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Abstract: To achieve multi-mode fault sample generation and fault diagnosis of bearings in a complex
operating environment with scarce labeled data. Combining a semi-supervised generative adversarial
network (SGAN) and an auxiliary classifier generative adversarial network (ACGAN), a semi-
supervised auxiliary classifier generative adversarial network (SACGAN) is constructed in this
paper. The network structure and the loss function are improved. A fault diagnosis method based
on STFT-SACGAN is also proposed. The method uses a short-time Fourier transform (STFT) to
convert one-dimensional time-domain vibration signals of bearings into two-dimensional time-
frequency images, which are used as the input of SACGAN. Two multi-mode fault data generation
and intelligent diagnosis cases for bearings are studied. The experimental results show that the
proposed method generates high-quality multi-mode fault samples with high fault diagnosis accuracy,
generalization, and stability.

Keywords: bearing fault diagnosis; generative adversarial network; short-time Fourier transform;
multi-mode data generation

1. Introduction

With the vigorous development of modern industry, rotating machinery plays a
crucial role in intelligent equipment, and its safety is widely concerned [1]. Bearings,
as indispensable core transmission components in rotating machinery, under complex
operating environments such as high speed and heavy load, is subject to various fault
types, such as wear, corrosion, cracks, and deformation [2]. Faulty bearings directly affect
the operational reliability of rotating machinery and cause potentially significant accidents,
which lead to economic losses and even casualties [3]. Therefore, it is of great research
value to carry out bearing fault diagnosis and predictive maintenance.

Traditional data-driven fault diagnosis methods aim to extract effective fault features
from original signals to achieve high accuracy, which involves feature extraction and fault
recognition [4]. For feature extraction, signal processing technologies are used to obtain
effective features, such as the Fourier transform (FT) [5], the short-time Fourier transform
(STFT) [6], and the wavelet transform (WT) [7], which convert the original signals in the
time domain into the frequency domain or time-frequency domain. For fault recognition,
machine learning methods, including k-nearest neighbor (KNN), support vector machines
(SVM), and artificial neural networks (ANN), are employed to train classification models
using the extracted features to recognize the fault types [8].

In recent years, deep learning-based fault diagnosis methods have gradually become
a research hotspot relying on powerful fault feature learning capability and end-to-end
diagnosis characteristics, including auto-encoder (AE), deep belief network (DBN), con-
volutional neural network (CNN), and recurrent neural network (RNN) [9,10]. Although
the above models have shown effectiveness in fault diagnosis, they rely on a large amount
of labeled data for supervised learning [11]. However, obtaining sufficient labeled fault
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samples in practical engineering is difficult, which leads to serious overfitting problems
with supervised models [12]. Therefore, training accurate and reliable deep learning-based
fault diagnosis models using limited labeled fault samples is worth investigating.

The generative adversarial network (GAN) is one of the critical techniques of unsuper-
vised generative models, which can generate new samples similar to existing samples while
using only unlabeled samples. Variants of GAN have also received increasing attention in
the field of fault diagnosis [13]. SGAN is a semi-supervised generative model improved
by GAN, and some scholars have used SGAN to solve fault diagnosis problems in recent
years. Pang et al. used CNN as the generator network and the discriminator network
for SGAN for single- and compound-fault diagnosis of gears in different gearboxes [14].
Xing et al., based on SGAN, performed feature matching on the intermediate layers of
the generator and the discriminator to fully extract the features of the fault samples to
achieve bearing fault diagnosis with a small number of labeled samples [15]. Yang et al.
converted one-dimensional vibration signals into two-dimensional images by variational
mode decomposition as the input to SGAN, and the switchable normalization was used to
replace batch normalization and used the trained discriminator to solve the problem of fault
diagnosis of rolling bearings [16]. ACGAN is a supervised generative model improved
by GAN, and ACGAN has been used to solve multi-mode sample generation and fault
diagnosis problems in recent years. Lu et al. proposed a modified ACGAN to improve the
training stability under noise interference by gradient penalty and to generate wind turbine
primary bearing vibration signal data [17]. Li et al. proposed an improved ACGAN based
on Bayesian optimization and the Wasserstein distance to improve fault feature extraction
and generation ability for data enhancement and fault diagnosis of wind turbine planetary
gearboxes [18]. Li et al. added a classifier to ACGAN to improve the compatibility of
discrimination and classification for multi-mode data augmentation and fault diagnosis of
bearings and gears [19].

