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Abstract: In this paper, an ultra-low-power second-order, single-bit discrete-time (DT) double sam-
pling ∆Σ modulator was proposed for hearing aid applications. In portable biomedical devices
that are permanently used such as hearing aids, short battery lifetime and power dissipation are
considerable issues. In a typical delta–sigma modulator, the most power-consuming parts are the
operational transconductance amplifiers (OTAs), and their elimination without loss of efficiency is
now challenging. This proposed modulator includes an ultra-low-power self-biased inverter-based
amplifier with swing enhancement instead of power-hungry OTAs. Low voltage amplifier design
reduces output swing voltage, affecting delta–sigma modulator efficiency and decreasing the signal-
to-noise and distortion ratio (SNDR) and dynamic range (DR) values. In this article, the proposed
amplifier’s source and tail transistors were biased in the sub-threshold region, increasing the output
swing voltage significantly and leading to desired properties for a hearing aid modulator. The
proposed amplifier peak-to-peak swing voltage was approximately 1.01 V at a 1 V power supply. In
addition, the proposed modulator design used a standard 180 nm CMOS technology, which obtained
140 dB DR and 93.27 dB SNDR for a 10 kHz signal bandwidth with an oversampling ratio (OSR) of
128. Finally, the modulator’s effective chip area was 0.02 mm2 and consumed only about 9.9 µW,
while the figure of merit (FOMW) and FOMs achieved 1.31 fJ/step and 183.31, respectively.

Keywords: ultra-low power; self-biased inverter-based amplifier; discrete-time (DT); hearing aids;
delta–sigma modulator; inverter-based amplifier; double sampling; subthreshold; high swing amplifier

1. Introduction

Nowadays, low power dissipation is critical in biomedical systems. The design of
these systems, particularly portable ones, is significant due to their battery life (e.g., hearing
aids and pacemakers). Many people use hearing aids worldwide since hearing impairment
is a severe disability that limits people’s social activities and communications [1,2]. There
are two types of hearing aids, namely digital and analog. Digital hearing aids are commonly
used due to the possibility of digital signal processing, high-quality sound production,
and better noise reduction. An essential digital hearing aid block is an analog-to-digital
converter (ADC) that receives an audio signal from the hearing aid microphone and
converts it to a digital signal; then, further processing is performed using a digital signal
processor (DSP). ADC is implemented in various structures such as sigma–delta, pipelines,
and successive-approximation register (SAR). The sigma–delta ADC type is a popular
converter for hearing aid applications due to its ease of design, low noise generation,
off-band noise transmission, and low power consumption. Increasing the modulator order,
oversampling ratio (OSR), and quantizer bits improves the ADC resolution but complicates
the circuits and consumes more power. Therefore, there is a trade-off between resolution,
costs, and power dissipation.
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Figure 1 illustrates a typical digital hearing aid on the transmitter and receiver
sides. As shown, the digital hearing aid transmitter consists of a microphone, amplifier,
delta–sigma modulator, decimation filter, and DSP, while the receiver comprises a speaker.
The delta–sigma modulator block of digital hearing aids is the concern of this paper. The
operational transconductance amplifiers (OTAs) of the conventional sigma–delta are power-
hungry parts in the whole hearing aid circuit. Thus, previous research proposed various
methods to decrease the ∆Σ circuits’ power dissipation, including opamp-sharing [3],
double-sampling [4], and switched-opamp [5]. Another solution is to eliminate the OTAs
and replace them with circuits that consume less power. There are many suggestions to
replace OTAs with low-power and low-complexity circuits, including passive circuits [6]
and inverter-based [7], time-based [8], and comparator-based [9] amplifiers. However, OTA
elimination usually reduces the converter’s efficiency; therefore, a trade-off between power
dissipation and performance must be considered for the ADC design. In 1958, Kilby built
the first integrated circuit [1], which was applied in a hearing aid as its first commercial
application. In 1982, CUNY in New York developed the first all-digital hearing aid [1]. This
hearing aid was made up of a minicomputer and a digital processor array and had a large
size so that it was necessary for one person to carry its equipment. The improved digital
hearing aid became commercially available in 1990 with features such as adaptive noise
cancellation, voice recognition, and automatic gain control. Today, invisible hearing aids
are the standard for design. However, only one out of five people still use hearing aids due
to the lack of acceptance by people, the device’s efficiency, social acceptance, and cost. The
hearing range of a healthy person is in the dynamic range (DR) of about 130 dB. This DR in
conventional modulators increases power consumption. Hence, a high DR with low power
consumption is the main challenge in hearing aids [1,10].
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On the other hand, it is noteworthy that the amplification and discrimination of speech
from noise or signal-to-noise ratio (SNR) enhancements are significant in hearing aid design.
In addition, the American National Standards Institute for hearing aids recommends that
the total harmonic distortion (THD) must be at the 5–10% level, which is −20 to −26 dB.
However, a −20 dB distortion is audible and objectionable in many cases, while a −40 dB
distortion is undetectable. Other important hearing aid properties are high resolution,
small size, comfortable design, and ease of use [1]. The challenge of this specification is
that if the power consumption is reduced, the SNDR and DR are also reduced because the
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threshold voltage of the transistors does not change by reducing the supply voltage, and as
a result, the swing of the OTA output in the modulator stages is diminished, and then, the
efficiency of the modulator is reduced.

