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Abstract: The increasing incidence of epilepsy has led to the need for automatic systems that can pro-
vide accurate diagnoses in order to improve the life quality of people suffering from this neurological
disorder. This paper proposes a method to automatically classify epilepsy types using EEG recordings
from two databases. This approach uses the spectral power density of intrinsic mode functions (IMFs)
that are obtained through the empirical mode decomposition (EMD) of EEG signals. The spectral
power density of IMFs has been applied as features for the classification of focal and non-focal, as
well as of focal and generalized EEG signals. The data are then classified using K-nearest Neighbor
(KNN) and Naïve Bayes (NB) classifiers. The focal and non-focal data were classified with high
accuracy, with KNN and NB classifiers achieving a maximum classification rate of 99.90% and 99.80%,
respectively. Focal and generalized epilepsy data were classified with high rates of accuracy during
wakefulness and sleep stages, with KNN achieving a maximum rate of 99.49% and NB achieving
99.20%. This method shows significant improvements in the classification of EEG signals in epilepsy
compared to previous studies. It could potentially aid clinical decisions for epilepsy patients.

Keywords: epilepsy; electroencephalography; empirical mode decomposition method; EEG signals;
focal epilepsy; non-focal epilepsy; generalized epilepsy; classification

1. Introduction

Epilepsy is a neurological disease that causes a group of neurons in the brain to release
excessive electrical impulses known as seizures, which indicate a quick fluctuation with
potential changes in the EEG recordings of the affected patients [1]. In order to identify
the type of seizures experienced by epileptic patients, neurologists have to investigate
and visually analyze EEG recordings, which implicate many hours of work, and this
interpretation could be subjective, time-consuming, and inefficient, particularly in the case
of long-term EEG recordings [1].

According to the latest World Health Organization (WHO) report, nearly 50 million
people suffer from epilepsy worldwide. It is worth noting that the number of people
affected by epilepsy is likely to be underestimated as many people with epilepsy might not
be diagnosed [2].

Epilepsy can be controlled with a combination of medications and lifestyle changes,
and it can be treated by surgical treatment. The first step in the surgical treatment of
epileptic patients is the identification of the epileptogenic areas. That is why it is very
important to correctly classify the type of epilepsy. Therefore, it is imperative to develop
reliable classification methods to aid in accurate diagnosis.

Electroencephalography (EEG) is a non-invasive medical test that can be used to
evaluate the electrical activity of the brain and to monitor the electrical activity of the
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brain over time. It is a commonly used diagnostic tool in the assessment of epilepsy. By
measuring the electrical activity of the brain, EEG can help diagnose epilepsy and determine
the type of seizures a person is experiencing. It can also provide important information to
help in the development of a treatment plan and to monitor treatment effectiveness [3].

According to the International League Against Epilepsy (ILAE), epilepsy can be
classified into focal epilepsy, focal epilepsy with secondary generalization, and generalized
primary epilepsy. The type of epilepsy is indicated and characterized by analyzing EEG
signals. The EEG signals of patients with different types of epilepsy, such as focal, non-focal,
or generalized epilepsy, have distinct patterns allowing for differentiation between the
types [4].

Focal epilepsy is represented by the onset of seizures only in one brain area. More
than 60% of patients have focal epilepsy, also known as partial epilepsy [4]. Focal epilepsy
with secondary generalization means that the seizures initially appear in one brain area
but then are extended to other lobes/ brain areas. EEG focal signals are collected from that
restricted brain area where normal brain activity is disturbed. In [5], a new type of signal
collected from the brain was mentioned, that is, non-focal (NF) EEG signals, which are
recorded from brain regions that do not contribute to seizure onset.

In cases of focal epilepsy, seizures cannot be controlled by medications alone, and
therefore, it may be useful to elaborate signal processing methods to recognize and locate
the epileptic areas in order to be surgically rejected [6].

Primary generalized epilepsy is characterized by interictal epileptiform discharges
with a generalized, highest distribution on both sides of the brain (described by spikes and
polyspike waves with a frequency greater than 3 Hz), reflecting the involvement of both
cerebral hemispheres [7]. More than 20% of patients have generalized epilepsy [4]. EEG
recordings are collected from the entire brain [7].

Several algorithms have been proposed for processing EEG signals to extract relevant
features that are related to epilepsy seizures and classify different types of epilepsy.

Signal processing methods used for analyzing EEG signal frequency components
include Fourier Transform, Discrete Wavelet Transform, Continuous Wavelet Transform,
Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Adap-
tive Mode Decomposition. Machine learning-based classifying methods such as K-nearest
Neighbor (KNN), Support vector machine (SVM), Linear discriminant analysis (LDA) [8],
Decision Tree, Random Forest, Sparse Bayesian learning [9], and Naïve Bayes (NB) are
likewise employed for epilepsy detection [10,11].

Researchers have also focused on nonlinear methods such as Lyapunov exponents,
fractal dimension, central tendency measures (CTM), Renyi, Shannon, Fuzzy, sample, phase,
permutation entropies, and Correlation Dimension [4,12]. An increasing trend in using
Adaptive Mode Decomposition (AMD) methods such as Empirical Mode Decomposition
(EMD), Empirical Wavelet Transform (EWT), and Variational Mode Decomposition (VMD)
has been developed in recent years [13,14].

In [15], an automatic learning algorithm based on the extreme gradient boosting
(XGB) method was used to identify patients with generalized epilepsy from EEG data.
The following features: detrended fluctuation analysis, approximate entropy, Hurst ex-
ponent, Higuchi, Lyapunov exponent, and EEG band power were extracted in order to
automatically identify generalized epilepsy and generalized seizures.