The above studies show that SGAN is a semi-supervised learning mechanism, but
it cannot generate multi-mode samples due to the lack of participation in category in-
formation. ACGAN can generate multi-mode samples using category labels as auxiliary
information, but its supervised learning mechanism requires a large amount of labeled
data. To achieve multi-mode fault sample generation and fault diagnosis for bearings
with limited labeled data, SACGAN is constructed. Based on SGAN and ACGAN, the
network structure and the loss function are improved, and the adversarial learning of the
generator and the discriminator is carried out using a small amount of labeled data and a
large amount of unlabeled data to improve the multi-mode fault sample generation ability
of the generator and the recognition ability of the discriminator. A fault diagnosis method
based on STFT-SACGAN is proposed, using STFT to convert one-dimensional time-domain
vibration signals of bearings into two-dimensional time-frequency images as the input of
SACGAN. To demonstrate the effectiveness and generalization of the proposed method,
validation and analysis are carried out on two bearing datasets.

The remaining content of this paper is organized as follows: Section 2 describes the
brief theories of GANs. Section 3 details the proposed SACGAN. Section 4 presents the
fault diagnosis method based on STFT-SACGAN. Section 5 provides the experimental
validation and analysis results. Finally, Section 6 concludes this paper and introduces
future work.

2. The Brief Theories of GANs
2.1. GAN

GAN is an unsupervised generative model proposed by Goodfellow et al. in 2014,
which is created based on zero-sum game theory and mainly consists of a generator G
and a discriminator D [20]. The architecture of a basic GAN is shown in Figure 1. The
generator obtains the generative sample G(z) from random noise z, and the discriminator is
used to discriminate whether the input sample is a real sample x or a generative sample
G(z). Through iterative adversarial training, the performance of the generator and the
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discriminator are simultaneously improved, eventually reaching Nash equilibrium. The
loss function of GAN is defined as:

min
G

max
D

V(D, G) = Ex∼Pr(x)
[log(D(x)] + Ez∼Pz(z)

[log(1− D(G(z))] (1)

where Pr(x) and Pz(z) are the prior distributions of x and z, respectively, Ex~Pr(x) denotes the
expectation of x from Pr(x), Ez~Pz(z) denotes the expectation of z from Pz(z). The generator’s
goal is to minimize V(D,G), while the discriminator’s goal is to maximize V(D,G) in the
adversarial training process.
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Figure 1. Architecture of GAN.

2.2. SGAN

SGAN is a semi-supervised generative model that Augustus Odena et al. proposed in
2016. SGAN extends GAN to semi-supervised scenarios by forcing the discriminator to
output category labels [21]. The discriminator of traditional GAN uses a Sigmoid function
as the output, while SGAN uses a Softmax function as the output. For a dataset with N
categories, the discriminator extends the output to N + 1, including one discriminative
output and N categorical output. The architecture of a basic SGAN is shown in Figure 2,
and the input of the discriminator consists of three parts: labeled real samples, unlabeled
real samples, and generated samples from the generator. The loss function of SGAN is
defined as:

Lg = Ez∼Pz(z)
[log(1− P(y = N + 1|G(z)))] (2)

Lsupervised = Ex,y∼Pr(x,y)
[− log P(y|x, y < N + 1)] (3)

Lunsupervised = Ex∼Pr(x)
[− log(1− P(y = N + 1|x))] + Ez∼Pz(z)

[− log(P(y = N + 1|G(z)))] (4)

Ld = Lsupervised + Lunsupervised (5)

where Lg and Ld represent the loss functions of the generator and the discriminator, respec-
tively. Lsupervise and Lunsupervised denote the discriminator’s supervised loss function and the
unsupervised loss function, respectively.
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2.3. ACGAN

ACGAN is a supervised generative model that Augustus Odena et al. proposed in
2017 [22]. The architecture of the basic ACGAN is shown in Figure 3. By embedding the cat-
egory labels as auxiliary information into the random noise input, the generator is guided to
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generate multi-mode samples. Unlike SGAN, the discriminator of ACGAN uses a Sigmoid
function and a Softmax function as outputs to achieve discrimination and classification of
the input samples. The loss function of ACGAN consists of two components:

Lsource = Ex∼Pr(x)
[log D(x)] + Ez∼Pz(z)

[log(D(G(z, cg)))] (6)

Lclass = Ex∼Pr(x)
[log P(c = cr|x)] + Ez∼Pz(z)

[log P(c = cg)|G(z, cg)] (7)

where Lsource denotes the loss function used to measure the validity of discriminating samples
from x, Lclass denotes the loss function used to measure the validity of sample categories, and
cr and cg are labels of x and G(z,cg), respectively. P(c = cr|x) and
P(c = cg|G(z,cg)) are the conditional probability distributions of class labels x and G(z,cg), re-
spectively. During adversarial training, the discriminator is trained to maximize Lclass + Lsource,
while the generator’s goal is to maximize Lclass − Lsource.
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3. The Proposed SACGAN

SACGAN combines the respective features of SGAN and ACGAN and utilizes the
semi-supervised learning mechanism of SGAN to improve generation, discrimination,
and classification abilities by adversarial training using labeled and unlabeled data, thus
transforming ACGAN from supervised learning to semi-supervised learning.

3.1. Architecture of SACGAN

SACGAN refers to the structure of a Deep Convolutional Generative Adversarial Net-
work (DCGAN) [23]. It is designed based on convolutional and deconvolutional networks;
the architecture of SACGAN is shown in Figure 4. The generator mainly consists of embed-
ding layers and two-dimensional deconvolutional layers; the input is a random noise vector
with a category label vector, and the output is generated samples. The discriminator mainly
consists of two-dimensional convolutional layers and fully connected layers, and the input
includes labeled real samples, unlabeled real samples, and generated samples from the
generator, and the output comprises discrimination results and classification results.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 4. Architecture of SACGAN. 

3.2. Structure of Generator 
The generator’s input is a 200-dimensional Gaussian random noise vector z with a 

label vector c. The label vector is first embedded in the noise vector through an embedding 
layer, followed by deconvolution layers to generate fake samples whose sizes are 64 × 64. 
The generator contains five deconvolution layers, and the activation function of the first 
four layers is ReLU, which helps the generator achieve non-linear representations and 
makes the network easier for training. The activation function of the last layer is Tanh, 
which limits the output to [−1,1], and BN is executed after each layer to speed up the train-
ing convergence and avoid overfitting. The specific structure is shown in Figure 5, and the 
detailed parameters are shown in Table 1. 

 
Figure 5. Structure of the generator. 

Table 1. Parameters of the generator. 

Layer Type Kernel Size Kernel Num Strides Output Size 
Embedding / / / 200 × 1 × 1 

Deconv1 200 3 × 3 2 × 2 200 × 3 × 3 
Deconv2 64 3 × 3 2 × 2 64 × 7 × 7 
Deconv3 32 3 × 3 2 × 2 32 × 15 × 15 
Deconv4 16 3 × 3 2 × 2 16 × 32 × 32 
Deconv5 1 4 × 4 2 × 2 1 × 64 × 64 

3.3. Structure of the Discriminator 
The input of the discriminator is real samples and generated samples, and the output 

is a discrimination vector with a classification vector. The discriminator contains three 
convolutional layers, each with a leaky ReLU activation function, which allows the net-
work to learn faster and prevent gradient disappearance. After each convolution, BN is 
executed first, followed by Dropout, which randomly drops neurons in the network to 
reduce the risk of overfitting and thus increase the generalization of the discriminator. The 
last layer contains two fully connected layers, using a Sigmoid function and a Softmax 

Figure 4. Architecture of SACGAN.



Electronics 2023, 12, 1910 5 of 17

3.2. Structure of Generator

The generator’s input is a 200-dimensional Gaussian random noise vector z with a
label vector c. The label vector is first embedded in the noise vector through an embedding
layer, followed by deconvolution layers to generate fake samples whose sizes are 64 × 64.
The generator contains five deconvolution layers, and the activation function of the first
four layers is ReLU, which helps the generator achieve non-linear representations and
makes the network easier for training. The activation function of the last layer is Tanh,
which limits the output to [−1,1], and BN is executed after each layer to speed up the
training convergence and avoid overfitting. The specific structure is shown in Figure 5, and
the detailed parameters are shown in Table 1.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 4. Architecture of SACGAN. 

