions were only applied as they were learnt from the training subset. For example,
data normalisation involves calculating the mean and standard deviation for the numeric
attributes in the training subset. Then, these statistical measures were applied to the
attributes in the validation subset, and they were not learnt (calculated) again on the
validation subset). Such a transformed validation dataset was used as input to the trained
model to get the predictions for testing effort. These predictions were compared with the
actual values of the testing effort. To evaluate the accuracy of predictions, this study used a
measure of the absolute error (AE) of prediction for each predicted case (Equation (1)), also
called absolute residual (AR), and the mean absolute error to summarise the accuracy of
prediction for a group of n projects (Equation (2)):

AEi = |actuali − predictedi|, (1)

MAE =
1
n

n

∑
i=1

AEi. (2)

The main advantages of these measures are the simplicity of their calculation and
interpretation, as well as the lack of bias, which are related to the use of various measures
based on a relative error [50,51]. The optimum set of hyperparameters was selected for the
lowest mean MAE across all three iterations of CV.

The next stage was to evaluate the model on the unseen test data. Hence, the process
of building the model and the final training data preparation steps were performed, again
similarly as to that inside the CV loop. However, this time it was performed on the entire
training subset, not on folds, as during CV. Training the model was performed using the
set of hyperparameters that was determined during CV as the optimum. Then, the trained
model was evaluated on the test data. Calculated MAE on the test data served as the final
indicator of model accuracy in each of the 20 passes and for each data variant.

2.9. Analysis of Results

The results were analysed using the dataset with summaries of predictions where
each summary consisted of performance measures from a single iteration of model eval-
uation on the test subset. RP1, RP1A, RP2, and RP3 were investigated using a ‘win–tie–loss’
procedure [23,26,50,52,53]. For each inner iteration of the experiment, i.e., for each pass,
model and data variant, the distribution of absolute prediction errors, based on the test sub-
set, was produced. For RP1, this distribution, provided by each model, was compared to
the performance of all other models. This comparison was performed using the Wilcoxon
signed-rank test. As the same test was used several times, a Benjamini—Hochberg adjustment
procedure of the p-values [54] for the Wilcoxon test was used to control false discoveries. It
was performed separately for each data variant in each pass. If the Wilcoxon test did not
reveal statistically significant differences in the distribution of AE, then the number of ties for
both compared models was incremented. Otherwise, if this test revealed such a statistically
significant difference, then, based on the median AEs, the number of wins or losses was
incremented, respectively, for each compared model. This procedure was repeated for each
model, each data variant, and each pass. Thus, given M = 16 models, a sum of wins, ties, and
losses for each model was (M− 1)× 40 data variants× 20 passes = 12,000.

The results of these calculations were also applied to the RP1A. However, the focus
here was on comparing performance between passes. Thus, the results from all passes were
not summed up together, but, instead, grouped by each pass.
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This procedure was also applied to the RP2, where particular data variants were
compared with each other. These comparisons were performed individually for each
model. The motivation for this was the hypothesis that particular data variants’ usefulness
might differ for particular predictive models. Hence, it was more beneficial not just to
identify the overall best data variant but rather the best for each model. Thus, given
D = 40 data variants, a sum of wins, ties, and losses for each data variant and each model
was (D− 1)× 20 passes = 780.

Investigation of the RP3 also involved using this procedure. Thus, combinations of
models and data variants were created and compared with each other in each pass. Hence,
given C = 640 combinations (16 models× 40 data variants = 640), a sum of wins, ties, and
losses for each combination was (C− 1)× 20 passes = 12,780.

Upon calculating counts of wins, ties, and losses, an aggregating measure of the
difference was calculated as follows: di f f erence = wins− losses. It served as the primary
measure for investigating these RPs, i.e., for the RP1 to create a ranking of predictive
models, for the RP1A to compare model stability across passes, for the RP2 to create a
ranking of data variants, and for the RP3 to create a ranking of the best combinations of
models and data variants.

Investigation of the RP2A was the only one where the ‘win–tie–loss’ procedure was
not applied. Instead, it involved comparing the values of MAE calculated on CV and
test subsets. Specifically, for each model in each pass, there were 40 values of MAE on
the CV subset and 40 values of MAE on the test subset, where a single value reflected
model performance with a particular data variant. To analyse the relationship between
these groups of MAE across data variants, Spearman’s rank correlation coefficient ρ was
calculated. A value close to 1 indicated a positive correlation, i.e., that the rank of data
variants on the CV data was similar to the test data. Such values were desirable as they
revealed the performance stability between CV and test subsets. A value of zero indicated
no such relationship. A value close to −1 indicated that the ranks of the data variants
on the CV subset were the opposite, as in the test subset. Observing such values would
indicate that using separate CV and test data splits did not allow for determining the best-
performing data variants, because such independent splits provided inconsistent results.
Spearman’s ρ calculation was repeated for each model and pass.

3. Results
3.1. RP1: The Performance of Particular Models for Testing Effort Prediction

Table 5 contains the ranking of predictive models with the models sorted in a de-
creasing order of the difference, i.e., with the best-performing models at the top. The
best-performing models were svm and enet, followed by nnet and lm. As expected, the
worst-performing models were two baselines involving random prediction: bR and bRU.
However, two other analysed baselines performed better than two real models: rpart2
and glmnet.