This paper proposed an ultra-low-power self-biased inverter-based amplifier with a
swing enhancement used in the DT sigma–delta modulator for a hearing aid application.
Some effective transistors in the output voltage swing of the proposed amplifier are biased
in the subthreshold region. In the subthreshold region, the transistors’ overdrive voltage
is decreased and near 0 V, so the output swing is improved. It means that the power
consumption is reduced, and the proposed amplifier consumes about 1.93 µW.

The proposed differential modulator was also designed with 1 V, while the peak-to-
peak swing voltage is about 1.01 V. A double sampling method was employed to improve
the modulator efficiency. According to the specifications required for the hearing aid, the
modulator was considered a single-bit, single-loop, cascade of integrators with feedback
summation (CIFB) structure that works at a sampling frequency of 2.56 MHz and an input
signal bandwidth of 10 kHz. It also consumes about 9.9 µW with a signal-to-noise and
distortion ratio (SNDR) of 93.27 dB. The 15.2-bit modulator has a dynamic range of 140 dB
and a THD of −41.61 dB. The modulator implementation improved performance and
the figure of merit (FOM) value relative to previous research. Pre-layout, post-layout,
and post-layout with pad analysis revealed that the proposed modulator is suitable for
a high-resolution digital hearing aid. The remaining sections of this paper are organized
as follows:

Section 2 describes the proposed modulator system-level design. Section 3 consists
of the circuit implementation of the proposed ultra-low-power self-biased inverter-based
amplifier, its circuit analysis, and other parts of the modulator circuit. The modulator
simulation results are given in Section 4. The simulation results are discussed in Section 5.
Section 6 presents the conclusions.

2. System-Level Design of the Proposed ∆Σ Modulator

There are many considerations to choosing an appropriate hearing aid delta–sigma
modulator, including OSR, order, topology, single- or multi-loop structure, and the number
of quantizer bits. As discussed earlier, low power consumption and high efficiency in
hearing aid modulator design are significant. This work used a CIFB single-loop topology
because of it has low distortion, high performance, low complexity, a small area, and only
one feedback digital-to-analog converter (DAC). Furthermore, a one-bit quantizer was
applied due to its inherent linearity and the fact that additional circuits such as dynamic
element matching or data weighted averaging are not necessary [1,11]. Figure 2 displays
the system level of the proposed second-order, double sampling, single-loop CIFB structure,
and single-bit modulator with an OSR of 128.

By using the double sampling method, C1 is divided into two equal coefficients (C1A
and C1B), and it seems that the sampling rate is doubled, while in reality, the sampling
frequency has not changed, and the sampling process performs in two (instead of one)
clock phases [10]. In addition, half of the sampling capacitor is activated in each clock
phase. When clock 1 is in a high state, capacitor CS1A is charged with the input signal
voltage, while the charge stored in capacitor CS1B is transferred to capacitor CI1, and the
output of the integrator represents a change. Similarly, when clock 2 is in a high state, CS1B
samples the input signal, and the charge stored on the CS1A capacitor is transferred to the
integrator capacitor CI1; therefore, the integrator output demonstrates a change.
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Figure 2. System level of the proposed double sampling CIFB modulator.