A method based on the EMD of EEG signals is presented in [16]. The used features
are average sample entropies and show an average variance of instantaneous frequency
for the intrinsic mode functions (IMFs). These features were fed into a least squares
support vector machine (LS–SVM) classifier with a radial basis function (RBF) as a kernel
for the classification of focal and non-focal EEG signals. This technique was applied to
50 recordings of focal and 50 recordings of non–focal EEG signals and achieved an accuracy
of 85%.

In [17], entropy measures were applied to IMFs obtained from the EMD of EEG
signals. This method led to an average classification accuracy of 87%. In [18], orthogonal
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wavelet filter banks and entropy features were used. The method was applied to the Bern
database [19] and attained a high accuracy of 94.25% with an LS–SVM classifier.

The empirical mode decomposition method proposed in [20] can decompose non-
stationary signals recursively with a high resolution based on signal features. Some re-
searchers have extended this method in their research, such as the local mean decomposition
method and the Ensemble Empirical Mode Decomposition method (EEMD). By contrast,
some researchers have used time domain features, including frequency, line length, and the
power of raw EEG signals, as relevant features to effectively detect epilepsy seizures [21,22].

From the above-mentioned studies, it can be observed that extracting appropriate
features from EEG signals represents an essential step in the detection of epilepsy type. A
signal processing method could be developed to discriminate between different types of
epileptic EEG signals, enabling the localization of the epileptogenic area [19].

The current research proposes an EMD-based method and power spectral density
feature extraction for discrimination between focal and non-focal EEG signals and between
focal and generalized EEG signals. Firstly, EMD was used to decompose the EEG signals
into IMFs. The power spectral density of each extracted IMFs was computed and proposed
as features to classify two different classes of EEG epileptic signals. The data were classified
with KNN and NB classifiers, and the performances of these classifiers were assessed
by means of classification rate, sensitivity, specificity, F1-Score, Matthews Correlation
Coefficient (MCC), and Kappa Coefficient.

This work provides a new perspective for data classification compared to the state-of-
the-art, achieving high performance in identifying the type of EEG epileptic signals.

The article is organized as follows. Section 2 describes the databases and the methods
used in this study. Section 3 presents the results and compares the performance of the
classifiers. Section 4 discusses the implications of our outcomes and compares them to
previous approaches. Finally, Section 5 provides the conclusions and suggests future
directions.

2. Materials and Methods
2.1. Databases

In order to validate the proposed method, two databases were used in this work. The
first one is a common and free database from the Department of Neurology, University of
Bern, Barcelona [23]. The database contains 3750 focal and 3750 non–focal intracranial EEG
recordings from five epileptic patients collected from the x and y zones. Signals from the x
zone were collected randomly from any of the five patients and any channel that detected
the first ictal EEG signal. The signals from the y zone corresponded to neighboring focal
channels. The sampling rate was either 512 Hz or 1024 Hz, depending on whether the
number of acquisition channels was greater or smaller than 64.

In this work, we used an initial 1000 EEG signals of focal epilepsy and 1000 EEG
signals of non–focal epilepsy. The signals underwent digital band-pass filtering between
the frequency range of 0.5 to 150 Hz using a fourth-order Butterworth filter. Each signal
was recorded for 20 s, including 10,240 samples, which were obtained at a sampling rate
of 512 Hz [19]. The developed method was applied only to the area corresponding to the
channels that detected the first seizure-related EEG changes in the neocortex [24].

A second database was created in the EEG Epilepsy and Monitoring Center in Cluj-
Napoca, Romania. The acceptance of the Ethics Committee was obtained through the pa-
tient’s informed consent, with access to anonymized raw data. EEG signals were recorded
from the scalp with a Nicolet Clinical EEG Natus System using 21 channels. The ictal EEG
recordings were considered optimal in the diagnosis of epilepsy; however, it can be chal-
lenging to acquire these recordings in real-life scenarios. As a result, interictal epileptiform
activities, which are associated with epilepsy, were used as diagnostic tools [25].

The database consists of interictal epileptiform recordings collected from 50 epileptic
patients, 34 female and 16 male patients, aged between 2 and 66 years. The EEG recordings
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were acquired during wakefulness, during nap sleep (with an approximate duration of
1 h), and during sleep (with an approximate duration of 8 h).

Patients fall into one of the epilepsy types: focal/partial epilepsy or generalized
primary epilepsy. Among the 50 subjects, 18 were confirmed to have generalized epilepsy
by the neurologist after identifying interictal epileptiform activity in their EEG signals,
31 were confirmed to have focal epilepsy, and 1 case was confirmed to have a potentially
epileptic syndrome. The database contained 17 recordings from sleep time, 5 recordings
from nap/siesta sleep, and 31 recordings captured during wakefulness.

In this study, we used 30 EEG recordings that were collected during wakefulness and
16 EEG recordings collected during sleep. We selected the most representative cases based
on the diagnoses provided by a neurologist. The sampling rate was 1000 Hz, and each
recording contained 242900 samples that were recorded for approximately 234 s.

We loaded focal (F), non–focal (NF), and generalized (G) EEG signals from the
databases and presented examples of their graphical representations in Figures 1 and 2.
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2.2. Method
2.2.1. Empirical Mode Decomposition

The empirical mode decomposition technique, also named Hilbert–Huang transform
(HHT), has gained considerable attention and has been widely applied in a diverse range
of time-frequency analyses [20].

The EMD method is intuitive and adaptable and has been commonly employed in the
analysis of non-stationary signals, particularly in EEG recordings [22].

The EMD algorithm, first introduced by Huang et al. in 1998 [21], is a technique that
makes use of an iterative sifting process to decompose a given signal into a finite set of
“modes”, known as IMFs. These modes exhibit both the amplitude modulation (AM) and
the frequency modulation (FM) of signal components.

