
Citation: Zhao, Z.; Lan, L.; Wang, B.;

Lai, J. Verifiable Privacy-Preserving

Outsourced Frequent Itemset Mining

on Vertically Partitioned Databases.

Electronics 2023, 12, 1952. https://

doi.org/10.3390/electronics12081952

Academic Editor: Andrei Kelarev

Received: 20 March 2023

Revised: 18 April 2023

Accepted: 19 April 2023

Published: 21 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Verifiable Privacy-Preserving Outsourced Frequent Itemset
Mining on Vertically Partitioned Databases
Zhen Zhao 1,2,* , Lei Lan 1, Baocang Wang 1,* and Jianchang Lai 3

1 State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China
2 Henan Key Laboratory of Network Cryptography Technology, Zhengzhou 450001, China
3 School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China
* Correspondence: zzhen@xidian.edu.cn (Z.Z.); bcwang@xidian.edu.cn (B.W.)

Abstract: In the data era, to simultaneously relieve the heavy computational burden of mining data
information from data owners and protecting data privacy, privacy-preserving frequent itemset
mining (PPFIM) is presented and has attracted much attention. In PPFIM, data owners and miners
outsource the complex task of data mining to the cloud server, which supports strong storage and
computing power, and the cloud server cannot extract additional data privacy other than that which
is shown by data owners or miners. However, most existing solutions assume that cloud servers will
honestly perform the mining process and return the correct results, whereas cloud services are usually
provided by a charging third party that may in practice return incorrect results due to computation
errors, malicious or criminal activities, etc. To solve this problem, in this paper, we present a verifiable
PPFIM protocol on vertically partitioned databases to support the verifiability of the integrity of the
mining results, where data owners can authorize the cloud server to perform federated mining on
vertically partitioned databases without leaking data information and detect dishonest behaviors
in the cloud server from the returned results. We adopt a dual cloud setting to enable data owners
to be offline after uploading their encrypted databases to the cloud server, which further relieves
the burden on data owners. We implement our protocol and give a detailed analysis in terms of
verification accuracy, which shows that the dishonest behaviors of the cloud server can be detected
with a probability close to 1 and a sacrifice of only a 1% increase in database size.

Keywords: frequent itemset mining; privacy-preserving; Paillier homomorphic encryption; vertically
partitioned databases

1. Introduction

In the era of big data, data mining technology has attracted much attention since
it enables the extraction of valuable information from data. As the core technology of
association rule mining, frequent itemset mining (FIM) [1–3] is used to find frequent
co-occurrence data items in large transaction databases. It has been widely used in market
basket analysis [4], healthcare [5], intrusion detection [6], network traffic management [7],
and bioinformatics [8]. Taking the most classic supermarket basket as an example, and
given a transaction database, FIM can find the commodity combinations that are more
frequently added to the same shopping list. Wal-Mart found that beer and diapers
are often bought together because American husbands often buy two bottles of beer to
themselves when they buy diapers for their children. Such information can help retailers
optimize shelf placement and carry out selective marketing, thus increasing sales.

Due to extensive computation costs, data miners usually choose to outsource the
task of mining to cloud servers that possess powerful storage and computation capacity.
This greatly relieves the computation burden on the local devices of miners as well as
exposes the data information of owners since the data will be uploaded to the cloud for
mining. Privacy exposure, especially that of sensitive information, may even lead to huge

Electronics 2023, 12, 1952. https://doi.org/10.3390/electronics12081952 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12081952
https://doi.org/10.3390/electronics12081952
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2654-624X
https://doi.org/10.3390/electronics12081952
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12081952?type=check_update&version=1

Electronics 2023, 12, 1952 2 of 17

economic losses or even more terrible consequences, such as the leakage of gene banks.
This problem on the FIM has also received a substantial amount of attention, and the concept
of privacy-preserving FIM (PPFIM) was proposed correspondingly [9,10].
PPFIM can mine the frequent itemsets among the databases while protecting the pri-
vacy security of data and mining results against curious cloud servers which, in practice,
are often used by charging third parties.

To be realistically usable in further applications, subsequent research on PPFIM has
also paid attention to supporting multiple data owners [11–13], where the mining is per-
formed on a joint database that consists of the transactions collected from multiple users. In
the literature, the joint database can be divided into horizontally partitioned databases and
vertically partitioned databases. A horizontally partitioned database can be divided into
multiple tables belonging to different users, where each table contains the same number
of columns and different numbers of rows. Conversely, a vertically partitioned database
can be split into multiple tables, each containing the same number of rows but different
columns. For example, let us consider two tables with the same service types for two
different companies, each consisting of transaction rows that identify the ordered services
from different customers. We can create a horizontally partitioned database by simply
adding the transactions of one table to another. On the other hand, if the two companies
provide different service types for the same group of customers, we can obtain a verti-
cally partitioned database by attaching the transactions of a user in one table with the
corresponding user in another table.

In particular, as in our example, for a common scenario where, in reality, different
merchants that sell different goods in the same region want to plan a joint sales promotion to
stimulate consumption, vertically partitioned databases are more suitable. In this scenario,
the merchants jointly mine the frequent itemsets with the help of a third cloud server and
accordingly cooperate with the related stores to start the sales promotion. However, most
existing PPFIM protocols assume that cloud servers can honestly perform a required mining
job and correctly return the mining results. However, typically cloud servers cannot be fully
trusted in practice, i.e., they may return incorrect results to the merchants to increase profit,
engage in malicious activities, or due to some uncontrolled calculation errors, without
any risk of being caught. Incorrect mining results may lead to a failed promotion or even
substantial financial loss.

Contributions. In this paper, to solve the aforementioned problem, we propose a
verifiable PPFIM protocol on vertically partitioned databases to support the checking of
the integrity of returned mining results from the cloud. Our FIM protocol provides both
privacy protection and verifies the integrity of the results, which is practically needed for
data owners and miners who cooperate with not-fully trusted third parties.