3.2. Structure of Generator 
The generator’s input is a 200-dimensional Gaussian random noise vector z with a 

label vector c. The label vector is first embedded in the noise vector through an embedding 
layer, followed by deconvolution layers to generate fake samples whose sizes are 64 × 64. 
The generator contains five deconvolution layers, and the activation function of the first 
four layers is ReLU, which helps the generator achieve non-linear representations and 
makes the network easier for training. The activation function of the last layer is Tanh, 
which limits the output to [−1,1], and BN is executed after each layer to speed up the train-
ing convergence and avoid overfitting. The specific structure is shown in Figure 5, and the 
detailed parameters are shown in Table 1. 

 
Figure 5. Structure of the generator. 

Table 1. Parameters of the generator. 

Layer Type Kernel Size Kernel Num Strides Output Size 
Embedding / / / 200 × 1 × 1 

Deconv1 200 3 × 3 2 × 2 200 × 3 × 3 
Deconv2 64 3 × 3 2 × 2 64 × 7 × 7 
Deconv3 32 3 × 3 2 × 2 32 × 15 × 15 
Deconv4 16 3 × 3 2 × 2 16 × 32 × 32 
Deconv5 1 4 × 4 2 × 2 1 × 64 × 64 

3.3. Structure of the Discriminator 
The input of the discriminator is real samples and generated samples, and the output 

is a discrimination vector with a classification vector. The discriminator contains three 
convolutional layers, each with a leaky ReLU activation function, which allows the net-
work to learn faster and prevent gradient disappearance. After each convolution, BN is 
executed first, followed by Dropout, which randomly drops neurons in the network to 
reduce the risk of overfitting and thus increase the generalization of the discriminator. The 
last layer contains two fully connected layers, using a Sigmoid function and a Softmax 

Figure 5. Structure of the generator.

Table 1. Parameters of the generator.

Layer Type Kernel Size Kernel Num Strides Output Size

Embedding / / / 200 × 1 × 1
Deconv1 200 3 × 3 2 × 2 200 × 3 × 3
Deconv2 64 3 × 3 2 × 2 64 × 7 × 7
Deconv3 32 3 × 3 2 × 2 32 × 15 × 15
Deconv4 16 3 × 3 2 × 2 16 × 32 × 32
Deconv5 1 4 × 4 2 × 2 1 × 64 × 64

3.3. Structure of the Discriminator

The input of the discriminator is real samples and generated samples, and the output
is a discrimination vector with a classification vector. The discriminator contains three
convolutional layers, each with a leaky ReLU activation function, which allows the network
to learn faster and prevent gradient disappearance. After each convolution, BN is executed
first, followed by Dropout, which randomly drops neurons in the network to reduce the
risk of overfitting and thus increase the generalization of the discriminator. The last layer
contains two fully connected layers, using a Sigmoid function and a Softmax function
as outputs for discriminating and classifying the input samples. The specific structure is
shown in Figure 6, and the detailed parameters are shown in Table 2.
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Table 2. Parameters of the discriminator.

Layer Type Kernel Size Kernel Num Strides Padding Output Size

Conv1 32 5 × 5 4 × 4 2 × 2 32 × 16 × 16
Conv2 64 5 × 5 2 × 2 2 × 2 64 × 8 × 8
Conv3 128 5 × 5 2 × 2 2 × 2 128 × 4 × 4

FC
/ / / / 1
/ / / / K 1

1 K is the number of classification categories.

3.4. Loss Functions of SACGAN

SACGAN is constructed based on SGAN and ACGAN, so the loss functions of SAC-
GAN combine the loss functions of SGAN and ACGAN. More specifically, the loss function
of the generator of SACGAN is the same as that of ACGAN, and the loss function of the
discriminator is referenced from SGAN, which consists of the supervised loss function of
labeled data and the unsupervised loss function of unlabeled data. The specific definitions
are as follows:

LG = Ez∼Pz(z)
[log P(c = c)|G(z, c)]− Ez∼Pz(z)

[log(D(G(z, c)))] (8)

LU
D = Ex∼Pr(x)

[log D(x)] (9)

LS
D = Ex,y∼Pr(x,y)

[log D(x)] + Ex,y∼Pr(x,y)
[log P(c = c|x)] + Ez∼Pz(z)

[log(D(G(z, c)))] + Ez∼Pz(z)
[log P(c = c)|G(z, c)] (10)

LD = λ1LU
D + λ2LS

D (11)

where LG and LD represent the loss functions of the generator and the discriminator,
respectively; LU

D and LS
D represent the supervised loss and the unsupervised loss of the

discriminator, and λ1, λ2 are the ratio factors; Pr(x) and Pr(x,y) are the prior distributions of
labeled real samples and unlabeled real samples, respectively; c are labels of labeled real
samples; and P(c = c|x) and P(c = c|G(z,c)) are the conditional probability distributions of
class labels of labeled real samples and generated samples, respectively.