This algorithm recurrently detects local minima/maxima in a signal, creates lower
and upper envelopes by connecting these extrema, subtracts the average of these envelopes
as a “low-pass” centerline, thereby separating high-frequency oscillations as a “mode” of
the signal, and continues the process iteratively on a residual “low-pass” central line until
a satisfactory decomposition is obtained [20].

To decompose a signal x(t) by the EMD method, the achieved band-limited IMFs
must fulfill the following two conditions:

1. The number of extrema and zero-crossings should differ by no more than one.
2. The mean of the envelopes defined by the minima and maxima must be zero for

each IMF.

The signal decomposed by EMD can be expressed as the sum of a finite number of
IMFs and a residual value:

x(t) =
k

∑
i=1

IMFi(t) + rk(t) (1)

where k is the number of IMFs, IMFi is the ith IMF and rk is the final residual value.
The original signal can be recovered by summing the IMF components and the resid-

ual value [26]. The IMFs are typically arranged according to their frequency content,
starting with the highest frequency and ending with the lowest frequency, which allows
for the examination of the signal at various frequency ranges. Firstly, oscillations in the
gamma band (>30 Hz)—IMF1 were estimated, followed by oscillations in the beta band
(14–30 Hz)—IMF2, oscillations in the alpha band (8–14 Hz)—IMF3, oscillations in the
theta band (4–8 Hz)—IMF 4, and finally, oscillations in the delta band (0.5–4 Hz)—IMF5,
IMF6 [27].

The proposed method for EEG signals classification was based on the application
of the EMD method, the selection of the number of IMFs, and the application of power
spectral density on each IMF. Further, an efficient feature vector from spectral characteristics
was formed, and the corresponding labels (F/NF and F/G) were assigned. The data were
classified using KNN and NB classifiers.

Figure 3 presents a flowchart for the proposed method.

2.2.2. Feature Extraction

In order to extract spectral characteristics of epileptic signals, the most common types
of EEG analysis are based on the analysis of the signal frequency. The spectral analysis of
the EEG signal is essential since epileptic activity interrupts normal brain functionality [28].

In this work, we computed the power spectral density (PSD) of each IMF extracted
from the EEG recordings.

The spectral features obtained were used as input to the classifiers.
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While there are other time-frequency methods that can provide more detailed infor-
mation about EEG signals, power spectral density (PSD) estimate is a valuable feature for
EEG signal classification due to its ease of computation and ability to capture changes in
frequency content [29].

Although the Welch method is commonly used for estimating PSD due to its ro-
bustness, the Yule–Walker has several advantages. The Welch method typically requires
windowing, which can introduce spectral leakage [30]. This is not a concern with the
Yule–Walker method which provides a better frequency resolution [31] and does not re-
quire windowing. In addition, the Yule–Walker method is a parametric method that models
the data using a linear combination of autoregressive coefficients, providing a more ac-
curate estimation of the true PSD and does not require data segmentation compared to
the non-parametric Welch method which involves data segmentation with the cost of the
trade-off between time and frequency resolution [30]. EEG spectral analysis is based on
a collection of frequency sub-bands that cover a range of frequencies that are typically
present in the EEG signal. Medically, it is widely acknowledged that brainwaves are split
into sub-bands based on their frequency, including delta (0–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), beta (13–30 Hz), and gamma (30–80 Hz) rhythms [28].
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2.2.3. Classification

In this research, the data were classified using the K-nearest neighbors and Naïve
Bayes classifiers. A ten-fold cross-validation procedure was used to assess the performance
of the classifiers.

Previous studies [24,32] have tested several classifiers and demonstrated that the KNN
and NB classifiers were most appropriate for distinguishing between two different classes
of EEG data. We chose these classifiers because KNN is a simple yet effective classifier that
works well with EEG signals and can handle nonlinear decision boundaries. NB, on the
other hand, is a probabilistic classifier that works well with high-dimensional datasets and
can handle missing data [33].

The KNN classifier is a type of instance-based learning or non-parametric method that
can be used for the classification of signals. The classifier works by finding the K number of
closest training examples in feature space and determining the majority class among those
K-nearest neighbors [4]. The Euclidean distance metric is used in this study, with a selected
value of 5 for K.

The naïve Bayes classifier is a probabilistic algorithm based on Bayes’ theorem. It is a
simple but powerful algorithm that can make class predictions based on the probability
of a given feature set belonging to each class. The Naïve Bayes classifier makes a strong
assumption about the independence of the features, hence the name “naïve” [34].

For epileptic signal classification, KNN and NB classifiers have been used in various
studies as a technique to classify EEG signals. The algorithms have been applied to classify
normal and abnormal [15], focal and non-focal EEG signals, and ictal, interictal, or postictal
stages of seizures [33].

2.2.4. Performance Evaluation of the Proposed Classifiers

Six performance parameters have been used to evaluate the classifiers: sensitivity or
recall, specificity, classification rate, F1-Score, Matthews Coefficient Correlation (MCC), and
Kappa Coefficient.

The sensitivity or recall of a seizure diagnosis test indicates the capability to correctly
identify the focal EEG signals.

Sensitivity =
TP

TP + FN
× 100 (2)

The specificity of a seizure diagnosis test indicates a capability to correctly identify
non–focal and generalized EEG signals, respectively.

Speci f icity =
TN

TN + FP
× 100 (3)

Classification rates correspond to the proportion of EEG signals that have been cor-
rectly classified.

Classi f icationrate =
TP + TN

TN + TP + FN + FP
× 100 (4)

Precision represents the ratio between the number of positive samples and the sum of
true positive and false positive samples.