In our protocol, prior to uploading their databases to the cloud, merchants, i.e., data
owners, add artificial itemsets that are different from the original itemsets to the transac-
tions, applying the technique proposed in [14]. Data owners can then check the integrity
of returned results by detecting the malicious actions of cloud servers on these artificial
itemsets. To resist the frequency analysis attack, merchants further adopt the algorithm
proposed in [15] to insert fictitious transactions into their database. Merchants encrypt
their databases and upload them to the cloud, and the cloud then performs mining on
the joint encrypted database, following the improved FIM protocol [11] by applying the
Paillier [16] algorithm in our solution. Compared with [11], we utilize a dual-cloud setting,
instead of a single-cloud setting, such that the merchants do not need to stay online after
outsourcing the data. We finally implement our solution and depict the computation costs,
which shows that the verification accuracy increases along with the increase in the number
of dishonest behaviors in the cloud and the proportion of fictitious itemsets. Particularly,
as both the proportion of itemsets affected by the CSP’s dishonest behaviors reaches 0.6%
and the artificial itemsets proportion in the mining results reaches 1%, the data owner can
capture dishonest behaviors from the CSP with a probability close to 100%.

Electronics 2023, 12, 1952 3 of 17

Organization

The rest of this paper is organized as follows. In Section 2, we introduce the literature
on PPFIM and verifiable PPFIM. In Section 3, we describe the preliminaries of our solution.
Then, we introduce the system model, security model, and design goals of this paper in
Section 4. In Section 5, we present our PPFIM scheme based on vertically partitioned
databases. The security and experimental analysis of our protocol is shown in Section 6.

2. Related Work

Privacy-preserving frequent itemset mining (PPFIM). Due to the traditional involvement
of FIM, the raw data of data owners may cause direct privacy leakage problems in practice;
thus, PPFIM is presented [9,10,12] to protect data privacy in the mining process. PPFIM
can be generally classified into randomization-based solutions and cryptography-based
solutions, among which the former [15,17] hides the original data information through
data perturbation techniques so that data mining can be performed without exposing
original data values, and the latter protects data by encrypting them prior to uploading
them to clouds. In cryptographic-based solutions, as we explained above, data are usually
partitioned with two approaches: vertical [10,11,18] and horizontal [9,19]. In the literature
on cryptographic-based PPARM algorithms, many studies [11–13,20] have been based on
homomorphic encryption schemes [16] to support computations on encrypted data.

Verifiable PPFIM. In most PPFIM protocols, the cloud servers are supposed to honestly
execute the mining process and will return correct results. Wong et al. [14] designed an
audit environment in which the data owners add artificial data items that originally did not
exist in the outsourced database, where data owners can verify the correctness and integrity
of the mining results by checking the integrity of artificial data items. However, Ref. [14]
does not change the frequency of data items in the original database, which allows the
cloud server with some background knowledge to distinguish the real data items from the
artificial data items by frequency analysis. Chen et al. [21] applied the BLS signature [22] to
verify data integrity and ensure data reliability, which requires more computation costs
in terms of checking the integrity than that in [14]. Furthermore, in their scheme, data are
encrypted with the homomorphic encryption for higher security, which leads to a larger
computation cost and an additional cloud server for auxiliary decryption. In this paper,
we improve the technique proposed by [14] to realize an efficient PPFIM protocol, which
provides the integrity verification and resists frequency analysis attacks. As shown in
Table 1, we compare the contribution of our protocol with the verifiable FIM protocols
presented in [14,21].

Table 1. Comparison of contributions.

Scheme [14] [21] Ours

Verifiability
√ √ √

Data Privacy ×
√ √

Against frequency
analysis attack ×

√ √

Number of
third-party cloud

servers
2 3 2

Data encryption – Homomorphic
encryption

Substitution cipher

Homomorphic
encryption

Electronics 2023, 12, 1952 4 of 17

3. Preliminaries

In this section, we introduce the building blocks that are applied to our protocol,
including the Paillier homomorphic encryption [16], an improved secure comparison
protocol (SCP) based on [13,16], the substitution cipher, and some definitions of FIM [14].

3.1. Paillier Homomorphic Encryption

We recall the Paillier homomorphic encryption [16] as below. Note that the Paillier
encryption is an additively homomorphic encryption scheme.

Paillier.KeyGen: Taking two large prime numbers p, q as input, it computes N = pq
and λ = lcm(p− 1, q− 1), where lcm(·) denotes the least common multiple functions. It
selects a random number g ∈ Z∗N2 that satisfies gcd(L(gλ mod N2), N) = 1, where gcd(·)
denotes the greatest common divisor function and L(x) = (x− 1)/N with x ∈ ZN2 and
x ≡ 1 mod N. It outputs the public key pk = {N, g} and the private key sk = λ.

Paillier.Enc: Taking as input a message m ∈ ZN , it selects a random number r ∈ Z∗N2

and computes the ciphertext as c = [m]pk = gmrN mod N2.

Paillier.Dec: Taking as input a ciphertext c, it computes the message with the private

key λ as m = L(cλ mod N2)
L(gλ mod N2)

mod N.

Paillier.Add: Taking as input two ciphertexts [m1]pk and [m2]pk, we have

[m1]pk · [m2]pk = [m1 + m2]pk.

This is because

[m1]pk · [m2]pk = gm1 rN
1 mod N2 · gm2 rN

2 mod N2

=gm1+m2 r1 + r2
N mod N2

=[m1 + m2]pk.

Paillier.Mult: With the additive homomorphic property, we can easily have that given
a ciphertext [m1]pk and a message m2 ∈ ZN ,

([m1]pk)
m2 = [m1 ·m2]pk.

In our protocol, we use Paillier encryption to encrypt 0 and 1, and the corresponding
ciphertexts are rN mod N2 and grN mod N2, where r is the randomly chosen number,
N = pq, and g is one of the public key pk of the user.

3.2. Substitution Cipher

Substitution cipher protects the privacy of a single unit but it does not change the fre-
quency of items. This means that every ciphertext and the corresponding item appear at the
same frequency. As such, the substitution cipher is vulnerable to frequency analysis attacks.
If attackers have some knowledge of the frequencies of the items in raw transactions, they
can recover the plaintext by frequency analysis. For example, an attacker knows that bread
is the most sold commodity and milk is the second. Once they acquire the transactions
database encrypted by substitution cipher, they can find the ciphertexts for bread and
milk by counting the frequencies of ciphertexts. We counter frequency analysis by adding
fictitious transactions to hide the accuracy frequency of items.