4. Fault Diagnosis Based on STFT-SACGAN
4.1. Data Processing

STFT is a joint time-varying time-frequency analysis method for non-stationary signals
that converts one-dimensional time-domain signals into two-dimensional time-frequency
images for CNN processing: feature spectra containing both time-domain and frequency-
domain information. It uses a fixed-length window function to translate over the time-
domain signal, intercepting it and performing a Fourier transform to obtain a local set of
spectra for each period [24]. Therefore, STFT is a 2D function of time and frequency, whose
calculation formula is defined as:

STFT{x(τ)}(τ, w) =
∫ ∞

−∞
x(t)g(t− τ)e−jwtdt (12)

where x(t) represents the one-dimensional time-domain signal, t and w are the time and
the frequency, respectively, and g(t − τ) denotes a window function whose center is at the
time τ.

The time and frequency resolutions of the spectrum obtained by STFT depend on
the length of the window function, with longer window lengths yielding a lower time
resolution and a higher frequency resolution. Therefore, the window length should be
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chosen reasonably according to the signal to be processed for better analysis [25]. The time
and frequency resolutions are calculated as follows:

F =

{
Nw/2 + 1, if Nw is even
(Nw/1)/2, if Nw is odd

(13)

T =

[
Nx − No

Nw − No

]
(14)

where Nx is the length of the signal to be processed, Nw is the length of the window
function, No is the overlapped length during the translation of the window function, and
[·] represents the operation of rounding down.

This paper converts the original one-dimensional vibration signals of bearings into
two-dimensional time-frequency images by STFT, which carry richer information and
characterize a more complex structural distribution. According to Equations (13) and (14),
the time-frequency image after STFT is a two-dimensional matrix of dimension F × T. Let X
denote the obtained matrix, and to speed up the convergence of the training process, each
element of the matrix X is normalized into the interval [−1,1] according to Equation (16).

X =

x11 · · · x1T
...

...
...

xF1 · · · xFT

 (15)

xnormalized
i = −1 + 2× xi −min(xi)

max(xi)−min(xi)
, i = 1, 2, . . . , N (16)

4.2. Fault Diagnosis Flow Based on STFT-SACGAN

A fault diagnosis method based on STFT-SACGAN is proposed, using the ability of
STFT to process non-stationary signals. The original one-dimensional vibration signals
of bearings are converted into two-dimensional time-frequency images by STFT as the
input of SACGAN. The multi-mode fault sample generation ability of the generator and
the recognition ability of the discriminator are improved by adversarial training. The flow
of the proposed method is shown in Figure 7, and the main steps are as follows:

(1) Vibration signals of bearings with various fault modes are collected, converted into
time-frequency images by STFT, and normalized into the interval [−1,1];

(2) The noise vector z and the label vector c are input to the generator to obtain gener-
ated samples;

(3) Labeled real samples, unlabeled real samples, and generated samples from the gener-
ator are fed into the discriminator to obtain discrimination and classification results.

(4) Calculate the loss of the generator and the discriminator;
(5) Fix the generator’s weight parameters and optimize the discriminator’s weight

parameters;
(6) Fix the discriminator’s weight parameters and optimize the generator’s weight

parameters;
(7) Repeat steps 2–6 until the number of iterations is satisfied;
(8) Save the trained model, use the generator to generate multi-mode fault samples, and

use the discriminator for fault diagnosis of test signals.
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5. Case Study