Precision =
TP

TP + FP
× 100 (5)

The F1-Score is a parameter that computes the average of precision and recall [35].
The F1-Score formula is:

F1-Score = 2 × Precision × Recall
Precision + Recall

(6)
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MCC generates a high score if the classifier is able to correctly predict the most cases
of positive data and the most cases of negative data.

MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(7)

The Kappa coefficient can be used in classification as a measure of agreement between
observed and predicted or inferred classes, for instance, in the test data set [36].

Kappa =
2 × (TP × TN − FP × FN)

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(8)

The confusion matrix used to evaluate the classification performance includes
four metrics:

True Positives (TP) represent the number of focal EEG signals that can be correctly
classified as focal. False Positives (FP) represent the number of focal EEG signals classified
as non–focal and generalized EEG signals. True Negatives (TN) represent the number of
non–focal and generalized EEG signals, respectively, which can be correctly classified as
non-focal and generalized. False Negatives (FN) represent the number of focal EEG signals
classified as non–focal and generalized [37]. Together, these metrics allowed us to assess
the accuracy of the classifiers.

3. Results

The offline method was implemented in the MATLAB programming environment
using an AMD Ryzen 7 2700X CPU and a Windows 11 PRO 64–bit Operating System.

Firstly, the method was applied to 1000 focal and 1000 non–focal EEG recordings,
respectively, from the Bern public database. Only the signals from the x-zone were used,
with features extracted for the focal/non–focal zone to discriminate and classify the two
types of epileptic signals: focal (F) and non–focal (NF).

The recordings had a length of 10,240 samples with a sampling rate of 512 Hz. The
EEG signals were decomposed using the EMD method, and only the first 6 IMFs were
maintained for further analysis. The frequency content in the IMF decreased from the
first to the sixth IMF. The choice of using only 6 IMFs was based on the statement that the
brain signals typically contain dominant frequency components in the delta, theta, alpha,
beta, and gamma frequency bands. In our study, based on the previous literature [38] and
signal characteristics, using 6 IMFs was deemed sufficient for the classification of epileptic
EEG signals.

By decomposing the EEG signal into IMFs, which correspond to specific frequency
bands, the EMD method could indirectly filter out some of the noise (such as the motion
artifacts) present in the original signal [39].

Empirically decomposed IMFs of a focal and of a non–focal EEG signal, randomly
selected from the Bern dataset, are shown in Figure 4a,b. In other words, the figures show
the frequency components of the original signal represented by each IMF.

The power spectral density of each IMF was extracted from a focal and non-focal
EEG signal and was computed using the Yule–Walker method [31]. The distribution of
power in the IMFs of the EEG signal across different frequency bands was employed as a
feature vector in the classification stage. Figure 5a,b displays the PSD representations of the
extracted IMFs from focal and non-focal EEG signals, respectively, which were estimated
using the Yule–Walker method.

PSDs were normalized, and then a feature vector was composed of spectral features
extracted from focal and non-focal signals, resulting in a feature vector of 1026 × 6 sizes.
The EEG signals were classified with the chosen classifiers based on the extracted features.
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The performance of the classifiers was evaluated by calculating the metrics mentioned
above. The formulas for these metrics, which are based on the positive, negative, false
negative, and false positive classes, were implemented in the MATLAB programming
environment using Statistics and Machine Learning Toolbox [40].

The current method was also applied to the Cluj–Napoca database, using signals that
were recorded during the wakefulness and sleep stages. The signals recorded during siesta
sleep were excluded due to limited data. The study used 30 EEG recordings captured
during wakefulness, comprising 18 focal signals and 12 generalized signals, resulting in
216 situations to classify. Similarly, 16 EEG recordings obtained during sleep were also used,
consisting of 12 focal signals and 4 generalized signals, resulting in a total of 48 unique
classification situations.

The recordings consisting of 242,900 samples were sampled at a rate of 1000 Hz. The
focal and generalized EEG signals were decomposed using the empirical mode decomposi-
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tion method, and the first 6 IMFs were extracted. The relevance of the brain rhythms was
covered by the frequency ranges of IMF1–IMF6. Figure 6a,b illustrates the extracted IMFs
for a focal and generalized signal, respectively, as well as the signals collected during sleep.
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The PSD was calculated for each extracted IMF from focal and generalized EEG signals
using the Yule–Walker method. The PSD was then used as a feature in the classification
process. The PSD representations in Figure 7a,b show the Yule–Walker estimation outcomes
for IMFs of focal signals (Subject9) and generalized EEG signals, respectively (Subject8).
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The normalization of the PSD results was carried out and employed to form a 1026 × 6
feature vector, operating spectral features from both focal and generalized signals. The
effectiveness of the used classifiers was measured by evaluating the previously men-
tioned metrics.

The following tables present the results obtained through the proposed method for
classifying EEG epileptic signals, which were focal or non–focal and focal or generalized.
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Descriptive statistics, including minimum, maximum, mean, and median values, were
computed using standard formulas to summarize the performance of the method.

The EEG signals were classified into two categories, focal and non–focal signals, using
KNN and NB classifiers.

According to Tables 1 and 2, the classification rate of the classification results using
the KNN classifier ranged from 73.95% to 99.90%, with 597 classification cases exceeding a
90% classification rate value. The classification rates ranged from 74.70% to 99.80% using
the NB classifier, with 592 classification cases exceeding 90%.

Table 1. The results with the KNN classifier for discrimination between focal and non–focal
epilepsy—Bern database.