It should be noted that this overall ranking of models was based on predictions
involving all data variants for each model. It may only serve as a rough overview of the
models. Specific models may be sensitive to particular data variants and perform well on
some data variants while doing so poorly on others. Thus, it is necessary to investigate
model performance for particular data variants.

Figure 4 illustrates each model’s performance for one major grouping of data variants,
i.e., based on Data Quality Rating and UFP Rating combinations. We can observe that, for
the most restrictive ratings A-A and A-B, the top-3 performing models were the following:
svm, enet, and lm. For rating B-A, the top-3 performing models were the following: enet,
lm, and nnet. For ratings B-B and D-D, the top-3 performing models were the following:
nnet, svm, and enet. The top-3 models from the overall ranking (Table 5) performed no
worse than the top-5 for particular rating combinations.
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For ratings A-A and A-B, the order of models was almost the same. Rating B-A
brought some changes in the order of the models. For ratings B-B and D-D, the order of
models was almost identical, but different from rating B-A.

Table 5. Summary of model performance.

Model Wins Ties Losses Difference

svm 7274 4252 474 6800
enet 6842 4765 393 6449
nnet 6479 4594 927 5552
lm 6131 4775 1094 5037
xgbTree 5452 5183 1365 4087
knn 5164 5511 1325 3839
lmStepAIC 5343 4867 1790 3553
ranger 4469 5045 2486 1983
gbm 4186 4353 3461 725
M5 3682 3960 4358 −676
bMean 3133 2736 6131 −2998
bMed 2972 2735 6293 −3321
rpart2 2510 3275 6215 −3705
glmnet 1512 3327 7161 −5649
bR 979 336 10,685 −9706
bRU 7 16 11,977 −11,970

We can also observe that for ratings A-A, A-B, and B-A, the values of the mean
differences for almost all models, except the two worst baselines, spanned almost equally.
However, for ratings B-B, and even clearly for D-D, we can observe groups of models with
a similar value of the difference. Specifically, this included the group of the best-performing
models, including nnet, svm, enet, lm, xgbTree, and lmStepAIC.

No significant shifts of model ranks were observed, where a model performing well
for one combination of ratings would perform poorly for a different combination relative
to the other models. However, a noticeable increase of the mean difference was observed
for lmStepAIC and xgbTree comparing ratings A-A and A-B with ratings B-B and D-D. A
substantial decrease between these ratings was observed for glmnet.

Figure 5 illustrates each model’s performance for another major grouping of data
variants, i.e., based on the threshold for fractions of valid values. For thresholds in the
range [0.3, 0.6], the top-4 models with very similar mean differences were the following:
enet, svm, nnet, and lm. These four models were also the best for threshold 0.7 but all with
lower mean difference. For thresholds 0.8–1.0, consistently, the best models were svm and
enet. The third place was reached by the models lm, xgbTree, and nnet, respectively, for
thresholds 0.8, 0.9, and 1.0.

For thresholds in the range [0.3, 0.6], the mean difference for all models was very stable
at almost the same level. There were also very few tiny differences in the order of particular
models. However, starting with the threshold 0.7, as this value increased the range of the
mean difference decreased for almost all models except the worst two baselines. It meant
that the best models performed relatively more poorly, and the worst models performed
relatively better. The most noticeable shift of the mean difference was observed for the rpart2
model for thresholds in the range [0.6, 0.8].

For threshold 0.9, and even more evidently for 1.0, two baselines, i.e., bMedian and
bMean, reached a mean difference higher than several real models. Specifically, for threshold
1.0, these two baselines reached the fifth and sixth places, respectively, and, thus, beat eight
real models.
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Figure 4. Mean difference of models for various data quality and UFP ratings. Each data point denotes
a mean difference of a particular model for a given combination of Data Quality Rating and UFP Rating
across all values of thresholds for fractions of valid values in all passes.

Figure 5. Mean difference of models for various thresholds for fractions of valid values. Each data
point denotes a mean difference of a particular model for a given threshold for fractions of valid values
across all investigated combinations of Data Quality Rating and UFP Rating in all passes.

Table 6 ranks models for each data variant. The order of columns reflects the order
of models, as in the ranking in Table 5. For all data variants from A-A-0.3 to A-B-0.8 and
four other data variants, the best-performing model was svm. For most B-A-* data variants,
except B-A-1.0, the best model was enet. For data variants B-B-*, most often, the best model
was nnet, followed by svm and enet. Similar results were for data variants D-D-*, except
for data variant D-D-0.7, where the best model was xgbTree. Although the lm model did
not have the highest difference for any data variant, on average, it reached the fourth place,
one better than xgbTree that was the best for one data variant. Four models, i.e., svm, enet,
nnet and xgbTree, performed the best for at least one data variant. The worst-performing
models for all data variants were consistently bRU and bR, with exceptions for B-B-0.9 and
B-B-1.0, where glmnet performed worse than bR.

The lowest value of the difference sufficient for a model to be the best was usually for
data variants with ratings A-A, A-B, or B-A, and thresholds of valid values of 1.0 or 0.9.
In particular, for data variant B-A-1.0 the di f f erence = 84 was sufficient for svm to beat
other models. Only three models, M5, bR and bRU, had a negative value of the difference.