To demonstrate the effectiveness and generalization of the proposed method, vali-
dation and analysis are carried out on two bearing datasets. In those two case studies,
the computer is a Core i5-9300H CPU @ 2.40 GHz with 16 GB of Ram and works in the
Windows 64-bit operating system, and a GPU(GTX1650) with 4 GB of memory is added
to improve the training speed. The programming language is Python 3.8.13, and the deep
learning framework is Pytorch 1.10.1. During the training process, the generator and the
discriminator of SACGAN use the Adam optimization algorithm [26], and the learning
rate is 0.0005. To reduce the fluctuation during training, the exponential decay rates β1 and
β2 are set to 0.5 and 0.999, respectively [27]. The batch size is K × 10 (K is the number of
category labels), the dropout rate of the discriminator is 0.25, and the number of iterations
is 200. In addition, the ratio factors of the loss function Equation (11) are set to 0.5 and
0.5, respectively.

5.1. Case 1 Multi-Mode Data Generation and Fault Diagnosis of Bearings
5.1.1. Introduction and Preprocessing of Bearing Data

In case 1, the Case Western Reserve University (CWRU)-bearing dataset is used to
verify the effectiveness of the proposed method, and the test rig is shown in Figure 8 [28].
Specifically, ten kinds of bearing vibration data under 1797 rpm and 12 kHz sampling fre-
quency are used for analysis. Bearing states include one normal state and nine faulty states,
including three fault locations and three fault sizes, as listed in Table 3. The vibration signals
from each state are randomly sampled 300 times over 1024 points as available samples, of
which 100 samples from each state are used as testing samples. The remaining samples are
divided into labeled and unlabeled training samples according to different ratios.
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Table 3. Details of CWRU-bearing samples.

Fault Type Fault Diameter Class Labels

Normal - Normal
Rolling ball 0.007 inch BA007
Rolling ball 0.014 inch BA014
Rolling ball 0.021 inch BA021
Inner race 0.007 inch IR007
Inner race 0.014 inch IR014
Inner race 0.021 inch IR021
Outer race 0.007 inch OR007
Outer race 0.014 inch OR014
Outer race 0.021 inch OR021

All samples are converted into time-frequency images by STFT. According to
Section 3.1, the window function is Hanning window; the window function length Nw and
the overlap length No are set to 256 and 250, respectively. The normalized time-frequency
matrix is geometrically processed into a 64 × 64 square matrix as the input of SACGAN
to accommodate the training of SACGAN and save computation time. The original time-
domain vibration signals and the corresponding two-dimensional time-frequency images
obtained by conversion are shown in Figure 9. It can be seen that characteristic differences
between different states are more significant than the original one-dimensional time-domain
vibration signals after conversion.

5.1.2. Quality Evaluation and Comparison of Multi-Mode Generated Samples

The sample generation ability of the generator is usually verified by evaluating the
quality of the generated samples. In this case study, the SAGAN is trained using training
samples with a labeling ratio of 0.2 (40 labeled samples and 160 unlabeled samples of each
class). The diagrammatic sketch of the real samples and the generated samples is shown in
Figure 10. The generated multi-mode samples are highly similar to the real samples.

For a more objective evaluation, the structural similarity index measure (SSIM) is
used to quantitatively evaluate the quality of the generated multi-mode samples. The
SSIM aims to measure the similarity of two images from brightness, contrast, and structure.
The range of SSIM values is the interval [−1,1], and larger SSIM values indicate higher
similarity between two images [29]. In contrast, the labeled training samples are also used
to train the ACGAN, where the parameter structure of the ACGAN is the same as that
of the SACGAN. Five pairs of the real samples and the generated samples of each class
are randomly selected, and the average SSIM values of the ACGAN and the SACGAN
are given in Figure 11. The results show that the average SSIM values of each class of the
SACGAN are always larger than those of the ACGAN, meaning that the samples generated
by the SACGAN are closer to the real samples.
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5.1.3. Fault Recognition with Different Label Ratios

