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Abstract: Thangka is an important intangible cultural heritage of Tibet. Due to the complexity, and
time-consuming nature of the Thangka painting technique, this technique is currently facing the
risk of being lost. It is important to preserve the art of Thangka through digital painting methods.
Machine learning-based auto-sketch colorization is one of the vital steps for digital Thangka painting.
However, existing learning-based sketch colorization methods face two challenges in solving the
problem of colorizing Thangka: (1) the extremely rich colors of the Thangka make it difficult to color
accurately with existing algorithms, and (2) the line density of the Thangka brings extreme challenges
for algorithms to define what semantic information the lines imply. To resolve these problems, we
propose a Thangka sketch colorization method based on multi-level adaptive-instance-normalized
color fusion (MACF) and skip connection attention (SCA). The proposed method consists of two
parts: (1) a multi-level adaptive-instance-normalized color fusion (MACF) to fuse sketch feature
and color feature; and (2) a skip connection attention (SCA) mechanism to distinguish the semantic
information implied by the sketch lines. Experiments on colorizing Thangka sketches show that our
method works well on two small datasets—the Danbooru 2019 dataset and the Thangka dataset. Our
approach can generate exquisite Thangka.

Keywords: Thangka; machine learning; attention

1. Introduction

As a kind of Tibetan encyclopedia [1], Thangka art is one of Tibet’s most valuable
cultural heritages and one of the most precious materials for studying Tibetan history. It
takes a professional Thangka painter dozens of days or even years to paint a beautiful
Thangka. Thangka colorization is one of the essential parts of the Thangka painting process,
which requires a lot of time and effort for professional Thangka painters. Recently, the
colorization of a given image has attracted much attention in computer vision. The machine
learning-based sketch colorization method enables us to use digital means to create and
preserve Thangka better.

Although great progress [2,3] has been made in sketch colorization methods, there is
no available solution for the task of Thangka sketch colorization due to three main reasons:
(1) Thangka artworks are extremely colorful, which makes both traditional non-learning
methods and standard convolution-based learning methods hard to color correctly; (2) the
line density of the Thangka makes it difficult for the existing methods to correctly define
what semantic information the Thangka lines imply; and (3) the existing Thangka dataset
is too small to be trained well with the existing colorization methods.

Reference-based sketch image colorization [2–4] has excellent potential for sketch col-
orization of Thangka, and these related works have achieved remarkable results. However,
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these existing reference-based sketch image colorization methods are still unable to produce
satisfactory colorization results because of two challenges:

Challenge 1: Existing reference-based sketch image colorization algorithms cannot
correctly extract the color features of Thangka. Compared with the existing datasets, such
as face images, landscapes, indoor scenes, flowers, animals, animation and cars, etc., the
colors in the Thangka dataset are extremely rich. The performance of Thangka painting
depends on the color feature extraction. However, the existing colorization methods are
mainly applied to color animation works which only contain simple colors and single
structures.

Challenge 2: Compared with other sketch images, the lines of the Thangka sketches
are too dense for algorithms to define what semantic information the lines imply, which
leads to problems in the colorization process (for example, in Figure 1, the results of existing
methods show obvious artifacts, wrong colors, and color confusion).

Sketch

Reference

The result of our 

method

The result of 

existing method

Ⅰ Ⅱ Ⅲ 

Ⅳ Ⅴ Ⅵ 

Detailes  of our result

Detailes  of existing method result

b)The result of our method and its detailes a)Sketch and reference 

images

c)The result of existing method and its detailes 

Figure 1. The proposed MACF-SCA obtains the best colorization map with more accurate colors
and better visual effects (b). Existing reference-based methods cannot accurately migrate the color
semantic information (c). The detailed parts show that our model can accurately distinguish the
semantic information of dense lines (I,II,III), and the existing model shows obvious visual artifacts,
color confusion and color errors (IV,V,VI).

