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Abstract: The goal was to address the problems of slow convergence speed, low solution accuracy
and insufficient performance in solving complex functions in the search process of an arithmetic
optimization algorithm (AOA). A multi-strategy improved arithmetic optimization algorithm (SS-
CAAOA) is suggested in this study. By enhancing the population’s initial distribution, optimizing the
control parameters, integrating the positive cosine algorithm with improved parameters, and adding
inertia weight coefficients and a population history information sharing mechanism to the PSO
algorithm, the optimization accuracy and convergence speed of the AOA algorithm are improved.
This increases the algorithm’s ability to perform a global search and prevents it from hitting a local
optimum. Simulations of SSCAAOA using other optimization algorithms are used to examine their
efficacy on benchmark test functions and engineering challenges. The analysis of the experimental
data reveals that, when compared to other comparative algorithms, the improved algorithm pre-
sented in this paper has a convergence speed and accuracy that are tens of orders of magnitude faster
for the unimodal function and significantly better for the multimodal function. Practical engineering
tests also demonstrate that the revised approach performs better.

Keywords: sine chaotic mapping; arithmetic optimization algorithm; mathematical optimizer accel-
eration function; sine cosine optimization algorithm

1. Introduction

With the development of social needs, people are facing more and more complex
problems in various fields, and the scale of computation is increasing day by day. Tradi-
tional optimization methods are difficult to meet the computational demand; there are
defects such as too many parameters affecting the algorithm, too much reliance on gradient
information, and they are difficult to implement. Intelligent optimization algorithms have
received a lot of attention from scholars because they have few parameters, are easy to
implement, do not contain a gradient mechanism, and have advantages in solving opti-
mization problems and search problems of high complexity [1–5]. Common intelligent
optimization algorithms include the classical Particle swarm algorithm [6], the Genetic
Algorithm [7], and the Ant colony algorithm [8]. In recent years, the whale optimization al-
gorithm [9], the slime optimization algorithm [10], the floating optimization algorithm [11],
etc. have been proposed. Many intelligent algorithms have been applied to various en-
gineering optimization, parameter tuning, and other problems [12–16]. However, due
to the complexity of practical applications, no algorithm can solve the problem perfectly,
so there is a need to improve and optimize the algorithms so that they can better solve
real-world problems.

In the optimization improvement of heuristic algorithms, the fusion of multiple algo-
rithms for complementary advantages is a common approach nowadays. Alwajih et al. [17]
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proposed a fusion algorithm based on the binary optimization whale algorithm and the
Harris Hawk optimization algorithm for increasing data dimensionality and applied the
algorithm to solve the feature selection problem. Khattab et al. [18] proposed a hybrid
optimization based on CRO and BFS algorithm to solve the minimum vertex coverage
problem. Shokouhifar et al. [19] proposed a hybrid optimization algorithm based on fuzzy
algorithm and ant colony algorithm for solving the VNF-SPR problem with the fuzzy infer-
ence system as heuristic information. Zhang et al. [20] fused the arithmetic optimization
algorithm and the skyhawk optimization algorithm and introduced energy parameters
and a segmented line graph to optimize the parameters. To enhance the computational
performance of the algorithm in complex models, Shokouhifar et al. [21] added heuris-
tic information and a variable neighborhood search to the WOA to improve the search
performance of the algorithm.

Article [22] introduces differential evolution to enhance the ability of arithmetic op-
timization algorithms to develop solutions and improve the convergence accuracy and
was applied to multilevel thresholding segmentation of COVID-19 CT images. Article [23]
hybridized the Hunger Games algorithm with the arithmetic optimization algorithm and
tested it with 23 test functions, and the global search effect was somewhat improved. In arti-
cle [24], the primitive functions are added to the mathematical model of the AOA algorithm,
six perturbation functions are added to the parameters MOP and MOA, respectively, and
then the six variants are compared to select the best solution. The best solution is applied
to solve the economic load dispatching problem of the power system. The article [25]
introduces the sigmoid function in the position update formula to balance the algorithm
search mode, introduces moderate reverse learning and the gray wolf information feedback
mechanism to improve the convergence accuracy of the algorithm, and finally performs
simulation verification on the CEC2014 test function.

In this research, we combine the sine cosine algorithm (SCA) with the arithmetic
optimization algorithm (AOA) on the basis of the aforementioned literature in an effort to
boost the AOA’s efficiency. Initiation is made easier with the introduction of a new sine
chaotic mapping. In addition, the acceleration function of the mathematical optimizer
(SMOA) is reconstructed. An alternative optimization method based on sine, cosine, and
arithmetic operations is proposed (SSCAAOA). Standard test functions are used to compare
the algorithm to the original algorithm and other optimization algorithms; the results show
that the SSCAAOA effectively improves the algorithm’s performance in finding the best
and speeds up the convergence speed while also improving the convergence accuracy.