The proposed modulator is inherently stable because it uses a second-order modulator
with a single-bit DAC. ‘α’ is related to the modulator filter’s amplifier direct current (DC)
gain and ideally equals 1. However, in reality, it is less than one and is obtained from
Equation (1) as follows:

α =
Gain (DC)− 1

Gain (DC)
(1)

Assuming that feedback coefficients a1 and a2 equal 1, signal transfer function (NTF)
and signal transfer function (STF) are obtained as follows:

NTF =

(
1− Z−1)2

1 + (c2 ∗ q− 2) ∗ Z−1 + (1 + c1 ∗ c2 ∗ g− c2 ∗ g) ∗ Z−2 (2)

STF =
c1 ∗ c2 ∗ q ∗ Z−2

1 + (c2 ∗ q− 2) ∗ Z−1 + (1 + c1 ∗ c2 ∗ g− c2 ∗ g) ∗ Z−2 (3)

where q is a quantizer gain. The coefficients must be chosen so that STF and NTF are
equal to

STF = Z−2 (4)

NTF =
(

1− Z−1
)2

(5)
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The proposed modulator coefficients are presented in Table 1. The system design
power spectral density (PSD) analysis of the proposed modulator for the different filters’
amplifier DC gain (α) is depicted in Figure 3. As a result, the efficiency and the precision
of the modulator increases whenever α gets closer to 1. One of the critical parameters for
reducing the performance in the sigma–delta modulator is the amplifier DC gain; since, in
non-ideal conditions, the ‘α’ value is less than 1. According to Figure 3, the modulator’s
precision varies from 13.38 to 15.96 bits by increasing the ‘α’ value.

Table 1. The systematically designed delta–sigma modulator coefficients.

Coefficient Value

a1,2 1

C1 0.4

C2 0.8
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3. Circuit Implementation of the Proposed ∆Σ Modulator

A typical DT sigma–delta modulator includes loop filters, a quantizer, and DAC.
The filter used in this modulator is low pass and is implemented with switched-capacitor
circuits. The quantizers can be of single- or multi-bit type. A single-bit quantizer is
composed of a preamplifier, comparator, and latch. DAC is a feedback path to compare
the digital output signal with the input signal and identify charge redistribution [12]. The
proposed modulator schematic is illustrated in Figure 4. The sampling and integration
capacitors are obtained according to the modulator coefficients (Table 1) and listed in
Table 2.
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Figure 4. The proposed double sampling sigma–delta modulator for hearing aid applications.

Table 2. Sampling and integrator capacitors of the proposed ∆Σ modulator.

Capacitor Value

Cs1A,1B 0.2 pF

Cs2A,2B 0.1 pF

CI1 1 pF

CI2 0.25 pF

As shown in Figure 4, there are two branches to perform the sampling process. When
clock 1 is high, the CS1A capacitor is charged with the input signal voltage, while the
charge stored in the CS1B capacitor is transferred to CI1. Similarly, when clock 2 is high,
CS1B samples the input signal, the stored charge on the CS1A capacitor is transferred to
the integrator capacitor CI1, and the integrator output represents a change.

3.1. The Proposed Self-Biased Differential Inverter-Based Amplifier with Swing Enhancement

As mentioned previously, the OTAs are the most power-dissipating parts of the
sigma–delta modulator. Various methods were proposed to replace the OTAs with low-
consumption circuits. One of them uses an inverter-based amplifier [13,14], which has
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better efficiency if the amplifier is designed as self-biased and differential [13–16]. A fully
differential inverter-based amplifier is shown in Figure 5 [16].
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This work suggested a high swing, ultra-low-power, self-biased, differential inverter-
based amplifier with a voltage gain of 52.46 dB at a 1 V power supply (Figure 5).

In the proposed amplifier circuit, M5 and M6 transistors operate in subthreshold
regions, and the remaining amplifier transistors operate in the saturation region. Further-
more, the whole amplifier consumes only 1.93 µW. Moreover, the positive and negative
output swing equal 0.51 and 0.51 V, respectively, and the peak-to-peak swing voltage is
1.01 V. Table 3 provides the aspect of the ratio of the amplifier transistors, and the current,
voltage, and region of all amplifier transistors of the proposed amplifier are also presented
in Table 4.