In this paper, a multi-level adaptive-instance-normalized color fusion (MACF) and
skip connection attention mechanism (SCA) is proposed (Figure 2) to solve the Thangka
sketch colorization. The proposed method consists of two parts:

First (solution for Challenge 1), a new multi-level adaptive-instance-normalized color
fusion (MACF) is proposed to fuse rich color features with sketch features efficiently. MACF
consists of a combination of four identical Convolutional AdaIN ReLU (CAR) modules
(Section 3.3). Firstly, color features and sketch features are extracted using a color feature
encoder and sketch feature encoder, respectively. Then they are fed together into a multi-
stage MACF for fusion. The multi-level MACF ensures the accurate fusion of color features
and sketch features.

Second (solution for Challenge 2), a new semantic information distinction based on
skip connection attention (SCA) is proposed to focus on sketch lines. SCA is extremely
sensitive to subtle objects, allowing our model to accurately distinguish what semantic
information the subtle lines imply. Our skip connection attention-trained Thangka coloriza-
tion model not only provides accurate recognition of semantic information but also avoids
overfitting.

Experiments on the colorization of Thangka sketches show that our method can
generate high-quality Thangka colorization results in one step without post-processing. In
summary, the main contributions of this work are:

1. We propose a multi-level color fusion module multi-level adaptive-instance-normalized
color fusion (MACF), which can accurately fuse color features with sketch features
and generate high-quality colorization works.
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2. We propose a skip connection attention (SCA) module for accurately distinguishing
semantic information consisting of dense lines.

3. For the first time, we present a framework applicable to the Thangka sketches col-
orization, and we also constructed a new Thangka dataset (5081 images).
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Figure 2. The proposed Thangka sketch colorization method consists of two parts: (1) a multi-level
adaptive-instance-normalized color fusion (MACF) module for the fusion of color features and sketch
features, and (2) the integration of a skip connection and attention (SCA) mechanism, which scales
the extracted sketch features to capture a large enough receptive domain to distinguish the semantic
information of the lines accurately.

2. Related Work
2.1. Automatic Sketch Colorization

Automatic sketch colorization methods based on deep learning [5–11] have received
increasing attention in recent years. Relying on the powerful representation capability
of deep neural networks, automatic sketch colorization methods can be implemented by
designing various network structures and using large-scale image datasets. Liu et al. [5]
used a feed-forward deep neural network as a generator to output color images with
pixel-level resolution using sketches as the input. Frans et al. [6] proposed two tandem
adversarial networks for the automatic colorization of sketch images. Recent studies [7,11]
have improved using the U-net network and proposed a U-net-based architecture for
automatic sketch colorization.

For all automatic sketch colorization methods, there are two main problems: (1) these
methods are sensitive to visual artifacts when the sketch has complex content with multiple
objects, and (2) the existing methods tend to output single-color results and have no
multimodality since the network parameters are fixed.

2.2. User Prompt Based Colorization

Early interactive colorization methods [12,13] used low-similarity metrics to propagate
stroke colors. Recently, some algorithms [5,14–17] introduced manual guidance to apply
initial color points or strokes to the entire sketch image. Ci et al. [14] proposed a deep
conditional adversarial architecture to robustly train the network to make synthetic images
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more natural and realistic. Zhang et al. [15] proposed a two-stage colorization framework
based on semi-automatic learning to color sketches with appropriate colors, textures, and
gradients. Yuan et al. [16] proposed a tandem and U-net-based framework on a spatial
attention module that can generate more consistent and higher-quality sketch colorization
from the cues given by the user.

However, all these methods have limitations: (1) these palette-based colorization
methods are susceptible to user aesthetic limitations, and (2) it is difficult for untrained
users to select the appropriate points and associated colors from the palette.