2. Arithmetic Optimization Algorithm (AOA)

The Algorithm for Arithmetic Optimization, AOA, was suggested by Abualigah et al. [26]
in 2021 as a brand-new category of intelligent optimization algorithm. The approach is
modeled after how arithmetic operators are used to solve mathematical problems, extend-
ing the dispersion of the operators and enhancing the global search through the use of
multiplication and division operations. To improve local search accuracy, local convergence
is conducted utilizing additive and subtractive processes. The AOA algorithm, which
has been utilized in engineering applications, does not rely on derivation and offers the
benefits of simplicity, few control factors, strong performance in finding the optimum, and
improved stability. However, other scholars have also enhanced it because of its strong
stochasticity, sluggish convergence time, easy to slip into local optimum, and other issues.

The optimal search process of the AOA algorithm is the same as that of most intelligent
optimization algorithms, in which a set of randomly generated candidate solutions are
first evaluated by the objective function under some optimization rules, and the optimal
solution is gradually approximated by the algorithm in one iteration.

AOA implements a global search based on the distributional properties of arithmetic
operators. There are three main phases: initialization, the exploration phase, and the
development phase. As can be seen in Figure 1, the algorithm uses the distribution
properties of the arithmetic operators to conduct a global search.
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2.1. Initialization

AOA’s optimization procedure kicks off with a pool of potential solutions, denoted by
the letter X. First, the population distribution is initialized randomly. The position vector X
of defined individuals consists of n individuals of dimension N. The mathematical model
is shown in Equation (1).

X =



x1,1 · · · · · · x1,j x1,n−1 x1,n
x2,1 · · · · · · x2,j x2,n−1 x2,n
· · · · · · · · · · · · · · · · · ·

...
...

...
...

...
...

xN−1,1 · · · · · · xN−1,j · · · xN−1,n
xN,1 · · · · · · xN,j xN,n−1 xN,n


(1)

Before running the algorithm, the search phase is selected, and the AOA selects the
exploration or development phase by using the coefficients calculated by the mathematical
optimizer acceleration function (MOA) in Equation (2). The random number r1, r1 ∈ [0, 1]
is taken first, and the algorithm performs a global search when r1 > MOA, and a local
search when r1 < MOA.

MOA = Min + t× (
Max−Min

TMax
) (2)

where t is the current number of iterations, Max and Min are the maximum and minimum
values of the mathematical gas pedal function, which are taken as 1 and 0.2, respectively, in
the original algorithm, and TMax is the maximum number of iterations.

2.2. Exploration Phase

To help the population look for more possible solutions across the space, a high degree
of dispersion can be achieved using multiplication (M) and division (D) operations during
the exploration phase. This may cause the population to be over-dispersed and difficult to
converge. However, after many iterations, the communication among the population will
lead the population to a solution that is closer to the optimal solution. Taking the random
number r2, r2 ∈ [0, 1], the division strategy is executed when r2 ≤ 0.5 and the multiplication
strategy is executed when r2 > 0.5. The position update formula is as follows:

xi,j(t + 1) =

{
best(xj)÷ (MOP + ε)× [(UBj − LBj)× µ+ LBj], r2 < 0.5,

best(xj)×MOP× [(UBj − LBj)× µ+ LBj], otherwise,
(3)
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where xi,j(t + 1) denotes the jth position from the ith solution of the current iteration,
best(xj) denotes the optimal solution at the jth position, ε is a minimal number preventing
the denominator from being 0, UBj, LBj denotes the upper and lower bounds of the jth
position, respectively, and µ is a parameter that adjusts the search process and is set to 0.499,
where MOP is the mathematical optimizer probability function with the following equation:

MOP(t) = 1− (
t

Tmax
)

1/α

(4)

where α is a sensitive parameter to indicate the development accuracy during the itera-
tive process.

2.3. Development Stage

In the development phase, additive and subtractive operators are applied. The ad-
ditive operation (A) and subtractive operation (S) are less discrete but more intensive
and can be further developed for the exploration phase to find out the solution set which
is beneficial to approach the optimal solution quickly. The development phase is exe-
cuted at r1 < MOA, and then r3 chooses which operator to execute. The following is the
mathematical representation of this stage:

xt+1
ij =

{
best(xj)−MOP× [(UBj − LBj)× µ+ LBj], r3 < 0.5,

best(xj) + MOP× [(UBj − LBj)× µ+ LBj], otherwise,
(5)

where r3 ∈ [0, 1] is a random number.

3. Sine Cosine Algorithm (SCA)

Another relatively new intelligent optimization technique is the sine cosine algorithm
(SCA), which was put forth by Australian researcher Mirjalili in 2016 [27]. The SCA
algorithm is split into three phases: startup, exploration, and development, just as the
AOA algorithm. The distinction is that the SCA method gradually approaches the optimal
solution using the oscillatory properties of the sine and cosine functions by using the
sine and cosine mathematical models as the optimization rules for the exploration and
development stages.

The algorithm chooses which optimization rule to perform by a random parameter, r4.
The sine function model is chosen when r4 < 0.5. Choose the cosine function model when
r4 ≥ 0.5. The search phase of the method can be modulated by changing the amplitude
using the adaptive parameter r1; when r5 > 1, the algorithm tends to global search and
when r5 < 1, using the periodicity of the sine and cosine function, the algorithm shifts its
focus from a global to a local search.