Table 3. The aspect of the ratio of the proposed amplifier transistors.

Transistor M1,3 M2,4 M5 M6

W
L

6 µm
2 µm

1 µm
2 µm

8 µm
180 nm

2.5 µm
180 nm

Table 4. The transistors’ voltage, current, and region in the proposed inverter-based amplifier.

Parameter

Transistor
M1,3 (pMOS) M2,4 (nMOS) M5 (pMOS) M6 (nMOS)

ID 482.79 nA 482.79 nA 1.93 µA 1.93 µA

Vgs −480.57 mV 489.25 mV −494.42 mV 505.58 mV

Vth −452.54 mV 461.88 mV −509.88 mV 525.29 mV

Vds −474.99 mV 494.83 mV −19.43 mV 10.75 mV

Region Saturation Saturation Subthreshold Subthreshold
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The M5 and M6 gate-source voltages are less than the threshold voltage and are biased
in the subthreshold region; therefore, the overdrive voltage of M5 and M6 is extremely low
and equals−19.04 and 10.75 mV, respectively. This reduction in overdrive voltage increases
the amplifier swing voltage, which significantly affects the efficiency of the sigma–delta
modulator. The remaining transistors are in the saturation region, and their current equals
482.79 nA.

3.1.1. Analysis of the Proposed Amplifier

The bode diagram (gain and phase) of the proposed inverter-based amplifier was
obtained at 27 ◦C with standard 180 nm CMOS technology (Figure 6). The voltage gain is
52.46 dB, and the phase margin is 88.86 degrees using 100 fF load capacitors.
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Common-mode voltage gain (AC) and differential voltage gain (AD) of the proposed
amplifier are plotted in Figure 7. AC is lower than 1; therefore, the common mode rejection
ratio (CMRR) is greater than AD and equals 64.53 dB, while AD and AC equal 52.46 dB
and −12.07 dB, respectively.
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The proposed amplifier corner analysis was performed at −40, 27, and 85 ◦C, the
results of which are summarized in Table 5.

Table 5. The voltage gain corner analysis of the proposed amplifier.

Corner

Temp (◦C)
−40 27 85

TT 52.37 52.46 51.79

FF 50.4 49.9 48.97

SS 52.04 52.69 52.46

FS 50.82 50.72 49.72

SF 50.96 50.91 49.56

The Monte Carlo analysis with 1000 iterations was also calculated to evaluate the
voltage gain stability of the proposed amplifier against various processes and mismatching.
Based on the obtained data in Figure 8, the average voltages gain is 50.13, 52.05, and
51.44 dB at 27, −40, and 85 ◦C, respectively.
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Additionally, the voltage gain varieties versus power supply voltage are displayed in
Figure 9. Based on the results, with ±10% changes in power supply, the voltage gain varies
between 52.38 and 52.16 dB, while the amplifier gain changes between 53.13 and 51.53 dB
when the power supply alters by ±20%.
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Figure 9. Voltage gain changes in the proposed amplifier due to different power supply volt-
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In addition, the power supply rejection ratio (PSRR) for both rails (positive and nega-
tive) is plotted in Figure 10. The PSRR+ and PSRR–equal 54.79 and 52.32 dB, respectively.
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Figure 10. PSRR+ and PSRR- of the proposed inverter-based amplifier.

In Figure 11, the voltage gain changes with different temperatures. In this diagram,
the temperature changes from−40 to 85 ◦C; as a result, the voltage gain varies from 52.37 to
51.79 dB. Therefore, the proposed amplifier has the stability to process temperature, power
supply variations, and mismatching.
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3.1.2. The Proposed Amplifier’s Noise Analysis

Noise reduction is an essential issue in low-power circuit design. Hence, the hearing
aid design with low power consumption and low noise is a significant challenge. The
equivalent input noise against the frequency analysis of the proposed amplifier is depicted
in Figure 12. The root means square of the input noise equals 0.51 µV. In addition, more
noise analyzes were performed; SNDR, SFDR, and THD values were obtained as 77.25,
73.35, and −77.25 dB, respectively.
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3.1.3. Output Swing Voltage of the Proposed Amplifier

As mentioned above, in this paper, a modulator was presented using a low-power
inverter-based amplifier with the improved swing. The high and low output swing voltages
of the proposed amplifier’s circuit were obtained using Equations (6) and (7), respectively.