2.3. Reference-Based Sketch Image Colorization

In contrast to the user prompt-based colorization, reference-based sketch image col-
orization only requires a user to select a suitable reference image based on a target sketch
image. Colorization of the sketch image according to the reference style is a user-friendly
method that helps a designer choose the right color image for the sketch [2–4,18–20]. With
the recent rise of deep neural networks, Zhang et al. [4] integrated the residual U-net into a
generative adversarial network (AC-GAN) with an auxiliary classifier for the anime sketch
colorization task. Due to the limitations of the sketch-reference image pair dataset, Lee
et al. [2] proposed an enhanced self-reference generation method, where the reference
image is generated from the original image by color perturbation and geometric distortion,
followed by an attention-based pixel feature transfer module to colorize the sketch image.
Li et al. [3] proposed a stop-gradient-attention (SGA) training strategy based on [2] to
eliminate gradient conflicts and help models learn better colorization correspondences.

Although these models achieved good results, the results of the Thangka sketch
drawings are not satisfactory. As shown in Figure 1, a comparison between the existing
method (Figure 1c) and our method (Figure 1b) shows obvious artifacts, color errors, and
semantic mismatches of the existing method.

3. Methodology

The proposed sketch colorization method for Thangka consists of two parts: (1) a
multi-level adaptive-instance-normalized color fusion (MACF) for fusing color features
and sketch features, and (2) a skip connection attention (SCA) module that integrates
skip connection and attention mechanism, which can accurately discern the semantic
information of dense lines.

3.1. Overall Workflow

As shown in Figure 2, given a color image I, we first convert it to an artistic line
image Is using XDoG [21]. Then, inspired by [2], we obtain the expected colorization result
Ic by adding a random color dithering on I. Next, a self-styled reference image Ir was
generated by applying the thin plate spline (TPS) transformation to Ic. Finally, we use a
self-supervised training process similar to [2]. In the training process, our model takes Ir
and Is as inputs and uses two independent encoders Es (Is) and Er (Ir) to extract sketch
features fs ∈ Rc∗h∗w and color features fr ∈ Rc∗h∗w.

To carry out sketch feature alignment and color feature fusion simultaneously, the
extracted color features are fused into the depth representation of the sketch through our
MACF block control feature map. The final color image Ig is then generated using multiple
residual blocks and a decoder with a skip connection to the sketch encoder Es. In the end,
we add an adversarial loss [22] by using a discriminator D to distinguish the output Ig and
the ground truth Ic. The color style is similar to the reference image, and the content is
consistent with the input sketch.

3.2. Self-Enhanced Self-Referential Learning

Due to the scarcity of the Thangka dataset, preparing reference images for Thangka
sketch images and linking these two inputs for pixel-level pairing training is a crucial
bottleneck; we adopt the self-reference generation method from [2]. To generate a random
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reference image Ir for a given Thangka sketch Is, we perform a spatial transformation of
the original real color image I. Since Ir is essentially generated by I, this process guarantees
enough color information to color Is, which encourages the proposed model to reflect Ir in
the colorization process.

Detailed information on how these conversions work is described below. First, the
content transformation C(·) adds a specific random color perturbation on I. The resulting
output C(I) is then used as the ground truth Ic for the colorization output of our model.
The reason why we impose the color perturbation to the original I is to increase the
training samples. The same original color image I can have different reference images.
Afterward, we further apply the thin plate spline (TPS) [23] transform T(·), a non-linear
spatial transformation operator to C(I) (or Ic), resulting in our final reference image Ir. This
prevents our model from lazily bringing colors from I to the same pixel location while
forcing our model to extract semantic color information only from the reference image,
even if it has a different layout in space. For example, differences in orientation, shape, and
posture. The above two transformations help our model learn to transfer the correct color
information from the reference image to the target image.