3.3. FIM

We first recall the definition of FIM [23]. Let I = {i1, i2, · · · , in} be the item domain
and a transaction database be D = {t1, t2, · · · , tn}, where a transaction ti is a subset of I.
We say that a transaction ti contains an itemset x if and only if x ⊆ ti. Given a transaction
database D, the support of itemset x, denoted by supp(x), is the number of transactions
that the itemset x contains in D. Given a support threshold s%, the itemset x is a frequent

Electronics 2023, 12, 1952 5 of 17

itemset if and only if supp(x) > |D| × s%, where |D| is the total number of transactions in
D. We also refer to |D| × s% as suppmin. FIM serves to find all frequent itemsets in a given
database D.

In our protocol, artificial transactions are inserted into data owners’ transaction
datasets to verify the integrity of the mining results [14]. To better understand this, we
recall the related definitions and theorems below. First of all, a correct mining result must
be a valid return.

Definition 1. (Valid Return) Given a returned FIM result R from the miner, we said that R is
valid if ∀y ∈ R, ∀x ⊂ y and x 6= ∅⇒ x ∈ R and supp(x) ≥ supp(y). We refer to this property
as the “monotonicity property” which states that any subset of a frequent itemset must be frequent.

Then, we introduce the concepts of a positive border and a negative border. Given an
item domain I, let L be a set of frequent itemsets that satisfy the monotonicity property.

Definition 2. (Positive Border) The positive border of L, denoted by B+(L), is the set of all frequent
itemsets with a maximal length in L, i.e., B+(L) = {x | ∀x ∈ L and ∀x ⊂ y, y /∈ L}.

Definition 3. (Negative Border) The negative border of L, denoted by B−(L), is the set of all
infrequent itemsets with minimal length with respect to L, i.e., B−(L) = {x | ∀x ⊂ I and x /∈
L and ∀y ⊂ x, where y 6= ∅, y ∈ L}.

Theorem 1. Let a set of frequent itemsets L′ be a valid return from the miner while the real set
of frequent itemsets is L. No infrequent itemset is inserted into L if and only if all itemsets in
B+(L′) are frequent. No frequent itemset is deleted from L if and only if all itemsets in B−(L′) are
infrequent. Proof of this theorem can be found in [14].

The inserted artificial itemsets should satisfy the following requirements.

Definition 4. (Valid Pattern) Let I be a set of unique items in the transaction database D and IA
be a set of artificial items. Assume that IA ∩ I = ∅. Given the support threshold s%, we generate a
set of artificial frequent itemsets named AFI and a set of artificial infrequent itemsets named AII.
We say that the itemset pattern (AFI, AII) is a s-valid pattern if there exists a transaction database
TA in which all itemsets in AFI are frequent and all itemsets in AII are infrequent with the support
threshold s%.

When generating artificial transactions, we insert itemsets belonging to AFI into
transactions and try to avoid inserting itemsets belonging to AII. However, if a transaction
contains multiple itemsets of AFI, it may contain one or more itemsets of AII. Such a
situation is called a “conflict” between the itemsets in AFI. If such “conflicts” never occur
in the same transaction, the itemsets of AII will not be included in any transaction.

Definition 5. (Conflict in AFI) Let xi, xj be two itemsets belonging to AFI, i 6= j. We say that xi
conflicts with xj if and only if there exists z ∈ AII satisfying (z− xi)∩ xj 6= ∅ and (z− xj)∩ xi 6= ∅.
If a transaction t of the artificial database TA contains both xi and xj while xi conflicts with xj, the
corresponding itemset z may be included in transaction t.

Definition 6. (Conflict Index) Let graph G = (V, E) represent the conflict relationships of itemsets
in AFI. Each node in graph G represents an itemset in AFI. An edge (n1, n2) in graph G represents
the conflict between n1 and n2. The conflict index of node n, denoted by cn, is the number of
neighbor nodes of n, i.e., the number of itemsets in AFI in conflict with n. The conflict index of
graph G, denoted by CI(G), is equal to the maximum value of the conflict index of nodes in G, i.e.,
CI(G) = maxn∈Vcn.

Electronics 2023, 12, 1952 6 of 17

Theorem 2. Given an artificial itemset pattern (AFI, AII) while AFI and AII satisfy the mono-
tonicity, (AFI, AII) is an s− valid pattern if CI(G) ≤ 1

s% − 1. Proof of this theorem can be
found in [14].

4. Models and Design Goals

In this section, we depict the system model, security model, and design goals of
our protocol.

4.1. System Model

As shown in Figure 1, our system model consists of two cloud servers (CSP and
Evaluator) and multiple data owners.

• CSP integrates the vertically partitioned databases from different data owners to
generate a joint database. With the help of the Evaluator, CSP mines frequent itemsets
in the joint database and returns the mining results to the relevant data owners.

• Evaluator is responsible for generating and distributing public/private key pairs
(pk, sk) of Paillier encryption for data owners. Additionally, Evaluator assists the CSP
in performing FIM.

• Data owners sell different goods. They take commodities as items and transform
customers’ purchase records in the store into digital transactions. By generating a
unique identifier TID for each transaction according to the user’s bank card, contact
information, and other related information, each data owner finally obtains a private
transaction database. After inserting artificial data items and fictitious transactions
into their own transaction database, data owners encrypt it and then send it to the CSP
for PPFIM. It is worth noting that there is no intersection between itemsets among
different data owners’ databases.

Figure 1. System model.

4.2. Security Model

In our system, we assume the following.

• The CSP is dishonest and curious. Due to saving costs in terms of computation, making
illegal profits, or unexpected errors, the CSP may behave dishonestly or erroneously
by returning inaccurate mining results to data owners. In addition to that, the CSP is
curious about the original transaction information and mining results.

Electronics 2023, 12, 1952 7 of 17

• The Evaluator is honest but curious. If the Evaluator is dishonest, the user can still
detect errors in the mining results and confirm whether the CSP or Evaluator performs
dishonestly, which is the same for data owners since cloud servers are dishonest. We
therefore assume that the Evaluator is honest and curious. The CSP and Evaluator are
set to not collude, or else the cloud servers can extract all the underlying messages of
encrypted data.