Electronics 2023, 12, 1656 15 of 25

Such a result showed that, for this data variant, the differences in performance between
the models were the lowest. On the other hand, for data variant A-A-0.6 the enet model
reached a di f f erence = 213, which was sufficient only for the second place, because svm
reached a di f f erence = 218. The highest ranges between the best- and least-performing
models were for data variants: B-B-0.9, D-D-0.9, A-A-0.3, and A-B-0.4.

Table 6. The values of the difference of each model grouped by each data variant. The models in
particular columns were sorted from the best to the worst, according to their mean difference across all
data variants provided in the last row. The data variants in particular rows were sorted in alphabetical
order. Values with a single underline denote the best model for a given data variant, and values with
a double underline denote the worst model for a given data variant.

Data Model 1

Variant svm enet nnet lm xgbT knn lmS Ranger gbm M5 bMean bMed rpart2 glmnet bR bRU

A-A-0.3 231 206 184 202 62 119 58 −29 3 16 −88 −114 −166 −134 −251 −299
A-A-0.4 222 208 188 209 49 86 63 −1 44 17 −97 −126 −170 −142 −251 −299
A-A-0.5 223 209 187 212 42 85 64 −8 41 18 −90 −122 −171 −140 −251 −299
A-A-0.6 218 213 191 206 49 94 68 −13 27 2 −85 −115 −166 −141 −249 −299
A-A-0.7 182 144 50 81 75 118 72 58 83 −51 −64 −108 33 −121 −254 −298
A-A-0.8 166 118 1 80 110 126 2 91 96 −49 −58 −98 69 −97 −258 −299
A-A-0.9 120 118 −39 −1 102 22 35 52 40 −147 99 84 29 6 −224 −296
A-A-1.0 125 121 9 −3 54 8 21 52 2 −69 94 74 15 16 −224 −295
A-B-0.3 215 164 180 190 48 136 53 −12 36 0 −77 −90 −174 −137 −234 −298
A-B-0.4 229 168 178 189 25 134 45 −7 82 3 −89 −104 −177 −141 −235 −300
A-B-0.5 227 169 178 189 18 138 47 −9 83 2 −88 −103 −177 −139 −235 −300
A-B-0.6 220 186 163 172 76 124 68 −21 58 11 −87 −100 −178 −155 −237 −300
A-B-0.7 170 113 80 98 69 110 99 72 72 −28 −97 −109 21 −124 −247 −299
A-B-0.8 177 140 56 90 62 103 12 54 93 −22 −76 −95 56 −99 −251 −300
A-B-0.9 125 139 6 −16 101 −7 −23 29 25 −61 92 90 −11 −22 −167 −300
A-B-1.0 139 137 46 −21 115 −24 −23 2 −13 −74 97 91 5 −21 −156 −300
B-A-0.3 168 209 141 113 76 130 54 35 11 4 −33 −68 −137 −153 −250 −300
B-A-0.4 167 211 142 113 77 130 52 34 18 3 −35 −68 −139 −155 −250 −300
B-A-0.5 164 207 185 78 73 127 65 −1 13 19 −29 −60 −129 −166 −247 −299
B-A-0.6 187 197 146 103 89 121 101 −4 35 14 −42 −77 −147 −177 −246 −300
B-A-0.7 184 191 170 111 80 120 106 0 5 24 −47 −80 −146 −170 −248 −300
B-A-0.8 132 169 102 121 53 72 68 19 78 −40 −13 −76 0 −135 −250 −300
B-A-0.9 107 121 64 94 86 90 41 69 87 −40 −14 −82 59 −127 −255 -300
B-A-1.0 84 69 49 32 68 27 19 14 47 −16 61 47 31 2 −234 −300
B-B-0.3 144 180 183 158 162 125 158 113 −37 −8 −173 −159 −112 −180 −254 −300
B-B-0.4 156 172 173 156 160 123 160 124 −30 −11 −176 −161 −112 −180 −254 −300
B-B-0.5 160 177 176 159 174 86 171 127 −26 −24 −175 −162 −110 −175 −258 −300
B-B-0.6 171 176 178 167 173 94 167 100 −27 −14 −176 −163 −116 −170 −260 −300
B-B-0.7 164 160 166 163 162 126 150 99 5 −2 −176 −163 −123 −173 −258 −300
B-B-0.8 166 152 156 148 151 135 154 107 22 1 −176 −161 −123 −174 −258 −300
B-B-0.9 201 141 234 157 131 92 143 58 −19 −46 −107 −92 −134 −233 −228 −298
B-B-1.0 173 115 213 121 113 −1 106 v35 −74 −44 64 102 −126 −217 −214 −296
D-D-0.3 154 167 170 162 151 120 153 135 −20 −2 −176 −159 −120 −175 −260 −300
D-D-0.4 144 178 184 145 175 107 167 134 −26 −24 −176 −160 −115 −173 −260 −300
D-D-0.5 167 171 136 158 160 142 165 139 −36 −23 −174 −155 −116 −174 −260 −300
D-D-0.6 159 164 173 156 153 124 151 124 −11 1 −176 −159 −125 −174 −260 −300
D-D-0.7 151 154 159 150 163 132 147 121 −11 24 −175 −157 −126 −172 −260 −300
D-D-0.8 156 147 147 150 151 131 145 119 9 39 −177 −159 −127 −171 −260 −300
D-D-0.9 200 131 234 128 132 112 124 84 11 −23 −138 −103 −134 −227 −231 −300
D-D-1.0 152 137 213 117 117 2 125 −42 −71 −56 55 99 −116 −209 −227 −296

Mean 170 161 139 126 102 96 89 50 18 −17 −75 −83 −93 −141 −243 −299

1 lmS = lmStepAIC, xgbT = xgbTree.