3.3. Multi-Level Adaptive-Instance-Normalized Color Fusion (MACF)

Existing deep learning methods, such as SCFT [2] and SGA [3], have reached state-of-
the-art image colorization. However, they still fail to correctly migrate rich colors through
deep networks, which inevitably leads to inaccurate colorization of the final results. Our
MACF consists of four identical Convolutional AdaIN ReLU (CAR) modules, and the
composition of the CAR module is shown in Figure 3.
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Figure 3. The proposed multi-level adaptive-instance-normalized color fusion (MACF) consists of
four identical CAR modules. Given a set of sketch and reference images, different results are output
by level-by-level CAR. It is a multi-level operation that enables the natural fusion of color features
with sketch features.

MACF fuses the color feature map extracted by the color encoder with the sketch
feature map extracted by the sketch encoder. In MACF, we use the AdaIN layer to control
the input feature maps to achieve alignment of color features with sketch features. Multi-
layer CAR is used to output multi-scale result maps.

3.4. Skip Connection Attention (SCA)

Inspired by [24], we note that attention gates (AG) are extremely sensitive to subtle
changes, which helps us process complex textured images such as Thangka. We merged
the AG into our net architecture to highlight the sketch features passing through the skip
connection. For the SCA module, we provide two inputs—a complete sketch feature map
and a rough feature map. As shown in Figure 2, the sketch feature information is roughly
extracted for gating in the Es encoder using the vgg19 network [25] to eliminate irrelevant
noise and ambiguous responses in the skip connection. This is performed before the join
operation to merge and activate only the relevant feature information in the decoder.

As shown in Figure 4, in order to accurately distinguish the semantic information of
sketch lines, a sufficiently sizeable receptive field needs to be captured. When the decoder
is connected to the skip connection, the attention gate calculates the activation weights in
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the skip connection, locks the spatial region and scales the sketch features delivered by the
skip connection. The sketch feature map is scaled using the attention factor (α) computed
by AG. The spatial regions are selected by analyzing the activation and line information
provided by the gating signal (G), which is collected from a coarser scale. Finally, sketch
feature mapping and color feature fusion are performed in the decoder to obtain the final
colorized Thangka image.

Conv,1x1

Conv,2x2 FC

FC Reshape

Conv,1x1 FC

Coarse scale feature(G)

Sketch feature Map

SCA 

module
α
 

Output

Figure 4. The proposed skip connection attention (SCA) integrates skip connection and attention
mechanisms to discriminate semantic information consisting of dense lines accurately.

3.5. Loss Function

For machine learning, the design of the loss function depends on the goal of the
training. In this work, the goal of Thangka sketch colorization is to give the Thangka sketch
appropriate colors to show the beauty of the Thangka artwork. To achieve this goal, the
Reconstruction Loss (Lrec), Adversarial Gen Loss (Ladv), Perceptual Loss (Lperc) and Style
Loss (Lstyle) functions are used in our method.

Reconstruction Loss. According to Section 3.1, the generated image Ig and the ground
truth image Ic should be stylistically consistent with the reference image Ir and retain
consistent contours with the sketch image Is, respectively. Therefore, we use the L1 [26]
criterion to measure the difference between Ig and Ic, which ensures that the model adds
color correctly and distinctly. The reconstruction loss can be expressed as:

Lrec(G) = E(Is ,Ir ,Ic)[‖G(Is, Ir)− Ic‖1] (1)

where G (Is, Ir ) means coloring the sketch Is with the reference Is and Ic is the color image.
Adversarial Gen Loss. As an adversary of the generator, the discriminator D aims

to distinguish the images generated by the generator from the real ones. The output of
the real/fake classifier (X) represents the probability that any image X is a real image. We
chose conditional GANs, which uses generated samples and additional conditions [27]
simultaneously. In this work, we use the input image Is as the condition for adversarial
loss because preserving the content of Is and generating plausible fake images is important.
The optimization of D′s loss is expressed as a standard cross entropy loss as:

Ladv(G, D) = E(Is, Ic)[log D(Is, Ic)] + E(Is,Ir )
[log(1− D(Is, G(Is, Ir)))] (2)

where G represents the generator , D represents the discriminator, Is is the sketch image, Ir
is the reference image, Ic is the color image, and Ig is the generated image.
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The first term E(Is ,Ic)[log D(Is, Ic)] represents the discriminator’s loss for real images
(Is, Ic), so the goal of this term is to make the discriminator better at distinguishing real
images from fake ones by making its output log D(Is, Ic) closer to 1. The second term
E(Is ,Ir)[log(1− D(Is, G(Is, Ir)))] represents the generator’s loss for generated fake images
(Is, G(Is, Ir)); this term aims to make the discriminator output log(1 − D(Is, G(Is, Ir)))
closer to 0.

Perceptual Loss. As shown in previous work [28], perceptual loss [29] can drive the
network to produce perceptually plausible outputs and has also been shown to facilitate
the training of sketch colorization models [30,31]. We use the perceptual loss computed on
the VGG19 network [25] pre-trained on ImageNet as the content loss of the generator as:

Lperc (G) =
N

∑
i=1

1
Ti

[∥∥∥F(i)(Ic)− F(i)(G(Is, Ir))
∥∥∥

1

]
(3)

where Ti is the number of elements in the i-th layer of VGG19 and F(i) is the feature
mapping in the i-th layer.

Style loss. Lee et al. [2] have shown that style loss helps the network to produce
reasonable outputs. The style loss is calculated as:

Lstyle = E
[∥∥G(φl( Î)

)
− G

(
φl
(

Igt
))∥∥

1

]
(4)

where G is a gram matrix.
In summary, the overall loss function for training is defined as:

Ltotal = Ladv + λrecLrec + λperc Lperc + λstyle Lstyle (5)

4. Experimental Results and Analysis
4.1. Dataset

We used the Danbooru 2019 and Thangka datasets to train and validate our model.
Danbooru 2019 dataset [32]. Danbooru 2019 is the most widely used dataset in

animation sketch colorization. For the Danbooru 2019 dataset, we filtered 16,170 images
from it for training and 2000 images for testing. It consists of objects with black background
images. Since the black background has obvious area boundaries when extracting lines,
we substitute all black backgrounds with white backgrounds to facilitate the extraction of
sketches. This dataset is used to train our model in the cartoon domain so that the Thangka
sketches have the stylistic characteristics of anime.

Thangka dataset. Since there is no publicly available Thangka dataset for our study,
we collected 128 ultra-high-definition Thangka images (size 12,869 × 16,710) from the
Internet and then manually cropped and cut out beautiful partial pictures of these Thangka
murals containing portraits of Buddha statues, lotus bases, sacred animals, auspicious
clouds, auspicious treasures, temples, etc. Finally, 5662 Thangka images (size 512 × 512)
were obtained for the experiment. We allocate 5081 images for training and 581 images
for testing.

To simulate the lines drawn by the artist for both the Danbooru 2019 dataset and the
Thangka dataset, we used XDoG [21] to extract the sketch inputs and set the parameters of
the XDoG algorithm to φ = 1 × 109 in order to maintain a step transition at the boundary of
the sketch lines. For other parameters, we set σ = 0.5, p = 19, k = 4.5, and ε = 0.01 by default
in XDoG.

4.2. Implementation Details

We trained our model on a single NVIDIA 3090 GPU and we set the coefficients of each
loss term as follows: λrec = 30, λperc = 0.01, and λstyle = 50. We use the Adam solver [33]
for optimization with momentum hyperparameters β1 = 0.5 and β2 = 0.999. The learning
rates of the generator and discriminator are initially set to 0.0001 and 0.0002, respectively.
For each dataset, the size of the input image is fixed as 512 × 512.
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4.3. Qualitative Evaluation

We conducted experiments on the Danbooru 2019 and Thangka datasets and com-
pared our approach with existing state-of-the-art methods that include not only reference-
based line art colorization [2,3] but also image-to-image translation [20]. Figure 5 visually
compares the overall qualitative results of our method with the state-of-the-art methods.
Figure 5A,B show the results of the Danbooru 2019 dataset, and C,D compare the results
of the Thangka dataset. The sketch and reference images are given in the first and second
columns, respectively.