Classification
Rate (%)

Sensitivity
(%)

Specificity
(%)

Min 73.95 74.01 73.18
Max 99.90 100 100

Mean 90.78 91.08 90.48
Median 91.57 91.85 91.45

Table 2. The results with the NB classifier for discrimination between focal and non–focal
epilepsy—Bern database.

Classification
Rate (%)

Sensitivity
(%)

Specificity
(%)

Min 74.70 74.85 73.32
Max 99.80 100 100

Mean 90.76 91.09 90.44
Median 91.40 91.81 91.23

The KNN classifier has the capability to recognize focal EEG data with a maximum
sensitivity of 100%, with 605 values out of a total of 1000 cases that were classified as greater
than 90%. When the data were classified using the NB classifier, the range of sensitivity
varied from 74.85% to 100%, with 609 values higher than 90%. The results of the specificity
for the EEG signals using the KNN classifier lay from 73.18% to 100%, with 576 values
exceeding 90%. The same was observed for the NB classifier, with a range from 73.32% to
100% and 576 values greater than 90%.

The classifiers’ performances were also evaluated using the F1-Score, MCC, and Kappa
Coefficient metrics. Tables 3 and 4 show similar F1-Score results for both KNN and NB
classifiers—these signals were classified with a maximum F1-Score value of one. The KNN
classifier achieved F1-Scores greater than 0.5 for 921 of the classified recordings, while the
NB classifier achieved F1-Scores greater than 0.5 for 911 of the recordings.

Table 3. Performances of KNN classifiers based on the F1-Score, MCC, and Kappa Coefficient—
Bern database.

F1-Score MCC Kappa

Min 0.30 0.20 0.20
Max 1 1 1

Mean 0.71 0.49 0.47
Median 0.70 0.50 0.43
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Table 4. Performances of NB classifiers based on F1-Score, MCC, and Kappa Coefficient—
Bern database.

F1-Score MCC Kappa

Min 0.30 0.20 0.20
Max 1 1 1

Mean 0.70 0.49 0.47
Median 0.70 0.50 0.43

Reference [36] states that when the results of the Matthews Correlation Coefficient and
the Kappa Coefficient were close, it showed that the classifiers could effectively distinguish
epilepsy EEG signals. Both classifiers achieved maximum values of one for both MCC
and Kappa Coefficient, which indicates a perfect agreement between the predicted and
actual values.

The EEG data recorded in the wakefulness stage was classified into two categories:
focal and generalized signals with KNN and NB classifiers. The results of this classification
are presented in Tables 5–8.

Table 5. The results with the KNN classifier for discrimination between focal and generalized
epilepsy—Cluj–Napoca database.

Classification
Rate (%)

Sensitivity
(%)

Specificity
(%)

Awake Sleep Awake Sleep Awake Sleep

Min 85.64 89.14 85.74 88.95 85.54 89.33
Max 99.47 98 99.89 100 99.52 99.81

Mean 96.03 96.39 96.38 96.06 95.70 96.53
Median 96.11 95.79 96.49 95.29 96.09 96.29

Table 6. The results with the NB classifier for discrimination between focal and generalized
epilepsy—Cluj–Napoca database.

Classification
Rate (%)

Sensitivity
(%)

Specificity
(%)

Awake Sleep Awake Sleep Awake Sleep

Min 83.30 87.95 76.47 87.95 72.55 88.33
Max 99.20 98.40 99.61 100 99.22 99.61

Mean 95.96 96.10 96.23 95.81 95.67 96.88
Median 96 95.83 96.49 95.14 95.91 96.51

Table 7. Performances of KNN classifier based on F1-Score, MCC, and Kappa Coefficient—Cluj–
Napoca database.

F1-Score MCC Kappa

Awake Sleep Awake Sleep Awake Sleep

Min 0.40 0.50 0.20 0.20 0.19 0.20
Max 1 1 1 1 1 0.98

Mean 0.85 0.75 0.71 0.53 0.71 0.54
Median 0.90 0.70 0.80 0.60 0.77 0.57
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Table 8. Performances of NB classifiers based on F1-Score, MCC, and Kappa Coefficient—Cluj–
Napoca database.

F1-Score MCC Kappa

Awake Sleep Awake Sleep Awake Sleep

Min 0.40 0.50 0.20 0.20 0.19 0.20
Max 1 1 1 1 1 0.98

Mean 0.85 0.75 0.72 0.56 0.72 0.57
Median 0.90 0.70 0.80 0.60 0.79 0.57

According to Tables 5 and 6, the KNN classifier achieved a classification rate ranging
from 85.64% to 99.47%. The classifier achieved a classification rate greater than 90% in
211 out of 216 classification cases. The NB classifier exhibited classification rates ranging
from 83.30% to 99.20% for the 216 cases that were classified, with 213 of these cases
achieving a classification rate greater than 90%.

The KNN classifier showed sensitivity values ranging from 85.74% to 99.89%. The NB
classifier showed sensitivity values from 76.47% to 99.61%. In both classifiers, 214 cases
were classified with a sensitivity exceeding 90%.

The specificity attained was from 85.84% to 99.52%, with 209 values greater than 90%
for the KNN classifier, and from 72.55% to 99.22%, with 210 values greater than 90% for the
NB classifier.

Tables 7 and 8 indicate that both KNN and NB classifiers achieved a maximum
F1-Score of one for wakefulness data classification. Furthermore, in 210 classification
situations, both classifiers attained an F1-Score greater than 0.5. MCC and Kappa had
values of one for both KNN and NB classifiers.

The data recorded during sleep were classified into focal and generalized signals. The
results obtained with the proposed classifiers were also presented in Tables 5–8. The sleep
state data were categorized with a classification rate ranging from 89.14% to 98% using the
KNN classifier and from 87.95% to 98.4% using the NB classifier. It is worth noting that
both classifiers achieved a classification rate greater than 90% for 47 out of 48 cases that
were classified, indicating that the estimated power spectral density of IMFs has a higher
discrimination performance for focal and generalized epilepsy signals in the sleep state
compared to the awake state.