3.2. RP1A: The Stability of Performance of Models across Passes

Figure 6 presents the values of the difference for each model in each pass. The lowest
variability of the difference across passes were for bRU (σ = 2.6) and bR (σ = 18.7), and,
among non-baseline models, for enet (σ = 27.0), knn (σ = 28.2) and glmnet (σ = 28.3). The
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highest variability of the differences across passes were for bMean (σ = 49.0), lmStepAIC
(σ = 45.3), and ranger (σ = 43.1). The lowest range of the differences across passes were
for bRU (10) and bRU (68), and, among non-baseline models, for M5 (104), glmnet (112),
and enet (112). The lowest range of the difference across passes was for bMean (168), ranger
(151), and lmStepAIC (147).

A noticeable variability of the difference for most models across passes caused changes
between ranks of particular models. However, there were no significantly deviating values
of the difference in particular passes that would reflect exceptionally good or poor model
performance in those passes. Overall, these results demonstrate high stability of model
performance across passes.

Figure 6. Stability of the difference for models across passes. Each data point denotes a difference for a
particular model in a given pass across all investigated data variants.

3.3. RP2: Identification of Good and Poor Data Variants for Particular Models

Table 7 provides a ranking of data variants for each model (Please note that, although
Tables 6 and 7 have a similar appearance of rows and columns, the presented values of
difference have diverse meanings. Table 6 provides values of the difference for particular
models grouped by each data variant. In contrast, Table 7 provides values of the difference
for particular data variants grouped by each model). On average, i.e., across all models, the
best-performing data variants were based on ratings D-D-* followed by B-B-* for various
thresholds of valid values in the range [0.3, 0.8]. Specifically, for models enet, knn, lm, and
ranger, the best data variant was D-D-0.3, for xgbTree it was D-D-0.4, for M5 and svm it was
D-D-0.8, for nnet it was B-B-0.3, for gbm it was B-B-0.8, and for lmStepAIC it was B-B-0.5.
For models performing poorly, like glmnet and rpart2, other data variants appeared to
be the best: B-A-0.3 tied with B-A-0.4, and B-A-0.9, respectively. Data variants D-D-0.7,
D-D-0.6, and D-D-0.5 were not the best for any model, yet they were overall ranked at
places second, third, and fifth, respectively. The data variant with rating A-A-* was not the
best for any model.

On average, across models, the worst-performing data variants were B-B-1.0, D-D-1.0,
A-B-1.0, A-B-0.9, A-A-1.0, and A-A-0.9. These data variants were restrictive regarding
reducing the number of rows or attributes in the training dataset, or both.

Among the baseline models, the best data variants were A-A-* for bR and bRU, and B-
A-* for bMean and bMedian. Specifically, with more restrictive data variants, the baselines
involving random predictions (bR and bRU) performed better but, as investigated earlier,
were still the worst compared to other models.
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Table 7. The values of the difference of each data variant grouped by each model. The data variants in
particular rows were sorted from the best to the worst, according to their mean difference across all
models provided in the last column. The models in particular columns were sorted in alphabetical
order. Values with a single underline denote the best data variant for a given model, and values with
a double underline denote the worst data variant for a given model.

Data Model 1
Mean

Variant bMean bMed bR bRU enet gbm glmnet knn lm lmS M5 nnet Ranger rpart2 svm xgbT