• Data owners are set to not collude with the CSP. In a vertically partitioned data mining
scenario, data owners cooperate to send an encrypted transaction database to the CSP
to mine frequency itemsets. They ultimately benefit from the correct mining results.
Therefore, data owners are not supposed to collude with the CSP.

Note that each data owner should know the items in other owners’ transaction
databases but have limited knowledge of the TIDs therein in practical applications. Our
protocol is more meaningful when there are many common TIDs in data owners’ databases,
such as those for stores in the same community.

4.3. Design Goals

We design a verifiable privacy-preserving outsourced FIM protocol on vertically
partitioned databases to ensure the following:

• Security of private information. The original transactions of the encrypted database
should be kept secret from the CSP and Evaluator. Data owners should also learn
as little information as possible about other owners’ databases. The support and
threshold should be concealed as they may be used to infer information about raw
databases [24]. The CSP and Evaluator should not obtain accurate mining results.
Each data owner can only obtain frequent itemsets that contain items in their own
transaction database.

• Verifiability of the integrity of mining results. Data owners should be able to verify the
integrity of mining results, which means that data owners can detect inaccurate results
if the CSP performs dishonestly in the mining.

5. PPFIM Protocol

Our protocol can be divided into three phases. First, data owners insert artificial
transactions into their own private transaction databases to achieve verifiable integrity in
their mining results. Then, data owners process and encrypt their transactions and send
the encrypted databases to the CSP. Then, CSP integrates the databases from multiple data
owners to generate a joint database and performs FIM on it. Data owners can finally obtain
encryption-related mining results from the CSP.

5.1. Artificial Transaction Insertion

For a data owner, given its private transaction database T and support threshold s%,
these generate a set of artificial frequent itemsets AFI and a set of artificial infrequent
itemsets AII. Upon the corresponding artificial database TA, the data owner merges TA
and T into a new database D. We divide this process into two main steps: artificial itemset
generation and artificial transaction generation.

5.1.1. Artificial Itemset Generation

We adopt the scheme proposed in [14] to generate the artificial frequent itemsets AFI
and artificial infrequent itemsets AII that satisfy the requirement of an s-valid pattern.
The execution process of artificial itemset generation can be seen in Figure 2 and the details
are as follows.

Note that the itemsets belonging to AFI and AII should be satisfied with the demand
for the monotonicity property and the conflicting itemsets in AFI jeopardize correctness.
We describe the conflicting relationship among AFI by a conflict graph G. (AFI, AII)
should be an s-valid pattern (see Theorem 2) such that the data owner could generate

Electronics 2023, 12, 1952 8 of 17

the corresponding artificial database TA = {t1, t2, · · · , tn} in which each itemset in AFI is
frequent and each itemset in AII is infrequent.

Figure 2. Artificial Itemset Generation.

Step 1: The data owner creates a set of artificial items IA satisfying IA ∩ I = ∅, where I
represents the item domain of T. The size of AII is denoted as the initial size of IA.

Step 2: The data owner randomly selects an itemset H ⊆ IA satisfying H /∈ AII.
It then adds H to AII and all immediate subsets of H to AFI. For example, if H = ABC,
the data owner adds {ABC} to AII and {AB, BC, AC} to AFI.

Step 3: The data owner updates the conflict graph G of AFI. If the obtained (AFI, AII)
is not an s-valid pattern, it rolls back the addition operation performed in step 2 and goes
to step 4. If (AFI, AII) is an s-valid pattern, the data owner calculates B−(AFI). If there
exists an itemset S satisfying S ∈ B−(AFI), S /∈ AII, it adds S to AII. Otherwise, go to
step 4. After the addition, the data owner updates G and checks whether (AFI, AII) is an
s-valid pattern. If not, it rolls back the insertion.

Electronics 2023, 12, 1952 9 of 17

Step 4: If H is successfully added to AII, repeat steps 2 and 3 until the sizes of AFI and
AII meet the requirements. Otherwise, H /∈ AII, the data owner creates a new artificial
item in, adds in to IA, replaces an original item in H with in, and tries to add H to AII again
(step 2).

Suppose the size of H is k, then after a maximum of k attempts, H will be replaced
with a completely new itemset which must be successfully inserted into AII. Thus, the
algorithm can be successfully executed in finite time. The procedure tries to add itemsets
to AFI and AII until they are both big enough. We refer to Section 6 for the relationship
between the size of (AFI, AII) and verification accuracy.

5.1.2. Artificial Transaction Generation

In this phase, the data owner generates the artificial transaction database TA corre-
sponding to (AFI, AII). Recalling the requirements of the artificial database that each
itemset of AFI is frequent in TA and each itemset of AII is infrequent in TA, we tend to
add the AFI itemsets into the transactions without inserting any AII itemsets to avoid
jeopardizing correctness. In other words, conflicting AFI itemsets should not be added to
the same transaction. We depict the artificial transaction generation process in Figure 3 and
the details are as follows.

Step 1: The data owner generates an array fAFI , the size of which is set to be equal
with that of AFI. fAFI [i] records the number of times that the i-th itemsets in AFI is added
to the artificial transactions.

Step 2: The data owner generates artificial transactions by adding non-conflicting
AFI itemsets. It maintains two initially empty sets S+, S−, randomly selects an itemset
U ∈ AFI, adds U to S+, and then adds all neighbor nodes of U in the conflict graph G to S−.
Recall that the neighbor nodes of U in G represent itemsets that are in conflict with U.

Step 3: Repeat step 2 until AFI = S+ ∪ S−. Itemsets in S+ are conflict-free and each
itemset in S− conflicts with at least one itemset in S+. The first transaction to be generated
is the union of all itemsets in S+. Update fAFI .

Step 4: Remove all itemsets existing in S+ from AFI and remove all corresponding
nodes and related edges in graph G to obtain the conflict graph G′ corresponding to S−.
Since each itemset in S− conflicts with at least one itemset in S+, CI(G′) ≤ CI(G)− 1.