A

B

C

D

(a) Sketch (b) Reference (c) Ours (d) Munit (e) SCFT (f) SGA

Figure 5. Colorization result of Thangka sketch. Compared with Munit [20] (d), SCFT [2] (e), and
SGA [3] (f), our results (c) show correct correspondence between the sketch and the reference images.
Munit [20] (d) does not learn semantic information correctly, SCFT [2] (e) shows significant artifacts,
and SGA [3] (f) shows significant color misalignment. Column (a) is the sketch of the Thangka, and
column (b) is the reference image. A,B show the results of the Danbooru 2019 dataset, and C,D
compare the results of the Thangka data.

On each dataset, our model extracts the exact colors from the reference image and
injects them into the corresponding positions in the sketch. For example, in the first row of
Figure 5, our model colored the lotus base correctly, while SCFT [2], SGA [3] and Munit [20]
all showed unsatisfactory visual effects. In contrast, our method finely fills in the same
colors as the reference image. As shown in the third row of Figure 5, the results of the
Thangka show that Munit [20] was unable to learn the correct semantic information of the
Thangka image. SCFT [2] and SGA [3] also showed obvious color overflow, errors, and
noticeable visual artifacts.
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The experimental results of the Danbooru 2019 and Thangka datasets show the superi-
ority of our method over SCFT [2], SGA [3] and Munit [20], demonstrating the advantages
of our model in establishing visual correspondences and generating appropriate colors in
Thangka images.

4.4. Quantitative Evaluation

In traditional sketch colorization setups, pixel-level evaluation metrics such as peak
signal-to-noise ratio (PSNR) and contour retention evaluation metrics such as structural
similarity index (SSIM) are widely used. The Fréchet inception distance (FID) [34] is a well-
known metric used to evaluate the performance of generative models. In our study, we use
the following three metrics to evaluate the results of our model quantitatively.

Fréchet inception distance (FID) [34]. FID is a well-known metric used to evaluate
the performance of generative models by measuring the Wasserstein-2 distance between
the feature space representation of the actual image and its generated output. A low FID
score indicates that the model generates images with quality and diversity close to the real
data distribution.

Peak signal-to-noise ratio (PSNR). PSNR is based on the error between corresponding
pixel points and is one of the most widely used objective image evaluation metrics. A
higher PSNR score indicates a better similarity between the reconstructed and ground truth
color images.

Structural similarity index (SSIM). The structural similarity index, which calculates
the structural similarity index (SSIM) between the reconstructed image and the original
color image, measures the preservation of the contours of the drawing during the coloriza-
tion process. The higher the score, the more similar the two images are; the ideal value
is 1.

To evaluate the performances of different methods, we randomly selected reference
and sketch images for colorization and used the above three metrics for a quantitative
study. Table 1 shows the results.

Table 1. Quantitative comparisons show that our model trained for Thangka colorization outperforms
the models trained by SCFT [2], SGA [3] and Munit [20] (tests are conducted on both the Danbooru
2019 dataset of 2000 images and the Thangka dataset of 581 images). FID [34] score: a lower score is
better. PSNR and SSIM score: a higher score is better.

Method
Danbooru 2019 Thangka

FID↓ SSIM↑ PSNR↑ FID↓ SSIM↑ PSNR↑

Munit [20] 58.38 0.68 13.83 168.89 0.19 9.09
SCFT [2] 45.60 0.80 16.23 183.65 0.48 13.26
SGA [3] 24.28 0.79 16.18 110.79 0.43 11.92

Ours 16.13 0.82 16.53 51.35 0.54 12.87

We report the FID, SSIM and PSNR scores calculated by these models on different
datasets in Table 1. Our model scores show that the proposed SCA module in the model
plays a valuable role in generating realistic images by establishing context-supervised
semantic correspondence through skip connections. Our method produces results closest to
ground truth color images, which demonstrates the realism and robustness of our method
on different images. We show more examples of Thangka sketch coloring in Figure 6.
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Sketch Reference Output

Figure 6. More colorization examples of Thangka sketches generated by our method. Our MACF-SCA
generates visually excellent and semantically sound colorization result maps.