The KNN classifier achieved a sensitivity range from 88.95% to 100%, with 47 out of
48 classified case results exceeding 90% sensitivity. The NB classifier had a sensitivity range
from 87.95% to 100%, with 46 classified case values greater than 90%.

The KNN classifier had a specificity range from 89.33% to 99.81%. The NB classifier
had a specificity range from 88.33% to 99.61%. Both classifiers achieved specificity values
greater than 90% for 47 out of 48 classified situations.

For the signals collected during sleep, the data were classified with a maximum
F1-score of one for both classifiers. These results are presented in Tables 7 and 8. The
F1-Score exceeded a 0.5 value in 46 and 44 classification cases with KNN and NB, respec-
tively, indicating that the model’s precision and recall were both correctly estimated.

The KNN and NB classifiers had a high performance in classifying the signals, with
maximum values of one for both MCC and the Kappa Coefficient. An MCC score of one
indicates a perfect classification, while a Kappa Coefficient score of one indicates a complete
agreement between the predicted and actual labels [36].

The accuracy of the classification may vary depending on external factors during the
EEG recordings, the patient’s age, their activity during the recording, and other factors
related to signal processing. Some recordings may have a lower F1-Score, MCC, and Kappa
Coefficient due to these factors. However, overall, the proposed method showed significant
improvements compared to alternative methods used in signal classification for the Bern,
Barcelona database [41,42].
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The classification results obtained for the Cluj–Napoca database showed that data
collected during sleep was classified as focal and generalized EEG epilepsy signals with a
higher sensitivity and specificity compared to the data collected during wakefulness. This
could be due to the cerebral activity associated with different states of consciousness.

4. Discussion

The data from the University of Bern, as used in this work, are commonly found in
many studies due to their large amount of recorded epilepsy data. Table 9 presents a com-
parison between our study and other works that employ different methods to classify focal
and non-focal EEG epilepsy signals using the Bern database. The methods and classifiers
used are further reported, and the results are presented according to the maximum values
obtained.

The purpose of this study was to accurately classify EEG data from patients with
epilepsy and then to determine the type of epilepsy. This is important because, as stated by
medical professionals, correctly diagnosing epilepsy plays a crucial role in determining
appropriate antiepileptic treatment and in planning surgical intervention for seizure focus
resection [43]. The aim of the study was successfully achieved through the proposed
method, resulting in higher data classification accuracy being attained compared to the
results reported in Table 9.

Table 9. Comparisons with other works using the Bern database.

Work Method/ Feature Extracted Classifiers Results

[16]

EMD/
The average sample entropy of

the IMFs
Least square support

vector machine (LS–SVM)
Classification

Rate: 85%
The average variance of the

instantaneous frequencies of the IMFs

[44]
EMD/

Average Renyi entropy and
average negentropy

Neural
Network

Classification
Rate: 98.33%

[45] EMD–DWT/
Log–energy entropy

SVM
KNN

city–block distance

Classification
Rate: 89.4% (KNN)

Sensitivity: 90.7% (KNN)

[46] Approximate Entropy, Sample Entropy
and Fuzzy Entropy

Non–Nested
Generalized Exemplars

Classification
Rate: 99%

Sensitivity: 99% Specificity: 99%

[41]
Flexible Analytic Wavelet Transform/
Log energy entropy (LEE) and Fuzzy

distribution entropy

General regression neural
network/SVM/LS-

SVM/KNN/Fuzzy–KNN

Classification
Rate: 98.40% (LS-SVM)

[24]

Higher order spectral
analysis/

10% bispectrum and
90% bicoherence

KNN
Classification Rate: 99.55%

Sensitivity: 100% Specificity:
99.09%

[42]

Continuous Wavelet
Transform/

Two–dimensional (2D)
convolutional neural networks (CNNs)

AlexNet, InceptionV3,
Inception–ResNetV2,
ResNet50 and VGG16

Classification
Rate: 92.27%

(InceptionV3)

This work
(Bern Database)

EMD/
Spectral features

KNN
NB

Classification Rate:
99.90% (KNN)/99.80% (NB)

Sensitivity: 100%
Specificity: 100%

The reported results demonstrate that the proposed method achieved significant
improvements in signal discrimination when compared to the results of state-of-the-art
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methods applied to the same database. The improvements consist of achieving a maximum
classification rate of 99.90% and 99.80% with KNN and NB classifiers, respectively, along
with a 100% sensitivity and 100% specificity for the Bern database classification.

The results obtained from the Cluj–Napoca database can be compared to those of the
Bern database since the methodology used is the same, and classification was performed
similarly on two different classes of epilepsy EEG signals, even if the data were recorded
differently.

To address the differences in the datasets, it should be noted that the University of Bern
database contained a smaller number of subjects and shorter recording times compared to
the Cluj–Napoca database [47]. These might have led to lower classification performances
compared to the Cluj–Napoca database.

The criteria of signal length, the number of channels, and the number of subjects have
a significant impact on the results and conclusions of this study. For example, if the signal
length is too short or the number of channels is too low, important information could be
missed, leading to incomplete or inaccurate results. Similarly, if the sample size is too
small, the study may lack statistical power, and the results may not be generalized to a
larger population [47]. In our study, shorter data means the probability of eliminating
certain frequency features that could play a defining role in the discrimination of the
epilepsy type. While we acknowledge the potential impact of these factors on classification
performance, our outcomes provide valuable insights into the feasibility of using this
method in real–world scenarios.