Step 5: Set G = G′, repeat steps 2–4 until CI(G′) = 0. Take the itemsets left in AFI as
an artificial transaction since they are conflict-free. A maximum of CI(G) + 1 transactions
can be generated in this process.

Step 6: If all values in fAFI are greater than the support threshold, i.e., fAFI[i] > Suppmin,
return all artificial transactions as the artificial database TA. Otherwise, reset the set U and
graph G and return to step 2. The data owner merges the original database T with TA to
obtain a new database D. For the following processing and mining, we give an example of
database D in Table 2.

Table 2. Data Owners’ Transaction Databases.

Alice’s Database Bob’s Database

TID Transaction TID Transaction

1 A B C 2 E F

2 A B 3 D E

4 B C 6 F

Electronics 2023, 12, 1952 10 of 17

Figure 3. Artificial Transaction Generation.

5.2. Encryption of Databases

In this phase, each data owner encrypts their own transaction database.
Step 1: The Evaluator generates a public/private key pair (pk, sk) of Paillier encryption

and sends sk to data owners.
Step 2: In order to counter frequency analysis attacks, we adopt the algorithm proposed

in [15] to insert fictitious transactions into database D to obtain a database Z. Note that
fictitious transactions are different from artificial transactions, where fictitious transactions
are inserted to resist frequency analysis attacks and artificial transactions are inserted to
realize the verifiability of the integrity of mining results. In Z, each item has the same
frequency of occurrence as at least k− 1 other items, where k is a number negotiated by
data owners.

Step 3: In order to eliminate the influences of fictitious transactions on the mining
results, each data owner tags each transaction in Z with an encrypted realness value
ERV. The underlying realness values RV of ERV for a transaction in D is 1 and that of a
fictitious transaction is 0, which means that ERV ∈ {[1]pk, [0]pk}. Since Paillier encryption

Electronics 2023, 12, 1952 11 of 17

is a probabilistic encryption cryptosystem, the CSP cannot distinguish the original and
fictitious transactions from ERV.

Step 4: With a cryptographic hash function H, data owners replace the transaction’s
unique identifier TID with H(TID). Each data owner then encrypts the items in database
Z according to a substitution alphabet. Note that data owners use different private substi-
tution alphabets, which do not influence the mining since the items belonging to different
owners are different. An example of the encrypted databases is shown in Table 3.

Step 5: Each data owner outsources the encrypted database to the CSP.

Table 3. Data Owners’ Encrypted Databases.

Alice’s
Database

Bob’s
Database

TID Transaction ERV TID Transaction ERV

H(1) SA(A) SA(B)
SA(C) [1] H(2) SB(E) SB(F) [1]

H(2) SA(A) SA(B) [1] H(3) SB(D) SB(E) [1]

H(3) SA(A) [0] H(4) SB(D) [0]

H(4) SA(B) SA(C) [1] H(6) SB(F) [1]

H(5) SA(C) [0]
H(·): Hash value of original TID. S(·): The item encrypted by substitution cipher [·]: RV encrypted by Paillier.

5.3. Frequent Itemset Mining

The frequent itemset mining is shown below.
Step 1: Data owners negotiate a shared support threshold suppmin and send the

encrypted support threshold Ts = [suppmin]pk to the CSP.
Step 2: The CSP aggregates all data owners’ databases based on H(TID) to generate a

joint database, where the transaction corresponding to a certain H(TID) consists of that
related to H(TID) in all owners’ databases. Table 4 gives the joint database of databases
listed in Table 3.

Table 4. Joint Database.

TID Alice’s Partition Bob’s Partition Alice’s ERV Bob’s ERV

H(1) SA(A) SA(B)
SA(C) NULL [1] NULL

H(2) SA(A) SA(B) SB(E) SB(F) [1] [1]

H(3) SA(A) SB(D) SB(E) [0] [1]

H(4) SA(B) SA(C) SB(D) [1] [0]

H(5) SA(C) NULL [0] NULL

H(6) NULL SB(F) NULL [1]

Step 3: The CSP runs the classical FIM algorithm Eclat to find all frequent itemsets
in the joint database. The Eclat algorithm outputs a set of H(TID) that is related to the
frequent itemsets in the mining result. It is worth noting that since we add artificial
transactions to databases, some itemsets with less support than the support threshold are
mistakenly returned as frequent itemsets. In other words, the frequent itemsets returned
by the Eclat algorithm are only “seemingly frequent”, which obviously contains all real
frequent itemsets.

Step 4: For a “seemingly frequent” itemset S, suppose that its actual support is supp(S).
As mentioned before, the Eclat algorithm will return the H(TID) set of S-related trans-
actions T(S). The items contained in S may come from multiple data owners, and we

Electronics 2023, 12, 1952 12 of 17

denote the set of these users as D(S). In other words, the items contained in S all come
from the data owner in D(S), while each data owner has at least one item in itemset S.
The i-th transaction i in T(S) consists of transactions from one or more data owners, and
we denote the set of these owners as D(S, i). Let ERVi,j represent the ERV of the j-th data
owner’s partition in the i-th transaction. The CSP then computes the encrypted support of
S as

[supp(S)]pk = ∏
i∈T(S)

[
SC
(

∏
j∈D(S,i)

ERVi,j, |D(S, i)|
)]

,

where the secure comparison protocol SC
(

∑j∈D(S,i) ERVi,j, |D(S, i)|
)

will output a cipher-

text of 1 if and only if every data owner in |D(S, i)| has a real partition in the i-th transaction
and it outputs 0 otherwise.

Step 5: For a “seemingly frequent” itemset S, the CSP computes the encrypted frequent
realness value of S as

EFRV(S) = SC
(
[supp(S)]pk, Ts

)
, (1)

where Ts = [suppmin] is the encrypted support threshold. If S is a real frequent item-
set, EFRV(S) is the ciphertext of 1. Otherwise, it is a ciphertext of 0. CSP sends every
“seemingly frequent” itemset S and EFRV(S) to all the data owners in D(S).

Step 6: Data owners decrypt the received EFRV of the “seemingly frequent” itemsets
with sk to determine the real frequent itemsets. Each data owner can extract the related item-
sets in its partition associated with the real frequent itemsets using the
substitution cipher.