Vswing(Positive) = VDD − |VOD(5)| − |VOD(1)| (6)

Vswing(Negative) = VOD(2) + VOD(6) (7)

M5 and M6 gate-source voltages are less than the threshold voltage and operate in
the sub-threshold region. The positive and negative output swing equal 0.51 and 0.51 V,
respectively, and the peak-to-peak swing voltage is 1.01 V. In the sub-threshold region, the
overdrive voltage is extremely low, and the drain current of the MOS transistor is obtained
from Equation (8) as follows [17,18]:

IDsub =


2nµcoxVT

2 w
l

(
e

VGS−Vth
ηVT

)(
1− e−

VDS
VT

)
, VDS < 3VT

2nµcoxVT
2 w

l

(
e

VGS−Vth
ηVT

)
, VDS ≥ 3VT

(8)

When VDS > 3VT, IDsub is independent of Vds, while IDsub exponentially depends
on Vds if VDS > 3VT. According to Table 4, the M5 and M6 transistors’ overdrive voltages
equal −19.43 and 10.75 mV, respectively. Therefore, the output swing increased, leading to
an improvement in the efficiency of the proposed modulator. Figure 13 displays the output
swing of the amplifier plotted for the input DC voltage of −0.5 V to +0.5 V. Furthermore,
the modulator output voltage was plotted for different inputs and shown in Figure 14. In
addition, the properties of the proposed modulator are listed in Table 6.
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Table 6. The specifications of the proposed self-biased inverter-based amplifier.

Parameters Value

Power Supply (V) 1

Power Consumption (µV) 1.93

Tech (nm) 180

Gain (dB) 52.46

Peak-to-peak Swing Voltage (V) 1.01

Phase Margin (degree) 88.86

Slew Rate + (V/µSec) 104.68

Slew Rate − (V/µSec) −119.78

PSRR + (dB) 54.79

PSRR − (dB) 52.32

CMRR 64.53

RMS Input Noise (µV) 0.51

SNDR (dB) 77.25

SFDR (dB) 73.35

THD (dB) −77.25

3.2. Quantizer

As mentioned earlier, a single- or multi-bit quantizer was used in a sigma–delta
modulator. The single-bit quantizer is inherently linear, while the multi-bit one is nonlinear,
and additional circuits are necessary for linearization. Moreover, using a single-bit quantizer
in a high-order modulator (more than second-order) leads to instability. A single-bit
quantizer consists of a preamplifier, a comparator, and a latch. A single-bit quantizer was
employed in the proposed modulator, and Vref+ and Vref− were considered as 0.8 and
0.2 V, respectively. Figures 15 and 16 illustrate a block diagram of the single-bit quantizer
and the quantizer’s circuits, respectively.
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Figure 16. Circuits of the applied single-bit quantizer: (a) preamplifier and (b) comparator and latch.

3.3. Switches

Transmission gates (TG) were used in the proposed modulator to eliminate charge in-
jection and clock feedthrough effects. The switch circuit is shown in Figure 17. Furthermore,
the switches’ SNDR, SNR, and THD were obtained from the sinusoidal input (Table 7).



Electronics 2023, 12, 1747 15 of 22

Electronics 2023, 12, x FOR PEER REVIEW 15 of 24 
 

 

Furthermore, the switches’ SNDR, SNR, and THD were obtained from the sinusoidal 
input (Table 7).  

 
Figure 17. Transmission gate switch circuit. 

Table 7. The properties of the proposed modulator TG switch. 

SNDR (dB) SNR (dB) THD (dB) 
71.5 89.5 −42.23 

The proposed double sampling second-order, CIFB, single-bit, single-loop modulator 
was designed for the hearing aid application. The bandwidth frequency and the sampling 
frequency were 10 kHz and 2.56 MHz, respectively. The simulation results are presented 
and explained in the next section. 