The SCA algorithm position update equation is as follows:

xt+1
ij =

 xt
ij + r5 · sin r6 ·

∣∣∣r7 pt
gj − xt

ij

∣∣∣ r4 < 0.5,

xt
ij + r5 · cos r6 ·

∣∣∣r7 pt
gj − xt

ij

∣∣∣ otherwise,
(6)

where xt
ij denotes the position of the ith individual in dimension j at the tth iteration, r6, r7,

and r4 are uniformly distributed random numbers, where r6 ∈ [0, 2π], r7 ∈ [0, 2], r4 ∈ [0, 1].
The adaptive control parameters are given by:

r5 = a · (1− t
Tmax

) (7)

where a is a constant, usually 2, Tmax is the maximum number of iterations, and t is the
current number of iterations.
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4. Improved Arithmetic Optimization Algorithm (SSCAAOA)
4.1. Improved Sine Chaos Mapping Initialization

The accuracy and speed of convergence of the algorithm are somewhat affected by
the population’s initial distribution. If there are initial individuals in the vicinity of the
optimal solution, then the algorithm will converge to the optimal solution quickly and with
high accuracy. The method will easily enter a local optimum if the starting distribution is
concentrated towards some local extremes, which also results in poor population variety
and reduced exploration of other solutions. The original AOA algorithm uses random
initialization, and the initial individuals are not uniformly distributed. This work introduces
an improved chaotic mapping to conduct population initialization in order to increase
the diversity of the initialized population. When compared to random initialization,
chaotic mapping is a series of unpredictability produced by straightforward deterministic
equations that has greater ergodicity, randomness, and population diversity, frequently
outperforming pseudo-random numbers.

Many intelligent optimization strategies for replacing random number generators
use Sine chaos mapping, but because the sequences generated by the traditional one-
dimensional sine chaos mapping are not uniformly distributed over the phase space, an
improved sine chaos mapping is proposed in the literature [28], and this improved method
is used in this paper for population initialization. The equations of its system are as follows:

di+1 = sin(µπdi)

ei+1 = sin(µπei)

wi+1 = di+1 + ei+1mod1

(8)

where µ and w are the control parameters and iterative sequence values of the one-
dimensional sine chaos mapping, respectively, and here µ = 0.99.

Figure 2 displays the distribution and histogram before and after the improvement,
with 1000 iterations and a distribution interval of [0, 1].

As shown in Figure 1, the distribution and histogram show that the improved sine
chaos mapping initialization distribution has better uniformity and better chaos effect.
It is possible for it to make the distribution of the initial solutions more uniform, main-
tain the diversity of the population, and prevent the population from falling into local
extremes to some extent, which will improve the performance of the algorithm in finding
the optimal answer.
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4.2. Improved Math Optimizer Acceleration Function (SMOA)

When trying to identify the algorithm with the optimum performance, intelligent
optimization algorithms frequently run into the issue of balancing global and local searches.
The original AOA technique has a critical parameter for the symmetric search phase based
on the value of the mathematical optimizer acceleration function (MOA). The stronger the
MOA, the greater the probability of greater than the random number r1, and the algorithm’s
current local search capability; the stronger the MOA, the greater the probability of less than
the random number r1, and the algorithm’s current global search capability. Based on this
property, this paper redesigned a new SMOA using the sine function, whose mathematical
model is as follows:

SMOA = (Max−Min)× sin (
πt

2Tmax
)

2
+ Min (9)

As shown in Figure 3, the MOA in the original algorithm grows linearly and uniformly
throughout the search process. However, the intelligent optimization algorithm needs to
focus more on the global search in the early iterations, traversing more spaces in a short
time so that more feasible solutions can be searched. Later in the iteration, the algorithm
needs to focus more on the local search, so that the algorithm can converge better in the
field of feasible solutions. The uniformly increasing MOA struggles to match the actual
circumstances of algorithm optimization and struggles to strike a good balance between
the local and global search. The new SMOA reconstructed in this paper, however, grows
slowly in the early iteration and can maintain a lower value, which has a higher probability
of being smaller than the random number and conducts a sufficient global search. In the
last iteration, it keeps a greater value for a considerable amount of time and is more likely
to be higher than the random number r1, which improves the probability of local search
and accelerates the convergence speed.
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4.3. Improved Adaptive Control Parameters

In the standard AOA algorithm, µ is an important sensitive parameter that plays the role
of adjusting the search step and coordinating the search process. From Equations (3) and (5),
µ is a constant value and takes the value of 0.499. In this study, a nonlinear function
is incorporated to improve the algorithm’s ability to perform global searches, and µ is
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configured as a nonlinear function that gets smaller as iterations increase. This keeps a big
value throughout the initial iterative phase, which increases the step size, allows for quick
searches for the best solution across the entire global range, and enhances the capability
of global searches. In the late iterative period when the population is concentrated in the
neighborhood range of the optimal solution, the step size decreases rapidly, which ensures
the local search accuracy while converging quickly and improves the exploitation capability.
The mathematical model is as follows:

µ =
1
2
× (1.1− (

t
Tmax

)
2
) (10)

4.4. Fusion Sine Cosine Algorithm

This paper introduces the sine and cosine search strategy in the development stage of
the AOA algorithm and directly replaces the addition and subtraction operator strategy
with the sine and cosine strategy. This is completed to fix the problem of the AOA algo-
rithm’s slow convergence and poor search performance in its late iterations. The periodic
estimate of the optimal solution using the sine and cosine functions is more stable, more
accurate, and can get closer to the global optimal solution faster than the addition and
subtraction operator.