D-D-0.3 −72 −48 −136 −464 501 277 109 371 468 530 310 410 584 269 317 521 247
D-D-0.7 −72 -48 −136 −464 382 299 158 354 412 500 353 376 525 256 346 538 236
D-D-0.6 −72 −48 −136 −464 401 311 152 342 456 476 326 339 544 257 340 468 231
D-D-0.4 −72 −48 −136 −464 456 198 125 286 367 528 284 438 564 269 294 567 228
D-D-0.5 −72 −48 −136 −464 443 194 134 312 425 532 271 330 565 269 313 512 224
D-D-0.8 −72 −48 −136 −464 378 332 156 259 390 489 386 280 512 256 378 490 224
B-B-0.7 −176 −120 −96 −464 326 323 105 308 342 514 319 323 461 271 376 491 206
B-B-0.3 −176 −120 −96 −464 450 175 −38 290 357 511 255 447 504 274 303 511 199
B-B-0.4 −176 −120 −96 −464 436 188 −51 283 341 524 269 421 505 274 271 493 194
B-B-0.8 −176 −120 −96 −464 283 341 77 235 319 475 320 303 459 271 341 453 189
B-B-0.6 −176 −120 −96 −464 321 218 75 273 344 489 268 329 447 270 293 484 185
B-B-0.5 −176 −120 −96 −464 384 193 5 207 331 534 226 338 491 274 314 498 184
B-A-0.7 256 192 64 176 163 65 245 188 76 208 241 177 −48 −1 176 67 140
B-A-0.6 256 192 64 176 154 133 251 200 65 184 205 150 −57 −1 172 39 136
A-A-0.6 8 −16 88 496 265 98 251 217 331 15 133 175 −119 −207 261 −95 119
A-A-0.4 8 −16 88 496 245 153 246 177 319 −39 170 156 −76 −207 266 −119 117
A-A-0.5 8 −16 88 496 245 141 246 177 319 −39 150 153 −97 −207 266 −115 113
A-A-0.3 8 −16 88 496 233 96 250 256 323 −41 137 159 −143 −207 251 −106 112
B-A-0.5 256 192 64 176 137 90 249 177 −95 42 154 178 −87 −1 37 −8 98
B-A-0.4 256 192 64 176 137 45 290 210 −27 −28 146 92 −29 −4 15 −18 95
B-A-0.3 256 192 64 176 140 34 290 202 −34 −41 147 86 −7 −4 −3 −17 93
A-B-0.6 −16 −8 80 256 69 114 128 215 204 −34 152 160 −159 −215 244 −117 67
A-B-0.4 −16 −8 80 256 51 163 128 194 219 −71 76 196 −116 −215 200 −197 59
A-B-0.5 −16 −8 80 256 51 163 128 192 219 −71 76 196 −129 −215 187 −199 57
A-B-0.3 −16 −8 80 256 25 32 128 221 219 −69 49 149 −181 −215 174 −146 44
B-A-0.8 256 192 64 176 −92 138 183 −93 −47 −52 −38 −169 −11 267 −155 −152 29
B-A-0.9 256 192 64 176 −315 96 207 −211 −335 −320 −98 −424 25 418 −415 −165 −53
A-A-0.7 8 −16 88 496 −307 49 136 −201 −334 −312 −200 −381 −84 140 −207 −234 −85
A-B-0.7 −16 −8 80 256 −346 4 −75 −181 −358 −232 −165 −321 −84 216 −283 −262 −111
A-A-0.8 8 −16 88 496 −420 20 102 −309 −464 −460 −276 −521 −101 240 −315 −217 −134
D-D-0.9 −72 −48 −136 −464 −289 −103 −571 −99 −140 −50 −87 68 −101 −98 −63 15 −140
A-B-0.8 −16 −8 80 256 −408 24 −82 −313 −433 −417 −171 −443 −85 234 −349 −286 −151
B-B-0.9 −176 −120 −96 −464 −311 −230 −621 −141 −106 −115 −127 45 −138 −188 −95 −34 −182
B-A-1.0 256 192 64 176 −423 −473 −154 −638 −585 −555 −568 −568 −513 −158 −475 −465 −305
A-A-0.9 8 −16 88 496 −619 −551 −294 −641 −680 −620 −653 −712 −583 −225 −610 −543 −385
A-A-1.0 8 −16 88 496 −618 −659 −287 −654 −681 −600 −603 −645 −560 −352 −635 −548 −392
A-B-0.9 −16 −8 80 256 −638 −609 −464 −671 −691 −625 −593 −646 −625 −415 −623 −510 −425
A-B-1.0 −16 −8 80 256 −631 −677 −465 −679 −684 −660 −635 −567 −678 −413 −658 −464 −431
D-D-1.0 −72 −48 −136 −464 −632 −708 −711 −661 −567 −542 −617 −537 −698 −599 −631 −553 −511
B-B-1.0 −176 −120 −96 −464 −627 −697 −741 −654 −585 −558 −592 −540 −677 −578 −618 −577 −519

1 lmS = lmStepAIC, xgbT = xgbTree.

3.4. RP2A: The Stability of Performance of Data Variants between CV and Test Data Subsets

Figure 7 illustrates the values of Spearman’s ρ for MAE between CV and test subsets
across data variants for each model and pass. Most data points overlap each other for high
values of Spearman’s ρ, especially in the range [0.8, 1]. It is desirable to have such results,
as they confirm the stability of model performance across data variants between CV and
test subsets. The focus here was not on these high values, but rather on values outside this
range, indicating potential problems.

On average, among non-baseline models, the stability of model performance was very
high. The mean and median values of ρ across all passes were very high, both exceeding 0.9
for models such as enet, gbm, glmnet, knn, lm, nnet, ranger, and xgbTree. For lmStepAIC
and svm, the median ρ was around 0.9, but the mean was slightly lower. Only for M5
and rpart2, were both the mean and median ρ lower than 0.9 but still high (>0.75). In only
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single passes, the ρ for some models was noticeably lower, such as for the following: for
svm in pass 5 (ρ = 0.20), for M5 in pass 19 (ρ = 0.53), for glmnet in pass 9 (ρ = 0.57), for
lmStepAIC in pass 9 (ρ = 0.59). In six other cases, the value of ρ was in the range [0.70, 0.75].
In 15 cases it was in the range [0.75, 0.80] and in all other cases, it was higher than 0.75.