4.5. Ablation Study

We conducted several ablation experiments to validate the effectiveness of each com-
ponent of our approach, namely multi-level adaptive-instance-normalized color fusion
(MACF) and skip connection attention (SCA). Table 2 reports the quantitative ablation
results, reflecting the validity of our model. PSNR/SSIM metrics are evaluated by paired
sketch/reference inputs, and the FID is assessed by random reference.

First, we removed the MACF module to evaluate the effectiveness of multi-level
adaptive-instance-normalized color fusion (MACF), which obtained poor performance in
Table 2, verifying the necessity of our MACF.

Second, we conducted an ablation study on the skip connection attention (SCA)
module to verify the advantages of the skip attention mechanism in our framework. Table 2
shows that the model’s performance with the SCA module is significantly better than the
model without the SCA module. Although a realistic image can be generated without the
SCA module, it has a lower contour retention, i.e., SSIM metric.

Finally, in the third row of Table 2, we show the results of our whole model, and we
can see that it performs with a significantly superior quality of image generation. The
contour retention rate, i.e., the SSIM, is also the highest. Our ablation study demonstrated
the effectiveness of MACF and SCA.

Table 2. The ablation study validated the effectiveness of the proposed adaptive-instance-normalized
color fusion (MACF) and skip connection attention (SCA). With the presence of both MACF and SCA
in the model (row 3 of Table 2), our model achieved the best results. FID [34] score: a lower score is
better. PSNR and SSIM score: a higher score is better.

Method
Danbooru 2019 Thangka

FID↓ SSIM↑ PSNR↑ FID↓ SSIM↑ PSNR↑

W/O MACF 21.35 0.79 14.42 66.05 0.51 12.30
W/O SCA 18.40 0.78 15.88 60.79 0.50 12.41

FULL 16.13 0.82 16.53 51.35 0.54 12.87

We show two qualitative examples in Figure 7 that demonstrate the effectiveness of
MACF and SCA.
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Figure 7. The proposed multi-level adaptive-instance-normalized color fusion (MACF) and skip
connection attention (SCA) allow our MACF-SCA to produce visually better and more accurate
colorization results by multi-level color fusion (see the fourth column). In contrast, the second column
(without MACF strategy) shows obvious color confusion. In the third column (without SCA strategy),
it is not difficult to find color errors due to misjudgment of line semantic information.

5. Conclusions

We propose a method of colorizing Thangka sketches based on multi-level adaptive-
instance-normalized color fusion (MACF) and skip connection attention (SCA) for generat-
ing Thangka artworks. The method consists of two parts: (1) a new multi-level adaptive-
instance-normalized color fusion module (MACF) for the accurate fusion of color features
with sketch features, and (2) a new skip connection attention (SCA) for accurately distin-
guishing semantic information composed of dense lines. Experiments on two different
datasets show that our method can produce more visually plausible and richer coloriza-
tion maps compared to the existing methods. Both objective and subjective evaluations
validated the performance of our method.

Although our method works well on anime and Thangka sketches, our outputs can
still be affected by the colors and textures of style references. If the style reference contains
little color information, output quality may be unsatisfactory. In addition, this study
focuses more on coloring religious artworks, Thangka and anime, while other types of
inputs still need further optimization and improvement. Future work includes using
more related techniques such as color mapping, color gradient generation, and color
blending to enhance the expressiveness and fidelity of coloring. It also includes adapting
the model to accommodate more types of inputs and improving the model to handle higher
resolution images.
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