Based on these reports, new techniques and combinations of classifiers could be used
to enhance the accuracy of identifying areas where seizures occur and to develop automated
intelligent systems for identifying the type of epilepsy.

It is important to note that the proposed method is not immune to potential limitations.
One such limitation is indirectly generated by the EEG recordings, which could be affected
by factors such as the quality of contact between the electrodes and the scalp, subject
movement, and external factors.

The accuracy and effectiveness of the EMD algorithm may not always be optimal
in practice, and mode mixing can lead to inaccurate feature extraction and classification
results. To combat this limitation, in the future, we should use an improvement to the EMD
algorithm and other techniques such as ensemble empirical mode decomposition (EEMD)
and multivariate empirical mode decomposition (MEMD) [48,49].

5. Conclusions

The obtained results demonstrate the effectiveness and potential utility of the method
in order to accurately identify and classify different types of epileptic signals. This offers
a valuable tool for neurologists in localizing the epileptic foci, which could lead to more
targeted and effective surgical treatment for patients with epilepsy.

Compared to the existing classification methods of focal and non–focal EEG signals
for the Bern database, as reported in Table 9, the results show that the developed method
achieved higher classification rates, sensitivity, and specificity than state-of-the-art ap-
proaches.

The method adeptly discriminates between focal and non–focal data with a maximum
classification rate of 99.90% and a sensitivity and specificity of 100% using the KNN
classifier. The NB classifier also exhibited notable performances, achieving a maximum
classification rate of 99.80% and a sensitivity and specificity of 100%.

Focal and generalized epilepsy data were recorded during both wakefulness and
sleep stages and were classified with high accuracy rates. The signals captured during
wakefulness were discriminated with a maximum classification rate of 99.80% with KNN
and 99.47% with the NB classifier. This method attained high classification rates for 211 out
of 216 of the classified cases exceeding 90%.
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Focal signals were identified with a maximum sensitivity of 99.89% with KNN and
99.61% with NB. Generalized signals were identified with a maximum specificity of 99.52%
with KNN and 99.22% with NB.

The signals collected during sleep were classified as focal and generalized with a max-
imum classification rate of 98% and 98.40% with KNN and NB, respectively. Furthermore,
this method led to a maximum sensitivity of 100% with both classifiers. These signals were
identified as generalized, with a maximum specificity of 99.81% with KNN and 99.61% with
NB. Out of 48 classified situations, 47 cases achieved classification rates higher than 90%.

The study results indicate that classifying sleep EEG signals is more straightforward
than classifying wakefulness EEG signals. The increased variability and dynamism of
brain activity during wakefulness can make it harder to accurately measure and classify
EEG signals and identify consistent patterns in the EEG power spectral density of IMFs.
However, during sleep, the brain is in a relatively stable state, enabling more accurate
and reliable measurements of EEG signal power spectral density, thus making it easier to
identify and classify EEG signals.

In addition, the effectiveness of the proposed method is supported by the F1-Score,
the Matthews Correlation Coefficient, and the Kappa Coefficient metrics. The results
demonstrate that the mentioned parameters can achieve maximum values of one for
all signals classification situations, including focal and non–focal, as well as focal and
generalized signals.

The results obtained from the Cluj–Napoca database were superior to those obtained
from the Bern database. This conclusion can be attributed to the difference in data length,
as shorter data contain less information. In our case, shorter data means the possibility of
eliminating certain frequency features that could play a defining role in the discrimination
of signal types.

Future work should address other empirical methods, such as ensemble empirical
mode decomposition and multivariate empirical mode decomposition, and additional
features to improve epileptic seizure detection classification.
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33. Wang, Z.; Na, J.; Zheng, B. An Improved KNN Classifier for Epilepsy Diagnosis. IEEE Access 2020, 8, 100022–100030. [CrossRef]

https://doi.org/10.1109/TGRS.2023.3250990
https://doi.org/10.2478/msr-2021-0016
https://doi.org/10.1016/j.eswa.2010.06.065
https://doi.org/10.1155/2008/293056
https://doi.org/10.1016/j.ymssp.2018.01.019
https://doi.org/10.1007/s00521-016-2646-4
https://doi.org/10.1016/j.brainres.2022.148131
https://www.ncbi.nlm.nih.gov/pubmed/36328069
https://doi.org/10.3390/e17020669
https://doi.org/10.1016/j.knosys.2016.11.024
https://doi.org/10.1103/PhysRevE.86.046206
https://www.ncbi.nlm.nih.gov/pubmed/23214662
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1007/s11517-010-0590-5
https://doi.org/10.1371/journal.pone.0173138
https://www.upf.edu/web/ntsa/downloads/-/asset_publisher/xvT6E4pczrBw/content/2012-nonrandomness-nonlinear-dependence-and-nonstationarity-of-electroencephalographic-recordings-from-epilepsy-patients
https://www.upf.edu/web/ntsa/downloads/-/asset_publisher/xvT6E4pczrBw/content/2012-nonrandomness-nonlinear-dependence-and-nonstationarity-of-electroencephalographic-recordings-from-epilepsy-patients
https://www.upf.edu/web/ntsa/downloads/-/asset_publisher/xvT6E4pczrBw/content/2012-nonrandomness-nonlinear-dependence-and-nonstationarity-of-electroencephalographic-recordings-from-epilepsy-patients
https://doi.org/10.5455/aim.2015.23.343-346
https://doi.org/10.1016/j.bspc.2021.103413
https://doi.org/10.1186/s13634-019-0606-8
https://doi.org/10.1016/j.bspc.2021.102469
https://doi.org/10.1109/TITB.2009.2017939
https://books-library.website/files/books-library.net-02182115Nk1L2.pdf
https://books-library.website/files/books-library.net-02182115Nk1L2.pdf
https://doi.org/10.1016/j.enconman.2006.12.017
https://doi.org/10.1109/ACCESS.2020.2996946


Electronics 2023, 12, 1958 20 of 20

34. Pavithra, O.; Padmapriya, G.; Karthikeyan, R. Prediction of Early Stage of Fatty Liver Disease in Patients Using Logistic
Regression and Naive Bayes Algorithm. In Proceedings of the 2022 International Conference on Cyber Resilience (ICCR), Dubai,
United Arab Emirates, 6–7 October 2022; pp. 01–05.