Among non-baseline models, there were four cases with the negative ρ: bMedian in
pass 17 (ρ = −0.97), bMean in pass 6 (ρ = −0.60), bMean in pass 17 (ρ = −0.60), and
bMean in pass 12 (ρ = −0.50). These results suggested substantial inconsistency between
prediction accuracy on CV and test subsets in these passes. However, for bMean and
bMedian the mean ρ was still relatively high, and the median ρ was very high. Thus,
although there were these exceptional cases of high inconsistencies, and a few more cases
of low positive ρ, for the baseline models, on average and over all passes, the stability of
performance across all data variants between CV and test subsets was quite high.

Figure 7. Spearman’s ρ for MAE between CV and test subsets for each model and pass across all data
variants. The values in braces denote the mean and median values of ρ for each model across all
passes.

3.5. RP3: Identification of the Best Combinations of Models and Data Variants

Table 8 ranks models and data variant combinations across all passes. It illustrates
the best 20 combinations overall and the single best combination for models outside of
them. Among these top-20 combinations, eight used the enet model, four used the nnet or
lmStepAIC, and two used the lm or xgbTree. All of them were based on data ratings D-D-*
or B-B-* and thresholds of valid values in the range [0.3, 0.7]. Among these top-performing
combinations, the values of the difference were close to each other. The most number of
wins was earned by a combination of nnet with D-D-0.4, which reached the second-best
place overall. The combination of enet with D-D-0.4, the best combination overall, also had
the fewest losses.

Among combinations outside the top-20, the best data variants for particular models
used data rating D-D-* for svm, knn, ranger, M5, and gbm models. The best combinations
for models rpart2 and glmnet involved B-A-0.9 and A-A-0.3, respectively. Combinations
using ratings A-A-*, A-B-*, or B-A-* were the best-performing only for the worst models,
rpart2, glmnet, and the baselines. The best combinations for bMean and bMedian per-
formed better than the best combination for the glmnet model. Combinations involving
bRU and bR gained the fewest wins and ties because they consistently delivered the least
accurate predictions, usually far from the actual values and from the predictions from
other models.

The threshold of valid cases influenced the number of predictors that would be kept
in the training dataset. However, for baselines, this threshold did not influence predictions
because of the nature of these models. Specifically, they do not use the values of predictors
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to deliver predictions for the outcome values. For example, a set of combinations of
bMean with rating B-A-* were all tied at rank 322. These combinations delivered the exact
predictions for all thresholds for valid values.

Table 8. Summary of the performance of the best combinations of models and data variants.

Rank Model Data Variant 1 Wins Ties Losses Difference

1 enet D-D-0.3 10,869 1812 99 10,770
2 nnet D-D-0.4 10,888 1681 211 10,677
3 enet B-B-0.3 10,789 1840 151 10,638
4 enet D-D-0.4 10,742 1896 142 10,600
5 enet D-D-0.5 10,758 1859 163 10,595
6 nnet B-B-0.3 10,795 1769 216 10,579
7 enet B-B-0.4 10,708 1897 175 10,533
8 nnet B-B-0.4 10,689 1922 169 10,520
9 nnet D-D-0.3 10,657 1879 244 10,413
10 lmStepAIC D-D-0.4 10,441 2216 123 10,318
11 enet D-D-0.6 10,407 2220 153 10,254
12 lm D-D-0.3 10,542 1944 294 10,248
13 xgbTree D-D-0.7 10,388 2205 187 10,201
14 lmStepAIC B-B-0.5 10,290 2387 103 10,187
15 lmStepAIC D-D-0.5 10,392 2177 211 10,181
16 enet B-B-0.5 10,335 2283 162 10,173
17 enet D-D-0.7 10,333 2273 174 10,159
18 lm D-D-0.6 10,286 2360 134 10,152
19 lmStepAIC B-B-0.4 10,285 2348 147 10,138
20 xgbTree D-D-0.4 10,364 2187 229 10,135

23 svm D-D-0.8 10,233 2354 193 10,040
78 knn D-D-0.3 9136 3302 342 8794
85 ranger D-D-0.4 8967 3412 401 8566

155 M5 D-D-0.8 7388 3967 1425 5963
168 gbm D-D-0.8 7150 3797 1833 5317
272 rpart2 B-A-0.9 5791 2663 4326 1465
322 bMean B-A-* 4656 3186 4938 −282
340 bMed B-A-* 4160 3290 5330 −1170
423 glmnet A-A-0.3 2389 4173 6218 −3829
559 bR A-B-* 1196 1137 10,447 −9251
601 bRU A-A-* 607 298 11,875 −11,268

1 The ’*’ symbol denotes a wildcard and reflects a set of data variants for particular data ratings but varying
thresholds for a fraction of valid values.

4. Discussion
4.1. Experimental Results

Investigation of the RP1 revealed that across the range of analysed data variants, the
svm model performed the best, and the enet model was ranked second. Other models
performed noticeably worse than these two leaders. However, the ranking of models varied
for particular groups of data variants. Specifically, the svm model performed the best for
ratings A-A-*, A-B-*, and for thresholds of valid values in the range [0.5, 1.0]. The enet
model performed the best for rating B-A-* and for thresholds of valid values in the range
[0.3, 0.4]. The nnet model performed the best for ratings B-B-* and D-D-*, which confirmed
that such models require more data for good performance.