As can be seen from Sections 1 and 2, the standard AOA algorithm is developed
by comparing the values of random numbers and MOA to perform a search, and the
global and local searches are switched randomly. The location update strategy of an
individual is chosen by the size of the random value and guided by the best individual
of the current population, and this location update mechanism is based on the current
population iterative update without drawing on historical information. Therefore, inspired
by the PSO algorithm, this paper considers introducing the mechanism of interaction of
historical information of individuals and populations in the particle swarm algorithm in
the exploration phase.

In the PSO algorithm, the idea of inertia weight w is brought up during the sigmoid
search phase [6,29]. Here, w uses an inverted S-shaped function curve based on the sigmoid
activation function, which allows the algorithm to draw on the historical information of
the previous generation during the iterative process, and w is updated as follows:

w = 1− 1
1 + e5−0.02t (11)

The fusion algorithm uses the following formula to calculate position updates:
Exploration phase:

xt+1
ij

=

{
best(xj)÷ (MOP + ε)× [(UBj − LBj)× µ+ LBj] + (best(xj)− xt

ij
), r2 < 0.5,

best(xj)×MOP× [(UBj − LBj)× µ+ LBj] + (best(xj)− xt
ij
), otherwise,

(12)

Development phase:

xt+1
ij =

 wxt
ij + µ · sin r6 ·

∣∣∣r7best(xj)− xt
ij

∣∣∣ r4 < 0.5,

wxt
ij + µ · cos r6 ·

∣∣∣r7best(xj)− xt
ij

∣∣∣ otherwise,
(13)

As can be seen from Section 2, the parameter r5 is an important parameter in the SCA
algorithm. It not only contributes to the algorithm’s overall stability, but also influences its
eventual convergence and precision. If r5 converges slowly, the algorithm’s search efficiency
for the neighborhood of the best answer will be reduced, and then the final convergence
and accuracy will be affected. If r5 converges too fast, there will not be enough disruption,
and there will not be any means to do enough local exploration to identify the best answer
from its immediate surroundings, despite the fact that the neighborhood of the optimal
solution has been found in the previous global search, and this drawback is particularly
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prominent in multi-peaked problems. Therefore, in order to make the sine and cosine
search perform the exploitation operation and to maintain better convergence and accuracy
at a later stage, the parameter r5 is treated nonlinearly and keeps r5 at a small value. As
can be seen in Equation (10), r5 and the parameter are handled in the same manner in order
to simplify the procedure. This was completed to cut down on the amount of work that
needed to be conducted.

4.5. Improved Algorithm Flow Chart

The flowchart of the SSCAAOA algorithm is shown in Figure 4:
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5. Computational Complexity Analysis

The computational complexity of an algorithm is a key performance indicator. SS-
CAAOA’s computational complexity is mostly determined by the time and effort required
for population initialization and population position update. In this research, we investi-
gate the complexity of SSCAAOA in the same way as the AOA algorithm is analyzed in
the literature [17].

The algorithm’s parameters are already set, considering that N is the number of people
in the population, D is the size of the search space, and T is the most iterations that can be
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completed. Then, from the literature [17], the standard AOA algorithm time complexity is
O(N × (TD + 1)).

Analysis of SSCAAOA time complexity according to the algorithm flow in Section 3:
In this paper, the original random initialization is replaced by the improved sine chaos
initialization with the same parameter initialization time, hence, the time of initialization is
denoted by O(N×D). The position updating process is conducted using the multiplication
and division operator of AOA and the positive cosine strategy of SCA, and the time required
for the adaptive control parameters µ, SMOA and inertia weight w is introduced as t1, t2, t3,
then the time complexity is O(T + N×D× T + N×D) and updating the optimal solution
and position is O(1).

In conclusion, SSCAAOA has the same temporal complexity as the classic AOA
algorithm, O(N × D× T) which is the same as the standard AOA algorithm.

6. Simulation Experiments and Results Analysis
6.1. Test Environment and Parameter Settings

The 64-bit version of the Windows 10 operating system, an Intel Core i5-6200U proces-
sor running at 2.4 GHz, 12 GB of RAM, and the algorithm simulation and programming
software MATLAB R2018b make up the experimental simulation environment for this
paper’s experiments.

As stated in Table 1, ten benchmark test functions that each have their own unique
set of features were chosen in order to test the effectiveness of the SSCAAOA algorithm
that is discussed in this work. This was completed in order to verify that the algorithm
is effective. The convergence and growth capabilities of the method are evaluated using
f1 ∼ f5 unimodal functions; Functions f6 ∼ f10 are multimodal and are used to measure

the algorithm’s search capability, whereas functions f9 ∼ f10 are fixed, low-dimensional
tests used to ensure the method strikes a good balance between the two.