35. Delgado, R.; Tibau, X.A. Why Cohen’s Kappa Should Be Avoided as Performance Measure in Classification. PLoS ONE 2019,
14, e0222916. [CrossRef]

36. DeVries, Z.; Locke, E.; Hoda, M.; Moravek, D.; Phan, K.; Stratton, A.; Kingwell, S.; Wai, E.K.; Phan, P. Using a National Surgical
Database to Predict Complications Following Posterior Lumbar Surgery and Comparing the Area under the Curve and F1-Score
for the Assessment of Prognostic Capability. Spine J. 2021, 21, 1135–1142. [CrossRef] [PubMed]

37. Chicco, D.; Jurman, G. The Advantages of the Matthews Correlation Coefficient (MCC) over F1 Score and Accuracy in Binary
Classification Evaluation. BMC Genom. 2020, 21, 6. [CrossRef]

38. Li, S.; Zhou, W.; Yuan, Q.; Geng, S.; Cai, D. Feature Extraction and Recognition of Ictal EEG Using EMD and SVM. Comput. Biol.
Med. 2013, 43, 807–816. [CrossRef] [PubMed]

39. Gaur, P.; Pachori, R.B.; Wang, H.; Prasad, G. An Empirical Mode Decomposition Based Filtering Method for Classification of
Motor-Imagery EEG Signals for Enhancing Brain-Computer Interface. In Proceedings of the 2015 International Joint Conference
on Neural Networks (IJCNN), Killarney, Ireland, 12–15 July 2015; pp. 1–7.

40. Statistics and Machine Learning Toolbox. Available online: https://www.mathworks.com/products/statistics.html (accessed on
6 April 2023).

41. You, Y.; Chen, W.; Li, M.; Zhang, T.; Jiang, Y.; Zheng, X. Automatic Focal and Non-Focal EEG Detection Using Entropy-Based
Features from Flexible Analytic Wavelet Transform. Biomed. Signal Process. Control 2020, 57, 101761. [CrossRef]

42. Narin, A. Detection of Focal and Non-Focal Epileptic Seizure Using Continuous Wavelet Transform-Based Scalogram Images and
Pre-Trained Deep Neural Networks. IRBM 2022, 43, 22–31. [CrossRef]

43. Sone, D.; Beheshti, I. Clinical Application of Machine Learning Models for Brain Imaging in Epilepsy: A Review. Front. Neurosci.
2021, 15, 684825. [CrossRef] [PubMed]

44. Rai, K.; Bajaj, V.; Kumar, A. Features Extraction for Classification of Focal and Non-Focal EEG Signals. In Proceedings of the
Information Science and Applications; Kim, K.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 599–605.

45. Das, A.B.; Bhuiyan, M.I.H. Discrimination and Classification of Focal and Non-Focal EEG Signals Using Entropy-Based Features
in the EMD-DWT Domain. Biomed. Signal Process. Control 2016, 29, 11–21. [CrossRef]

46. Arunkumar, N.; Ram Kumar, K.; Venkataraman, V. Entropy Features for Focal EEG and Non Focal EEG. J. Comput. Sci. 2018, 27,
440–444. [CrossRef]

47. de Cheveigné, A.; Nelken, I. Filters: When, Why, and How (Not) to Use Them. Neuron 2019, 102, 280–293. [CrossRef]
48. Gupta, A.; Kumar, D.; Verma, H.; Tanveer, M.; Javier, A.P.; Lin, C.T.; Prasad, M. Recognition of multi-cognitive tasks from EEG

signals using EMD methods. Neural Comput. Appl. 2022. [CrossRef]
49. Zahra, A.; Kanwal, N.; ur Rehman, N.; Ehsan, S.; McDonald-Maier, K.D. Seizure Detection from EEG Signals Using Multivariate

Empirical Mode Decomposition. Comput. Biol. Med. 2017, 88, 132–141. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1371/journal.pone.0222916
https://doi.org/10.1016/j.spinee.2021.02.007
https://www.ncbi.nlm.nih.gov/pubmed/33601012
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1016/j.compbiomed.2013.04.002
https://www.ncbi.nlm.nih.gov/pubmed/23746721
https://www.mathworks.com/products/statistics.html
https://doi.org/10.1016/j.bspc.2019.101761
https://doi.org/10.1016/j.irbm.2020.11.002
https://doi.org/10.3389/fnins.2021.684825
https://www.ncbi.nlm.nih.gov/pubmed/34239413
https://doi.org/10.1016/j.bspc.2016.05.004
https://doi.org/10.1016/j.jocs.2018.02.002
https://doi.org/10.1016/j.neuron.2019.02.039
https://doi.org/10.1007/s00521-022-07425-9
https://doi.org/10.1016/j.compbiomed.2017.07.010

	Introduction 
	Materials and Methods 
	Databases 
	Method 
	Empirical Mode Decomposition 
	Feature Extraction 
	Classification 
	Performance Evaluation of the Proposed Classifiers 


	Results 
	Discussion 
	Conclusions 
	References