Each class’s training samples are divided into labeled and unlabeled samples in differ-
ent ratios to train the SACGAN. The labeled samples are also used to train the ACGAN
and the CNN model for comparison, where the parameter structure of the ACGAN is
the same as the SACGAN. It is worth mentioning that to verify the effectiveness of the
discriminator’s structure, the CNN model here is the discriminator of SACGAN that can
perform supervised learning. Each group of comparative experiments is repeated ten
times, and the average recognition accuracy of the test samples at different label ratios is
given in Figure 12. The results show that all three models have high recognition accuracy,
indicating the effectiveness of the discriminator structure; the ACGAN and the SACGAN
effectively improve the recognition ability of the discriminator through adversarial learning;
limiting the number of labeled training samples has a greater impact on the fault recog-
nition ability of the ACGAN and the CNN and the SACGAN can weaken the influence
of decreasing labeled training samples and has the highest recognition accuracy under
different label ratios.
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The recognition ability of the model is closely related to its ability to extract effective
features, and to observe the distribution of features extracted by the model, the t-SNE (t-
Distributed Stochastic Neighbor Embedding) algorithm is used to visualize the distribution
of extracted features [30]. The changes in the distribution of labeled training and testing
samples with a labeling ratio of 0.2 are shown in Figure 13, which shows that the SACGAN
can significantly improve the distribution of samples from a different class, reduce the
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intra-class distance, and increase the inter-class distance, making it easier to recognize the
differences between different classes.
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Five kinds of bearing vibration data with a speed of 2100 rpm and a radial force of 12 kN 
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5.2. Case 2 Multi-Mode Data Generation and Fault Diagnosis of Bearings
5.2.1. Introduction and Preprocessing of Bearing Data

In case 2, Xi’an Jiaotong University and the Changxing Sumyoung Technology Co.
(XJTU-SY) bearing dataset are used to verify the generalization ability of the proposed
method, and the test rig is shown in Figure 14 [31], with a sampling frequency of 2.56 kHz.
Five kinds of bearing vibration data with a speed of 2100 rpm and a radial force of 12 kN are
selected for analysis, and the bearing states and class labels are shown in Table 4. Similar to
Case 1, 1024 consecutive points are randomly sampled 300 times from the vibration signals
of each state as available samples, and two-dimensional time-frequency images obtained
by conversion are shown in Figure 15.
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Table 4. Details of XJTU-SY-bearing samples.

Fault Type Class Labels

Outer ring OR1
Outer ring OR2
Outer ring OR3

Cage Cage
Inner ring and outer ring IR&OR
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5.2.2. Multi-Mode Fault Sample Generation and Fault Recognition in Case 2

Similar to Case 1, the SAGAN is trained using training samples with a labeling ratio
of 0.2 (40 labeled samples and 160 unlabeled samples of each class). Figure 16 shows the
diagrammatic sketch of the real samples and the generated samples. The SSIM is also used
to quantitatively evaluate the quality of the generated multi-mode samples. As shown in
Figure 17, the SSIM values of each class of the ACGAN are always smaller than those of the
SACGAN. The results further demonstrate the validity and superiority of the SACGAN
in terms of generation. The comparative fault recognition experiments are the same as in
Case 1, and the recognition accuracies of the test samples at different label ratios are shown
in Figure 18. For feature-level evaluation, the results of feature distribution visualization are
shown in Figure 19. The above results proved that the SACGAN has strong robustness and
generalization ability and can be applied to different objects and operating environments.
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(b) labeled samples after training; (c) test samples before testing; (d) test samples after testing.

6. Conclusions

To address the problem of scarcity of labeled data in intelligent fault diagnosis of
bearings, from the field of GAN, the SACGAN based on SGAN and ACGAN is constructed
to improve the multi-mode fault sample generation ability of the generator and the recog-
nition ability of the discriminator by using a small amount of labeled data with a large
amount of unlabeled data for adversarial learning. Using the ability of STFT to process non-
stationary signals, a fault diagnosis method based on STFT-SACGAN is proposed, and the
original one-dimensional vibration signals of bearings are converted into two-dimensional
time-frequency images by STFT as the input of the SACGAN. The effectiveness of the
proposed method is verified on the CWRU bearing dataset, and the results show that
the SACGAN can generate high-quality multi-mode fault samples and has excellent fault
recognition ability. The proposed method is verified to have strong generalization and
stability on the XJTU-SY bearing dataset.

Although the proposed method can perform multi-mode fault sample generation and
fault diagnosis tasks well, it only involves data from a single source of information. In the
future, we will explore how to use data from multi-source information fusion to generate
high-quality, multi-source information fusion fault samples and further optimize the model
to improve fault diagnosis efficiency. In addition, the study of fault diagnosis with limited
labeled data is more suitable to current industrial practical scenarios. It can significantly
reduce the cost of fault diagnosis, which is worth further exploration.
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