Table 1. Test function.

F Function Dim Range Best

f1 Sphere Model 30/100 [−100, 100] 0
f2 Schwefel’s problem 2.22 30/100 [−10, 10] 0
f3 Schwefel’s problem 1.2 30/100 [−10, 10] 0
f4 Schwefel’s problem 2.21 30/100 [−100, 100] 0
f5 Quartic Function 30/100 [−1.28, 1.28] 0
f6 Generalized Rastrigin’s Function 30/100 [−5.12, 5.12] 0
f7 Ackley’s Function 30/100 [−32, 32] 0
f8 Generalized Griewank Function 30/100 [−600, 600] 0
f9 Kowalik’s Function 4 [−5, 5] 0.003
f10 Goldstein-Price Function 2 [−2, 2] 3

Six other algorithms are chosen to be compared with the proposed SSCAAOA in this
research to better verify the performance and advancement of the algorithms in this paper,
including WOA [9], CFAWOA [27], AOA, SCA [29], SMSCABOA [30], and GWO [31] The
best performance has been found using these techniques, and this has been validated.
All algorithms had a population size of N = 30, a maximum number of iterations Tmax
of 500, and their individual parameters were adjusted as stated in Table 2 to guarantee a
level playing field. Thirty separate iterations of each method were conducted, and their
performance was analyzed using the mean, standard deviation, and Wilcoxon rank sum
test. The Wilcoxon rank sum test determines whether two algorithms are statistically
different based on their mean value (which reflects the algorithms’ convergence speed and
accuracy) and their standard deviation (which reflects the algorithms’ stability).
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Table 2. Experimental parameter settings of each algorithm.

Algorithm Parameter Setting

SSCAAOA α = 5; Max = 1; Min = 0.2;
WOA a1 = [2, 0]; a2 = [−2, 0]; b = 1;
CFAWOA a1 = [2, 0]; a2 = [−2, 0]; b = 1;
AOA µ = 0.499; α = 5; Max = 1; Min = 0.2;
SCA m = 2;
SMSCABOA a = 2; c = 0.01; p = 0.8; limit = 60;
GWO a = [2, 0];

6.2. Algorithm Performance Analysis

Table 3 shows the test results. Mean is the average, Std is the standard deviation,
and bolded data represent this paper’s algorithm findings. In solving the unimodal test
functions f1 ∼ f5, The SSCAAOA algorithm manages to reach the theoretically best value
in f1 ∼ f4 while maintaining the lowest possible standard deviation. Despite the fact
that f5 does not converge to the theoretically optimal value, the accuracy and stability of
the solution it produces are superior to those produced by other comparable algorithms.
The enhanced sine chaos initialization that was provided by the method in this work
is able to improve the exploitation capability of the algorithm, as can be observed, and
the positive-cosine position update formula also makes the convergence accuracy better.
Both of these improvements were made possible by the algorithm in this paper. The
algorithm SSCAAOA also has a decent performance in the multimodal test functions
f6 ∼ f10, which were previously mentioned, in which both f6 and f8 reach the theoretical

optimal value. For f7, several algorithms did not find the optimal value, but compared
with several other compared algorithms, AOA and SSCAAOA have better convergence
accuracy and stability, and the accuracy is improved by more than ten orders of magnitude
over SMSCABOA and the original SCA. Two fixed low-dimensional test functions. Several
algorithms fail to achieve the theoretical optimal value in the f9 test function, but the mean
and standard deviation of the algorithm presented in this study are only smaller than
those of SMSCABOA, which is not very different from SCA. In f10, except for AOA and
CFAWOA, the mean values of all algorithms are close to the theoretical optimum. However,
the SSCAAOA algorithm has the lowest standard deviation, indicating its superior stability.
The results of the above investigation demonstrate that SSCAAOA excels at both unimodal
and multimodal tasks, boasts superior divergence and stability, and can effectively strike a
balance between global and local searches.

Table 3. Test results of benchmark functions of each algorithm.

Function Metric WOA CFAWOA SCA SMSCABOA GWO AOA SSCAAOA

f1
Mean 2.45 × 10−74 2.54 × 10−168 7.39 × 10−03 3.44 × 10−15 1.30 × 10−27 2.54 × 10−168 0

Std 8.64 × 10−74 0 3.29 × 10−02 8.66 × 10−15 2.47 × 10−27 2.07 × 10−25 0

f2
Mean 1.35 × 10−50 2.72 × 10−106 4.77 × 10−09 3.25 × 10−10 7.57 × 10−17 0 0

Std 4.17 × 10−50 1.33 × 10−105 2.13 × 10−08 7.07 × 10−10 5.04 × 10−17 0 0

f3
Mean 4.18 × 104 1.42 × 10−104 1.20 × 10−02 2.87 × 10−06 7.55 × 10−06 7.08 × 10−3 0

Std 1.48 × 104 4.02 × 10−104 1.35 × 10−02 1.55 × 10−5 1.63 × 10−5 1.20 × 10−2 0

f4
Mean 3.56 × 101 3.13 × 10−81 1.30 × 10−3 1.06 × 10−7 1.20 × 10−7 7.66 × 10−59 0