Step 7: Data owners verify the integrity of the mining results by checking: (1) whether
the CSP returned any itemsets in AII; and (2) whether the CSP returned all the itemsets
in AFI and their subsets. If (1) happens or (2) does not happen, owners can determine
whether dishonest behaviors have occurred.

Step 8: Although data owners cannot directly obtain the related frequent itemsets of
other owners, they can know which owners share the same frequent itemset. Data owners
can interact with each other to line up willing partnerships and then share the real related
itemsets with each other for the next commercial cooperation.

6. Performance Evaluation
6.1. Security Analysis

We analyze the security of this protocol against the CSP and Evaluator below. In our
model, the CSP is set to be dishonest and curious, such that it will return incorrect mining
results and try to extract the information of data owners’ original transactions and the
underlying mining results. For the misbehaviors of the CSP, the correctness and security of
adding artificial itemsets protect the successfully tracing of the CSP.

In our protocol, the items of the transactions in the database are protected by a substi-
tution cipher that is more secure but vulnerable to frequency analysis attacks. Furthermore,
to further resist this type of attack, we apply the technique proposed in [15] to hide an item
into at least a set of k items with the same frequency. The security of the technique was
proven in [15]. In this protocol, data owners attach an ERV that is a Paillier ciphertext of
1 or 0 to each transaction, which obviously does not help the CSP distinguish the items
through the indistinguishability of Paillier encryption. In conclusion, the security of adding
artificial itemsets, hiding itemset techniques, and Paillier encryption prevent the CSP from
extracting data owners’ original transactions.

Next, regarding the security of mining results, we first prove the security of the
improved secure comparison protocol below. Suppose that xi is the input of party Pi, yi
is the input of party Pi, and Πi(π) is Pi’s execution image of protocol π. We say that the
protocol π is secure if Πi(π) can be simulated from xi and yi such that the distribution
of the simulated image Πs

i (π) is computationally indistinguishable from Πi(π). The
Evaluator’s execution image of the SC protocol is denoted as ΠEvaluator(SC) = {(w, W), d}
where w is the decryption of W. If t = 0, then w = r1 · (x − y) + r2, and if t = 1,

Electronics 2023, 12, 1952 13 of 17

then w = r1 · (y − x) + r2. Recall that t is a random number from (0, 1) and r1, r2 are
randomly selected from {1, · · · , 2l}. In addition, d is the comparison result from w. We
assume that the simulated image of the Evaluator is Πs

Evaluator(SC) = {(w′, W ′), d′} where
(w′, W ′) are randomly selected from ZN and d′ is a random number from (0, 1). As Paillier
is proven to be semantically secure, (w, W) is computationally indistinguishable from
(w′, W ′). Furthermore, t is randomly selected from (0, 1), so d and d′ are either 0 or 1
with equal probability. Thus, d is computationally indistinguishable from d′. In summary,
the ΠEvaluator(SC) is computationally indistinguishable from Πs

Evaluator(SC). Similarly,
ΠCSP(SC) = {X, Y, Z, W, [d]pk, [e]pk} is the execution image of CSP. The simulated image of
CSP is Πs

CSP(SC) = {X′, Y′, Z′, W ′, α, β}, where {X′, Y′, Z′, W ′, α, β} are random numbers
from ZN . Since Paillier is semantically secure, {X′, Y′, Z′, W ′, α, β} are computationally
indistinguishable from {X, Y, Z, W, [d]pk, [e]pk}. Thus, we can claim that Πs

CSP(SC) is
computationally indistinguishable from ΠCSP(SC). As a result, we can conclude that
the secure comparison protocol is secure.

The CSP can obtain the mining results of the Eclat mining algorithm, the encrypted
real support of itemsets, and the encrypted frequent realness value of itemsets. However,
since the additional fictitious transactions, the mining results of the Eclat algorithm are
actually “seemingly frequent” itemsets that contain infrequent itemsets. Furthermore, the
itemsets are also encrypted with a substitution cipher. Due to the security of the secure
comparison protocol and Paillier encryption, the CSP can only obtain a set of Paillier
ciphertexts without knowing the underlying messages such that it also cannot extract the
mining results.

6.2. Experimental Analysis

In this section, we implement our protocol and give the analysis in terms of verification
accuracy and computational complexity. Our simulation experiments are performed on a
computer with a 64-bit Windows 10 system, an Intel(R) Core(TM) i3-8100 CPU @ 3.60 GHz,
and 4.00 GB of RAM. The Paillier algorithm is implemented in Java with a large integer N
a length of 1024 bits and a safety parameter λ of 80 bits.

Verification Accuracy. We generate 10 random databases with the same set of data
items [25]. The number of data items in each database is 1000, represented by integers
from 1 to 1000. The average length of transactions is 10, and the number of transactions
in the databases varies from 10, 000 to 100, 000. For simplicity, the frequent itemsets in
these transaction databases are identical, but their support is different. This means that
the support thresholds of these databases are different, while the frequent itemsets in
mining results are identical. The exact mining result is denoted as L, the number of artificial
frequent itemsets is |AFI| = v · |L|, and the number of artificial infrequent itemsets is
|AII| = v · |B−(L)|. We assumed that the cloud performs e · (|L| + |B−(L)|) dishonest
behavior to the mining results, and the probability that the data owner captures the
dishonest behavior of the cloud is p. We randomly delete, add, or replace the frequent
itemsets in the mining results and repeat the experiment 1000 times for each database,
counting the average probability that these modifications to the experimental results are
captured. The experimental results are shown in Figure 4.

Electronics 2023, 12, 1952 14 of 17

Figure 4. Probability of detecting the dishonest CSP.

As shown in Figure 4, the verification accuracy increases along with the increase in
the number of dishonest behaviors in the cloud and the proportion of artificial itemsets.
As e represents the proportion of itemsets affected by the CSP’s dishonest behaviors and v
represents the proportion of artificial itemsets in the mining results which reaches 1%, the
data owner can capture dishonest behaviors from the CSP with a probability close to 100%.