The variability of model performance for particular data variants was noticeable, but
the change of relative ranks of models usually did not exceed 2–4 places. Thus, model
performance across data variants and their groups was quite stable. The only significant
exception was a relatively high performance for two baseline models, bMean and bMedian,
for thresholds of valid values in the range [0.9, 1.0]. This was likely caused by the fact that,
for these thresholds, there were very few predictors left in the training subset, and even
models regarded as accurate could not learn adequate patterns from the data to predict
testing effort accurately. As revealed while investigating the RP1A, the variability of models
among passes was noticeable but not significant to the degree that particular models would
perform exceptionally better or worse, as in the other passes.
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Investigation of the RP2 revealed that, for most models, especially those that were
the most accurate, the best performance was achieved with data variants based on ratings
D-D-* and B-B-*. No consistent pattern regarding the optimum threshold of valid values
common for all models was identified, i.e., for particular models, different threshold values
were the best.

Investigation of the RP2A revealed that, for most models in most passes, the perfor-
mance of particular data variants on the CV subset was consistent with their performances
on the test subset. The most noticeable deviations were for bMean and bMedian models
but, among non-baseline models, only for selected models in the individual passes.

Although the best model overall across all data variants and passes was the svm, the
analysis of the RP3 demonstrated that the best combination of the model with data variant
was enet with D-D-0.4, and the best combination involving svm was ranked 23rd (with
data variant D-D-0.8). Some combinations performed exceptionally well for models in the
middle of the overall ranking of models. Some were in the top-20 or even top-10 of the best
combinations. They included models like lm, xgbTree, and, most importantly, lmStepAIC.

All data variants in the best-performing combinations of particular models were based
on ratings D-D-*, most often with thresholds of valid values in the range [0.3, 0.4]. Hence,
these top models performed the best on the higher volumes of data, i.e., the higher numbers
of rows and attributes. This, in itself, was not surprising. However, this held, even though
the larger datasets contained cases of poor ratings and/or attributes with many missing
values. Let us revisit the general question for this study formulated in Section 1: “Which of
the following is it better to use to train predictive models for software testing effort prediction: (1)
the entire available dataset containing some low-quality data or (2) on a subset of the entire dataset
containing selected higher-quality data?” The results obtained demonstrated that the first of
these approaches should be preferred, at least for the best-performing models.

4.2. Related Work

One of the closest studies to the current one on software testing effort prediction
was performed recently [7]. It also used the ISBSG dataset (but the older edition from
2018) and involved comparing several prediction models. The author did not provide an
overall ranking of models but identified the best-performing models for particular subsets
of the data. These subsets were selected depending on a mixture of attributes describing
the project environment, e.g., the type of development, development platform, language
type, and sizing method. For most of these subsets, the best-performing model was svm.
The obtained results are not comparable with the current study because of the significant
methodological differences, most notably including no evaluation on an independent test
subset, creation of models with just a single predictor of functional size, and arbitrary data
selection to projects with ratings B-B.

Some studies used a more detailed set of attributes. For example, Ref. [26] used
individual predictors like input count, output count, enquiry, file, and interface counts.
These attributes were used to calculate the functional size (number of function points). In
that study, both functional size and those individual attributes were used as predictors
causing dependencies among predictors. Such a decision was not justified in that paper.

Several studies on software testing effort prediction used datasets much smaller than
ISBSG. Some of them used less popular predictive models not included in this study,
like Bayesian classification, particle swarm optimisation, genetic algorithms, differential
evolution, firefly and water wave algorithms, bat algorithm, fuzzy techniques, and/or other
extensions to linear regression algorithms. An overview of these studies was presented
in [6]. Due to the differences between the used datasets and/or the research methodology,
results from these studies are not comparable to the current study.

A study in [55] involved an investigation of the relationship between data ratings
and the total project effort in the ISBSG dataset. Specifically, the study analysed which
combinations of Data Quality Rating and UFP Rating in a linear model reached the highest
coefficient of determination r2. The authors found that the best-performing rating was A-A,
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followed by A-B and B-B (tied), and the worst was B-A. Nevertheless, all differences were
minor. It was not a predictive study, i.e., these models were not evaluated on a separate
test subset, but the test data were the same as for learning the model. Furthermore, these
models explicitly included the Year of Project, reflecting a possible trend in productivity
changing over the years. The current study did not use the Year of Project as a predictor.

The current study used single models or combinations of models of the same type.
To achieve better predictive accuracy, it may be preferable to use more complex ensemble
methods [56,57] by integrating models of different types. Following such an approach
may lead to increased predictive accuracy. However, such ensembles were not explored
here because the aim was to use popular models in similar studies. Ensemble models
are less popular and with no generally established approach on how to create them for
such comparative studies in software (testing) effort prediction. Hence, they are often not
regarded as reference models for comparisons.

4.3. Utilizing the Results

This study created three main rankings: models for particular data variants, data
variants for particular models, and the combinations of models and data variants. The
results obtained were achieved on solid methodological grounds, including appropriate
statistical tests and repetitions of random data splits. Thus, these rankings may be help-
ful as a starting point for researchers and practitioners wishing to conduct an extended
experiment on software testing prediction.