Std 3.56 × 101 1.66 × 10−80 3.09 × 10−3 1.20 × 10−7 7.48 × 10−7 3.98 × 10−58 0

f5
Mean 4.03 × 10−3 1.10 × 10−4 7.74 × 10−2 1.70 × 10−3 2.02 × 10−3 6.77 × 10−5 3.52 × 10−5

Std 3.77 × 10−3 8.97 × 10−5 4.77 × 10−2 6.29 × 10−4 8.53 × 10−4 6.13 × 10−05 2.61 × 10−5

f6
Mean 3.79 × 10−15 0 3.41 × 10 5.92 × 10−7 1.92 × 100 0 0

Std 2.04 × 10−14 0 3.17 × 10 1.18 × 10−6 2.50 × 100 0 0

f7
Mean 4.44 × 10−15 2.66 × 10−15 1.41 × 101 7.10 × 10−5 9.73 × 10−14 8.88 × 10−16 8.88 × 10−16

Std 2.25 × 10−15 1.78 × 10−15 9.16 × 10 7.99 × 10−5 1.98 × 10−14 0 0
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Table 3. Cont.

Function Metric WOA CFAWOA SCA SMSCABOA GWO AOA SSCAAOA

f8
Mean 0 0 8.12 × 10−2 1.60 × 10−7 4.30 × 10−3 1.37 × 10−1 0

Std 0 0 3.01 × 10−1 2.43 × 10−7 4.30 × 10−3 8.12 × 10−2 0

f9
Mean 7.03 × 10−4 6.84 × 10−4 1.09 × 10−3 3.42 × 10−4 6.40 × 10−3 1.85 × 10−2 6.41 × 10−4

Std 4.81 × 10−4 2.25 × 10−4 3.77 × 10−4 6.16 × 10−5 9.14 × 10−3 2.82 × 10−2 1.63 × 10−4

f10
Mean 3.00 × 100 1.40 × 10−4 3.00 × 100 3.00 × 100 3.00 × 100 7.50 × 100 3.00 × 100

Std 1.40 × 10−4 4.53 × 10−5 9.21 × 10−5 4.82 × 10−4 6.16 × 10−5 1.01 × 101 0

6.3. Convergence Analysis

This study plots the iterative convergence process of the test functions, as seen in
the following Figure 5 This allows for a more intuitive comparison of the performance
of each algorithm, as well as an analysis of the convergence speed and the optimization
search process. Due to the limited space, only the iterative convergence graphs of the six
benchmark test functions are selected for analysis. The convergence impact produced by
CFAWOA is significantly stronger than that produced by a number of other algorithms.
When applied to the unimodal test functions f1 and f3, the convergence impact of AOA
and WOA is superior, with the exception of the algorithm presented in this study. However,
several algorithms converge slowly and with low accuracy, while the algorithm in this paper,
SSCAAOA, converges quickly and only requires 80–120 iterations to reach the theoretical
optimum. It is because the sine cosine position update is incorporated, which allows for
faster convergence, and the step size is reduced at the optimum thanks to the adaptive
control parameters, yielding improved convergence accuracy. For f5, the theoretical best
value is not found by SSCAAOA, but it has the highest convergence accuracy and the
fastest convergence speed. Although the convergence accuracy is the same, as can be shown
from the multimodal test functions f6 and f7, SSCAAOA converges far more quickly than
CFAWOA, WOA, and AOA, and converges almost in a straight line down, which is due to
the sine chaos initialization. It broadens the range of populations and raises understanding
standards, allowing the algorithm to swiftly reach the ideal value despite a large number of
local minima. The convergence graph of the fixed low-dimensional test function f9 shows
that SSCAAOA has several jumps out of the local extremes, indicating that SMOA has a
good balance of global and local search.

In conclusion, SSCAAOA balances the global and local search more effectively than
other algorithms and the original AOA. It also has faster convergence rates compared to
other algorithms and the original AOA. This keeps the original algorithm’s superior local
exploitation ability while increasing convergence speed and boosting the ability to escape
local extrema. It has been proven that the algorithm is superior and efficient.

6.4. Wilcoxon Rank Sum Test

The above analysis demonstrates the algorithm’s superiority, but a thorough evalua-
tion of its individual runs and the differences between them and the comparison algorithm
would require more statistical tools than just the mean and standard deviation. This work
uses the Wilcoxon rank sum test to ensure that these differences are statistically signifi-
cant. Based on the test results in Table 3, a rank sum test is performed with a significance
level of 5%. If the p < 0.05 indicates that there is a significant difference between the two
algorithms, the performance of the two algorithms differs significantly; otherwise, there
is little difference. In this paper, we sample from the test results of the six comparison
algorithms and run a total of ten standard test functions to determine whether or not there
is a statistically significant difference between the results obtained by these six comparison
algorithms and SSCAAOA when the population size is set to N = 30, the dimension is set
to D = 30, and each algorithm is run 30 times on its own. Table 4 displays the outcomes of
the tests. If the table shows N/A for both methods, it means that the experimental data are
identical, and the algorithms perform similarly. A p-value of less than 0.05 suggests that
there is a significant difference between the algorithms. Compared with the original AOA,
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SSCAAOA has better performance on f1, f3, f4, f8, f9 and f10; the majority of the values
are less than 0.05. SSCAAOA performs better than WOA in all tested functions except for
f8 and f9. SSCAAOA performs better than CFAWOA for all tested functions except f6, f8
and f9, which are not significant. For GWO, there are significant differences in all other
test functions except f9; Compared with SSCAAOA, the SMSCABOA and SCA algorithms
have significant differences in 10 test functions.
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Table 4. Wilcoxon rank sum test results.