4. Simulation Results 
The proposed second-order ΔΣ modulator was simulated using standard 180 nm 

CMOS technology. The simulation was  performed for 16,384 points in a transient 
CADENCE analysis environment. The input frequency, the sampling frequency, the 
frequency bandwidth, and the modulator’s oversampling ratio were about 1.94 kHz, 2.56 
MHz, 10 kHz, and 128, respectively. The two integrator outputs of the proposed 
modulator are depicted in Figure 18. 

in

clock

out

 

Figure 17. Transmission gate switch circuit.

Table 7. The properties of the proposed modulator TG switch.

SNDR (dB) SNR (dB) THD (dB)

71.5 89.5 −42.23

The proposed double sampling second-order, CIFB, single-bit, single-loop modulator
was designed for the hearing aid application. The bandwidth frequency and the sampling
frequency were 10 kHz and 2.56 MHz, respectively. The simulation results are presented
and explained in the next section.

4. Simulation Results

The proposed second-order ∆Σ modulator was simulated using standard 180 nm
CMOS technology. The simulation was performed for 16,384 points in a transient CA-
DENCE analysis environment. The input frequency, the sampling frequency, the frequency
bandwidth, and the modulator’s oversampling ratio were about 1.94 kHz, 2.56 MHz,
10 kHz, and 128, respectively. The two integrator outputs of the proposed modulator are
depicted in Figure 18.
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Figure 19 illustrates the PSD, spurious free dynamic range (SFDR), and THD of the
proposed modulator’s pre-layout, post-layout, and post-layout with pad. The pre-layout
analysis demonstrates that the modulator achieves an SNDR of 93.27 dB, with 15.2-bit
precision, and an SFDR of 99.48 dBc, while the post-layout results represent an SNDR of
85.86 dB, with 13.97-bit precision, and an SFDR of 96.97 dBc. Additionally, the post-layout
with pad results reveal an SNDR of 85.92 dB, with 13.98-bit precision, and an SFDR of
103.59 dBc. The DR of the proposed modulator depicted in Figure 20 is equal to 140 dB.
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According to the desired specifications for the hearing aid mentioned earlier, the
proposed modulator has suitable specifications. The FOMW, FOMS, and FOMDR for the
proposed modulator were calculated using Equations (9)–(11) as follows [11,19]:

FOMW =
Power consumption

BW ∗ 2 ∗ 2
SNDR−1.76

6.02
(9)

FOMS = 10 ∗ log
(

BW
Power

)
+ SNDR(dB) (10)

FOMDR = DR + 10 log
(

BW
Power

)
(11)

BW and SNDR represent an input signal bandwidth and an SNDR, respectively.
The modulator achieves a FOMW of 1.31 fJ/step value, while FOMS and FOMDR are
183.31 and 230.04 dB, respectively. Moreover, the measured power breakdown (Figure 21)
demonstrates the main parts of the modulator power consumption separately. The two
amplifiers consume a total of 4.48 µW.
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Furthermore, Figure 22 depicts the proposed modulator layout. The layout of the
designed modular indicates an effective area of 173.41 µm ∗ 100.7 µm

(
0.02 mm2), which

is suitable for the hearing aid. The properties of the modulator are summarized in Table 8.
In addition, corner and power supply tests were performed for post-layout validation.

A Monte Carlo (Figure 23) analysis with 50 iterations and 16,384 points was performed
for the proposed modulator to evaluate SNDR stability against various processes and
mismatching. The results of the corner and power supply changes are depicted in Table 9.

The post-layout power supply was swept from 0.7 to 1.8 V and the SNDR of the
proposed modulator was calculated (Figure 24). According to the specifications required
for the hearing aid, the nominal voltage is 0.9 to 1.1 V. In this range, the SNDR value
changes from 82.01 to 88.54 dB and the power consumption is reasonable.

Table 10 presents data on the performance of this activity, and other similar mod-
ulators working in the audio bandwidth range. It is clear that the proposed modulator
consumes ultra-low power and has valuable features and acceptable FOM compared to the
other studies.
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Table 8. The proposed modulator’s properties.