Specifically, the results obtained demonstrated that, for most models, especially those
delivering the most accurate predictions, arbitrarily restricting data for experimentation to
projects with ratings A or B is unjustified. Most models performed the best for ratings D-D-*.
To highlight the importance of this, note a significant difference to the studies using only
projects with ratings B-B or even with higher quality ratings. Such upfront data restriction
causes not only model training to be performed on such top-quality data but also model
evaluation on such a subset. In contrast, in this study, the data filtering by these ratings was
performed only for the training data. However, model evaluation was performed on the
entire dataset, regardless of data ratings. Therefore, we might have expected that, because
the test data contained lower quality data, the evaluation of predictive models on such data
would have revealed their poor performance. However, it was observed only for a few
models, usually not those top-performing.

The main practical recommendation supported by the results obtained is as follows:
when training predictive models for software testing effort prediction with the ISBSG
dataset and machine learning methods, it is best to use all data rows, i.e., to include projects
with low categories of C and D for Data Quality Rating and UFP Rating. The obtained results
did not allow the formulation of a universal recommendation regarding the treatment of
missing values, as the best strategies depended on the particular models. For example, for
models like enet, nnet, lm, lmStepAIC, knn, and ranger, it is best to set low values of the
threshold of valid values, like [0.3, 0.4], even though this means that the remaining large
fraction of missing values would be filled with the mean or mode. For other models, like
xgbTree, svm, M5, and gbm, it is best to set medium-high values of this threshold, like
[0.7, 0.8]. For no model, is it advisable to set a threshold of 1, where only attributes with no
missing values would be used.

4.4. Threats to Validity

The data selected for this study may be considered a threat to validity because only a
single dataset was used. This selection of the ISBSG dataset was motivated by its popularity
in similar studies on software effort prediction andbecause, according to the author’s
knowledge, this is the only publicly available dataset providing data ratings. In addition,
the study was performed on a subset of the dataset because the raw dataset did not contain
essential data for excluded projects, especially on the testing effort, or where project sizing
and effort were estimated with methods other than the most popular and those selected
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for this study. Still, even after such data selection, the dataset used in this study was quite
large and contained reasonably diverse projects.

Another group of threats is related to the arbitrary decisions made throughout the
experiment related to the selection of models and data preparation steps for particular
models, attribute filtering, number of passes, number of folds in CV, values of model param-
eters, and sets of hyperparameters, evaluation measures, etc. For example, a symmetrical
absolute error measure was used to evaluate model performance. It treated both underesti-
mation and overestimation equivalently. However, in some contexts, focusing on one of
them might be essential. For example, it might be desirable to pay more attention to the
underestimation that may lead to problems with funding a project or to the overestimation
that may lead to unnecessary allocation of resources. This problem was not explored here
as it depends on the project context, but the used datasets do not contain sufficient data.
In general, all these decisions were motivated by the goal of this study, decisions made
in similar studies and the author’s preliminary experiments, and the balance between the
duration of calculations (mainly model training time) and the ability to achieve good solid
results for solving the stated research problems. Due to such a trade-off, this study did not
focus on global optimisation, e.g., in terms of identifying globally optimal hyperparameters
for predictive models. Still, as mentioned before, sub-optimal solutions were sufficient and
in line with the goals of this study.

4.5. Future Work

The ISBSG dataset contains two attributes reflecting the quality of the data. How-
ever, other approaches propose comprehensive and more detailed data quality evaluation
involving more data quality characteristics [21,58–60]. Thus, future work may focus on
investigating these additional characteristics. An example of such an extension may be
incorporating the influence of the outliers. Although such a topic was investigated in
isolation in [14,15,26], it may be worth examining it, together with other dimensions of data
quality analysed in this study. Other future work paths may include those intentionally
omitted in this study, e.g., exploring a range of ensemble models or more data, including
projects with other sizing and effort estimate methods.

5. Conclusions

The results obtained in the experiments of this study led to drawing up the following
conclusions:

• Among the best three models overall, the svm (support vector machines) performed
the best for the most restrictive ratings A-A and A-B, enet (elastic net) performed
the best for ratings B-A, and nnet (neural network) performed the best for the least
restrictive ratings B-B and D-D.

• Using restrictive data variants, i.e., involving ratings A-A, A-B or B-A that reduced
the number of rows (projects) and high thresholds of valid values of 1.0 or 0.9, led to
poor performance of most models.

• Most models, especially the most accurate, performed the best with data variants
using ratings D-D. The performance of most models on data variants with ratings B-B
was lower.

• No global optimum threshold of valid values common for all models was detected as
it was specific for a particular model.

• The relative rank of models for particular groups of data variants, including only
particular data ratings or only thresholds of valid values, was quite stable.

• Performance of data variants for most models and most passes, excluding less than
ten exceptions, was stable between CV and test subsets.

The standard practice in most experiments described in the existing literature on
software effort prediction using the ISBSG dataset is an arbitrary and restrictive data
selection only to projects with Data Quality Rating and UFP Rating with values A or B. The
most important conclusion from this study is that such a standard approach does not seem
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justified in terms of the performance of most predictive models for testing effort prediction.
Therefore, it is recommended not to exclude cases with low data ratings. Instead, training
data with all cases, regardless of their ratings, should be used to achieve better accuracy of
most predictive models.
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