Function WOA CFAWOA AOA SCA SMSCABOA GWO

f1 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f2 1.21 × 10−12 1.21 × 10−12 N/A 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

f3 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

f4 1.21 × 10−12 1.21 × 10−12 4.09 × 10−4 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

f5 3.02 × 10−11 5.97 × 10−5 2.24 × 10−2 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

f6 3.34 × 10−1 N/A N/A 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

f7 9.84 × 10−10 9.65 × 10−6 N/A 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

f8 N/A N/A 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 5.58 × 10−3

f9 1.45 × 10−1 6.52 × 10−1 4.84 × 10−2 8.88 × 10−6 3.82 × 10−10 1.18 × 10−1

f10 5.58 × 10−3 4.19 × 10−2 2.14 × 10−2 6.51 × 10−4 2.16 × 10−6 2.15 × 10−2

When the results of the preceding performance study and curve convergence analysis
are combined, it becomes clear that SSCAAOA’s overall performance has been improved
from that of the original AOA and SCA algorithms, albeit to varying degrees. Overall, the
performance of this algorithm is better than that of other existing improved algorithms
such as CFAWOA and SMSCABOA, even if there is little to no difference between them in
terms of any given function. This algorithm outperforms competing methods in terms of
convergence accuracy, convergence speed, and stability.

7. Solving Path Planning Problems

Path planning is an important step for a mobile robot to be able to accomplish au-
tonomous navigation. According to one or more optimization criteria (e.g., least work cost,
shortest trip distance, shortest travel time, etc.), it refers to a mobile robot determining an
optimal or nearly optimal path in the motion space from the beginning state to the goal
state that can avoid obstacles. This is the simplest description of the path planning problem,
but in practical applications, the complexity increases a lot. For example, the mechanical
loss of the robot, the uncertainty of the obstacles, the matching of the planning speed of the
algorithm and the robot motion speed, the smoothness of the planned route, etc. Due to
the complexity, numerous limitations, and several objectives of the path planning problem,
researchers frequently approach it as an optimization problem to solve and consider the
job requirements as constraints. In order to keep the algorithm from being stuck in a local
optimum, the authors of the study [32] propose using an adaptive parallel AOA with a
parallel communication strategy to solve the robot path planning problem. Zhang et al. [33]
fused the genetic algorithm and the firefly algorithm, and used crossover and mutation
in GA to mutate the position when the FA algorithm falls into local optimum. In the final
step, the enhanced algorithm is applied to the obstacle course planning issue.

In the path planning problem, the raster method is a more commonly used environ-
ment modeling method, which can describe the real environment more completely, and it
is also easier to model when the environment changes. However, due to the constraints of
the modeling method itself, it is also necessary to combine it with the planning algorithm
when performing path planning in order to meet the demand.

The path planned by the mobile robot in this section is the encoding of candidate
solutions, and each candidate solution initialized corresponds to a potential path. The
shortest path is employed as the goal function in the raster technique with the assumption
of safe obstacle avoidance.

The fitness function is shown in Equation (14):

L =
n

∑
i+1

√
(x(i+1) − xi)

2 + (y(i+1) − yi)
2 (14)

The formula reflects the sum of the shortest distance between two adjacent sites. L is
the ultimate planned path length, and n is the number of nodes passed through.
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7.1. Node Optimization

When a mobile robot plans its path in a raster map, the final path is a collection of
rasters that start from the starting point and connect one adjacent raster to the end point. It
is also this planning method that makes more nodes in the path, which often results in larger
corners and more inflection points. This situation not only makes the path not optimal, but
also increases the mechanical loss of the robot due to more inflection points and frequent
steering. In the literature [34], an LPS planning method is proposed, based on the principle
of the shortest straight line between two points, which first connects the starting point and
the end point when performing path planning, and then performs secondary planning for
the part of the path that crosses the obstacle with the help of other traditional path planning
algorithms. The purpose of fast planning and improving the quality of the path is achieved.
According to the literature [35], the sparrow search algorithm was used as the foundation
for a multi-metric, comprehensive assessment approach, and the node optimization strategy
was added to the fitness function. Optimizing nodes is one of the necessary steps when
using raster maps for robot path planning. Reducing unnecessary turning points can not
only make the paths shorter, but also smoother in complex environments. Based on the
above-mentioned literature, this section introduces a node-quadratic planning method for
secondary optimization of paths after path planning using SSCAAOA.