Computational complexity. We evaluate the computational complexity of our proto-
col by computation costs. To be realistic, we test the performance of our solution using
the retail database from [25] for mining. To simulate t data owners, we partition the retail
database into t vertically partitioned databases. In this experiment, we fix t to 2 and the
proportion of artificial itemsets to the mining results to 1%. In our experiment, we assume
that the data owners and the two cloud servers are run with identical hardware conditions.
We set different support thresholds for PPFIM with our scheme for the retail database.
The running time of the Eclat algorithm and the number of frequent itemsets in mining
results are shown in Table 5. We also measure the running time of the data owner, CSP,
and Evaluator during the FIM of the retail dataset under different thresholds, as shown in
Figure 5.

Table 5. Mining result and running time of Eclat.

Support Threshold 200 500 1000 2000 4000

Number of frequent itemsets 2191 468 135 45 16

Running time of Eclat 2319 ms 1139 ms 857 ms 970 ms 834 ms

As shown in Table 5, the number of frequent itemsets significantly decreases as
the threshold value increases. The computation cost of the CSP and Evaluator also
decreases along with the increase in support threshold, i.e., the reduction in frequent
itemsets in the mining results, as depicted in Figure 5. This can be naturally deduced
since more frequent itemsets also imply more operations in mining. Taking Table 5 and
Figure 5 together, we have that the vast majority of the computation costs are spent on
ciphertext-based operations for the CSP and Evaluator and on encryption and decryp-
tion operations for both the data owner and the Evaluator. A secure and more efficient
homomorphic encryption algorithm can effectively improve the execution efficiency of
our protocol.

Electronics 2023, 12, 1952 15 of 17

Figure 5. Computational costs of DO, CSP, and Evaluator.

We compare our protocol with the privacy-preserving frequent mining
protocols [12,13], which also support multi-user settings [11] in terms of functions, as
shown in Table 6. Note that the protocol of [11] that we based ours upon has been proven
to be insecure since the security of the applied symmetric homomorphic encryption scheme
therein is completely broken [26]—we omit the related comparison in this table. As shown,
only our protocol can resist the malicious cloud server, i.e., realizing the verifiability of the
integrity of the mining results. In [12], the Evaluator who also owns the private key as our
protocol can finally know the final result of the secure comparison protocol and whether a
mining itemset is frequent, which obviously leaks the privacy of mining results. This prob-
lem was solved in [13] and in our scheme. In addition, the protocols in [12,13] performed
mining on horizontally partitioned databases and our protocol is performed on vertically
partitioned databases.

Table 6. Comparison of functions.

Scheme [11] [12] [13] Ours

FIM
√ √ √ √

Data privacy Partial
√ √ √

Verifiability of mining result integrity × × ×
√

Mining result privacy protection
√

×
√ √

Offline ×
√ √ √

7. Conclusions

Based on the Paillier encryption, we propose a verifiable PPFIM protocol on vertically
partitioned databases. Our protocol can provide privacy-preserving outsourced mining
across multiple data owners with vertically partitioned databases and can further allow data
owners to check the integrity of results that are returned from the cloud. The verifiability
in the field of privacy-preserving frequent itemset mining is quite significant since the
outsourced clouds are usually not fully trusted in practice. However, particular data owners
can be offline after they upload their encrypted database to the cloud, which is convenient
for data owners and is practical in real applications. As a trade-off, we add artificial
transactions in the proposed protocol, which increases the size of the databases and the
cost of computation. Experimental analysis shows that a 100% probability of verification

Electronics 2023, 12, 1952 16 of 17

accuracy in our protocol in addition to a 1% increased artificial itemset proportion is an
acceptable trade-off for small databases. However, when dealing with a database with big
data, such as tens of millions of data, the additional 1% increased itemsets will cause a large
computational load. Therefore, to efficiently support the verification of the integrity of the
mining results without increasing the database size and computation cost can be listed as
our future work.

Author Contributions: Conceptualization, Z.Z. and L.L.; methodology, B.W.; software, L.L.; valida-
tion, Z.Z., B.W. and J.L.; writing—original draft preparation, Z.Z. and L.L.; writing—review and
editing, B.W. and J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant Nos. 62102299, 62272362, and U19B2021, the Henan Key Laboratory of Network Cryptography
Technology under Grant No. LNCT2022-A05, the Fundamental Research Funds for the Central
Universities under Grant No. ZYTS23169, and the Youth Innovation Team of Shaanxi Universities.

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors. The data are not publicly available due to privacy requirements of the project.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Agrawal, R.; Srikant, R. Fast Algorithms for Mining Association Rules in Large Databases. In Proceedings of the VLDB’94,

Santiago de Chile, Chile, 12–15 September 1994; pp. 487–499.
2. Han, J.; Pei, J.; Yin, Y.; Mao, R. Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach.

Data Min. Knowl. Discov. 2004, 8, 53–87. [CrossRef]
3. Zaki, M.J. Scalable Algorithms for Association Mining. IEEE Trans. Knowl. Data Eng. 2000, 12, 372–390. [CrossRef]
4. Brijs, T.; Swinnen, G.; Vanhoof, K.; Wets, G. Using Association Rules for Product Assortment Decisions: A Case Study. In

Proceedings of the SIGKDD, San Diego, CA, USA, 15–18 August 1999; pp. 254–260.
5. Brossette, S.E.; Sprague, A.P.; Hardin, J.M.; Waites, K.B.; Jones, W.T.; Moser, S.A. Research Paper: Association Rules and Data

Mining in Hospital Infection Control and Public Health Surveillance. J. Am. Med. Inform. Assoc. 1998, 5, 373–381. [CrossRef]
[PubMed]

6. Lee, W.; Stolfo, S.J. Data Mining Approaches for Intrusion Detection. In Proceedings of the USENIX, San Antonio, TX, USA,
26–29 January 1998.

7. Estan, C.; Varghese, G. New directions in traffic measurement and accounting: Focusing on the elephants, ignoring the mice.
ACM Trans. Comput. Syst. 2003, 21, 270–313. [CrossRef]

8. Creighton, C.; Hanash, S. Mining gene expression databases for association rules. Bioinformatics 2003, 19, 79–86. [CrossRef]
[PubMed]

9. Kantarcioglu, M.; Clifton, C. Privacy-Preserving Distributed Mining of Association Rules on Horizontally Partitioned Data. IEEE
Trans. Knowl. Data Eng. 2004, 16, 1026–1037. [CrossRef]

10. Vaidya, J.; Clifton, C. Privacy preserving association rule mining in vertically partitioned data. In Proceedings of the SIGKDD,
Edmonton, AB, Canada, 23–26 July 2002; pp. 639–644.