Modulator Parameters Value

Power Supply (V) 1

Power Consumption (µV) 9.9

Tech (nm) 180

Peak SNDR (dB) 93.27

DR (dB) 140

Order 2nd order

Structure Double Sampling CIFB

FOMs 183.31

FOMw (fJ/step) 1.31

FOMDR (dB) 230.04

Area (mm2) 0.02
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(◦C)
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(Bits/Sample)

Post-layout
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FF 27 94.75 102.24 −40.88 15.45

SS 27 69.25 101.68 −39.77 11.21

SF 27 69.39 84.19 −46.19 11.23
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Table 10. The performance comparison of delta–sigma modulators.

Ref. Vdd
[V]

BW
[KHz] OSR Fs

[MHz]
SNDR
(dB)

DR
(dB)

Pow.
(µW)

FOMS
(dB)

FOMDR
(dB)

FOMw
(fJ/step)

Tech
(nm) Result Year

[20] 1.2 20 32 1.28 72.5 91 165 155.5 171.84 92 130 Measure 2012

[21] 1.2 10 128 2.56 87.8 90 148 166 168.3 36 180 Measure 2012

[22] 1.8 10 64 1.28 84.4 88 570 156.84 160.44 210.1 180 Measure 2013

[23] 0.5 20 51.2 2 60.8 70.1 43.4 147.44 156.74 121 65 Measure 2017

[24] 1.2 20 76.8 3.07 101.4 105.7 3500 168.97 173.27 91 130 Measure 2018

[25] 1 25 100 5 94.6 98.5 175 176.15 180 7.97 65 Measure 2018

[26] 0.9 20 128 5.12 86.4 91 103.4 169.27 173.86 150 180 Measure 2018

[11] 0.8 24 64 3.07 89.6 91 49.6 176.6 178 50.6 65 Measure 2019

[10] 1.2 20 64 2.56 81.17 NA 54 166.86 NA 14.44 180 Simulate 2019

[27] 1.8 25 128 3.2 106 NA 3650 169.4 NA 44.75 180 Measure 2020

[28] 1.8 25 256 12.8 106.1 102.3 2200 171.16 172.86 50.23 180 Measure 2021

[29] 1.8 10 16 0.32 74.24 78 36 158.68 162.44 42.75 180 Simulate 2021

[30] 1.8 10,000 8 160 98.4 101 26,300 184.2 186.8 1.93 180 Simulate 2021

[31] 1 19.5 256 10 88.5 91.7 43.5 175 178.2 51.2 180 Measure 2021

[32] 1.8 24 64 3.07 96.2 98 340 174.7 176.49 13.42 180 Measure 2022

[33] 1.8 1.5 341.3 1.024 118.1 126 1600 177.8 185.72 81.17 180 Simulate 2022

[34] 1.1 156.25 8 2.5 83.1 84 70.3 176.57 177.47 1.93 180 Simulate 2022

This
work 1 10 128 2.56 93.27 140 9.9 183.31 230.04 1.31 180 Simulate 2023

5. Discussion

This study aims to provide a sigma–delta modulator with ultra-low power consump-
tion and suitable efficiency for hearing aid applications. DR is significant for this application
since the modulator will be saturated and create an unpleasant sound for the user if DR is
unsuitable. On the other hand, hearing aids are permanently used, and high power con-
sumption leads to rapid battery discharge. Hence, there is a trade-off between the DR value
and power consumption. In this design, an inverter-based amplifier with improved output
swing was applied in a modulator that increased voltage swing using the multi-region bias
method, and the FOMs, FOMw, and FOMDR show the modulator’s proper efficiency.

6. Conclusions

The current article presented an ultra-low-power second-order double-sampling DT
sigma–delta modulator with a CIFB structure for digital hearing aids. For the circuit
implementation of the modulator, the inverter-based amplifier with swing enhancement
was proposed and used instead of power-hungry OTAs. Based on the findings (Table 6), the
proposed amplifier worked at 1 V and consumed 1.93 µW, while the DC gain and the swing
voltage were 52.46 dB and 1.01 V, respectively. Furthermore, the modulator functioned
at a sampling frequency of 2.56 MHz and an input signal bandwidth of 10 kHz. It also
consumed about 9.9 µW at 1 V with an SNDR of 93.27 dB. The 15.2-bit modulator had a
dynamic range of 140 dB and a THD of −41.61 dB. Therefore, the proposed modulator is
appropriate to use in hearing aids.
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