11. Li, L.; Lu, R.; Choo, K.R.; Datta, A.; Shao, J. Privacy-Preserving-Outsourced Association Rule Mining on Vertically Partitioned
Databases. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1847–1861. [CrossRef]

12. Qiu, S.; Wang, B.; Li, M.; Liu, J.; Shi, Y. Toward Practical Privacy-Preserving Frequent Itemset Mining on Encrypted Cloud Data.
IEEE Trans. Cloud Comput. 2020, 8, 312–323. [CrossRef]

13. Liu, L.; Su, J.; Chen, R.; Liu, X.; Wang, X.; Chen, S.; Leung, H. Privacy-Preserving Mining of Association Rule on Outsourced
Cloud Data from Multiple Parties. In Proceedings of the ACISP, Wollongong, NSW, Australia, 11–13 July 2018; Volume 10946,
pp. 431–451.

14. Wong, W.K.; Cheung, D.W.; Hung, E.; Kao, B.; Mamoulis, N. An Audit Environment for Outsourcing of Frequent Itemset Mining.
Proc. VLDB Endow. 2009, 2, 1162–1172. [CrossRef]

15. Giannotti, F.; Lakshmanan, L.V.S.; Monreale, A.; Pedreschi, D.; Wang, W.H. Privacy-Preserving Mining of Association Rules From
Outsourced Transaction Databases. IEEE Syst. J. 2013, 7, 385–395. [CrossRef]

16. Paillier, P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In Proceedings of the EUROCRYPT ’99,
Prague, Czech Republic, 2–6 May 1999; Volume 1592, pp. 223–238.

17. Wong, W.K.; Cheung, D.W.; Hung, E.; Kao, B.; Mamoulis, N. Security in Outsourcing of Association Rule Mining. In Proceedings
of the 33rd International Conference on Very Large Data Bases, Vienna, Austria, 23–27 September 2007; pp. 111–122.

http://doi.org/10.1023/B:DAMI.0000005258.31418.83
http://dx.doi.org/10.1109/69.846291
http://dx.doi.org/10.1136/jamia.1998.0050373
http://www.ncbi.nlm.nih.gov/pubmed/9670134
http://dx.doi.org/10.1145/859716.859719
http://dx.doi.org/10.1093/bioinformatics/19.1.79
http://www.ncbi.nlm.nih.gov/pubmed/12499296
http://dx.doi.org/10.1109/TKDE.2004.45
http://dx.doi.org/10.1109/TIFS.2016.2561241
http://dx.doi.org/10.1109/TCC.2017.2739146
http://dx.doi.org/10.14778/1687627.1687758
http://dx.doi.org/10.1109/JSYST.2012.2221854

Electronics 2023, 12, 1952 17 of 17

18. Lamba, J.; Venkaiah, V.C. Privacy-preserving frequent itemset mining in vertically partitioned database using symmetric
homomorphic encryption scheme. Int. J. Inf. Priv. Secur. Integr. 2020, 4, 203–225. [CrossRef]

19. Domadiya, N.H.; Rao, U.P. Privacy Preserving Approach for Association Rule Mining in Horizontally Partitioned Data using
MFI and Shamir’s Secret Sharing. In Proceedings of the ICIISIEEE, Piscataway, NJ, USA, 1–2 December 2018; pp. 217–222.

20. Ma, C.; Wang, B.; Jooste, K.; Zhang, Z.; Ping, Y. Practical Privacy-Preserving Frequent Itemset Mining on Supermarket Transactions.
IEEE Syst. J. 2020, 14, 1992–2002. [CrossRef]

21. Chen, Y.; Zhao, Q.; Duan, P.; Zhang, B.; Hong, Z.; Wang, B. Verifiable privacy-preserving association rule mining using distributed
decryption mechanism on the cloud. Expert Syst. Appl. 2022, 201, 117086. [CrossRef]

22. Boneh, D.; Lynn, B.; Shacham, H. Short Signatures from the Weil Pairing. In Proceedings of the ASIACRYPT, Gold Coast,
Australia, 9–13 December 2001; pp. 514–532.

23. Agrawal, R.; Imielinski, T.; Swami, A.N. Mining Association Rules between Sets of Items in Large Databases. In Proceedings of
the SIGMOD, Washington, DC, USA, 26–28 May 1993; pp. 207–216.

24. Rozenberg, B.; Gudes, E. Association rules mining in vertically partitioned databases. Data Knowl. Eng. 2006, 59, 378–396.
[CrossRef]

25. Fournier-Viger, P.; Gomariz, A.; Gueniche, T.; Soltani, A.; Wu, C.; Tseng, V.S. SPMF: A Java open-source pattern mining library. J.
Mach. Learn. Res. 2014, 15, 3389–3393.

26. Wang, B.; Zhan, Y.; Zhang, Z. Cryptanalysis of a Symmetric Fully Homomorphic Encryption Scheme. IEEE Trans. Inf. Forensics
Secur. 2018, 13, 1460–1467. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1504/IJIPSI.2020.111464
http://dx.doi.org/10.1109/JSYST.2019.2922281
http://dx.doi.org/10.1016/j.eswa.2022.117086
http://dx.doi.org/10.1016/j.datak.2005.09.001
http://dx.doi.org/10.1109/TIFS.2018.2790916

	Introduction
	Related Work
	Preliminaries
	Paillier Homomorphic Encryption
	Substitution Cipher
	FIM

	Models and Design Goals
	System Model
	Security Model
	Design Goals

	PPFIM Protocol
	Artificial Transaction Insertion
	Artificial Itemset Generation
	Artificial Transaction Generation

	Encryption of Databases
	Frequent Itemset Mining

	Performance Evaluation
	Security Analysis
	Experimental Analysis

	Conclusions
	References