The method consists of two main stages, namely obstacle detection and connecting
paths, as follows:

Step 1: Three nodes are chosen in order starting from the origin.
Step 2: Get the distance in coordinates between the first and third nodes.
Step 3: Check the raster map to see if there are any potential obstructions in the area of
interest.
Step 4: If there is not an obstruction, get rid of the second node in the chosen node. If there
is, start at the next node and keep on until the optimization reaches the end point.

7.2. Path Planning Experiments

This part runs simulation experiments to compare the original AOA and the enhanced
SSCAAOA algorithm in this work in order to confirm the viability of the SSCAAOA
method on the path planning problem and the quality of the secondary optimized paths.
To ensure the authenticity of the experimental data, 30 independent experiments are
conducted for each algorithm, and the experimental data are homogenized. This part
creates a 20 × 20 basic obstacle environment and a 20 × 20 difficult obstacle environment,
respectively, to demonstrate the algorithms’ flexibility and efficacy. Yellow is the starting
point and green is the ending point, and the specific experimental results are as follows:

(1) Experimental environment 1

As can be seen from Figure 6, the starting point is (1,1) and the end point is set to
(20,20) in a less obstructed and more dispersed environment. Although the path directions
planned by the two algorithms are roughly the same, the SSCAAOA algorithm’s projected
path is substantially smoother and has only five clear inflection points, while the original
AOA algorithm has 14 inflection points, and the secondary optimization introduced in this
section of the surface plays a significant role in path smoothing. The enhanced algorithm
in this chapter outperforms the original AOA algorithm in terms of the shortest path, the
worst path, and average value, as shown in Table 5, and the ideal path is also significantly
shorter thanks to the decreased number of inflection points.
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Table 5. Environment 1 simulation experimental results.

Algorithm Shortest Path Longest Path Average Path Average
Inflection Point

AOA 29.21 34.97 31.28 13.31
SSCAAOA 27.68 28.80 28.19 4.44

(2) Experimental environment 2

As shown in Figure 7, a more complex environment model is set up in the experimental
environment 2, where concave and continuously distributed obstacles are set up in the
environment, and the planning difficulty is increased by placing obstacles in front of both
the starting point and the destination; this calls for a more robust algorithm to determine
the best route. The improved SSCAAOA algorithm in this chapter can find feasible paths
every time with 90% accuracy of optimal or suboptimal paths with relatively few inflection
points and smoother paths under the guarantee of obstacle avoidance. The original AOA
algorithm, on the other hand, did not find feasible paths even to the end of the iterations at
some times, and finally increased the number of iterations to 300 to complete the task. The
final planned paths were significantly more tortuous, with larger turning angles and more
turns. Table 6 shows that as the environment becomes more complex, the benefits of the
optimized algorithm become more apparent. Search performance is enhanced, accuracy in
locating the optimal path is guaranteed, and smoothness is enhanced following the second
iteration of the optimized algorithm.
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Table 6. Environment 2 simulation experimental results.

Algorithm Shortest Path Longest Path Average Path Average
Inflection Point

AOA 33.55 54.62 39.75 18.06
SSCAAOA 29.81 34.25 31.06 9.56

8. Conclusions and Future Work

This study proposes a new optimization method that combines the benefits of AOA
and SCA in order to address the issues with the classic AOA algorithm’s slow convergence
speed, low solution accuracy, and propensity for falling into the local extreme value
problem. This study puts forward a variety of improvement strategies for different problem
defects, and the work completed in this paper mainly includes the following points:

• The population is first seeded using a modified sine chaotic mapping. Compared with
the standard AOA’s random initialization strategy, the chaotic nature can make the
population more uniformly distributed in the search space, which makes the algorithm
find the global optimal solution most easily. A new mathematical optimizer accelera-
tion function, SMOA, was redesigned to enhance the algorithm’s ability to balance
global and local searches in order to maximize the algorithm’s search performance.
We improve the sensitive parameter in the standard AOA by replacing the fixed value
in the original algorithm with a convex function to obtain an adaptive adjustment
parameter, so that the step size can be adjusted adaptively with the increase in itera-
tions in the optimization search process to avoid the problem of missing the optimal
solution due to too large step size in the later stage, which leads to low accuracy.

• By including the SCA throughout development, we are able to solve the issue of late-
stage AOA algorithm’s poor convergence speed and inadequate convergence accuracy.

• On the basis of the above, the particle swarm algorithm idea is borrowed, and the
influence of historical information on the population is added in the exploration phase
to improve the situation that AOA is too dependent on the current optimal solution.
The inverse S-shaped inertia weights based on the improved sigmoid activation
function are introduced in the sigmoid development phase, allowing the development
phase particles to draw on the information of the previous generation, and the use
of parameters in the standard SCA integrally strengthens the local development
capability of the sigmoid strategy.

• A total of 10 standard test functions are selected to test the algorithm for experimental
simulation and compare the performance with some existing optimization algorithms.
As displayed through the data analysis, the algorithm presented in this study im-
proves upon prior methods in terms of convergence speed, accuracy, and stability,
and this holds true for both unimodal and multimodal functions. The efficiency of
the optimization search has been enhanced to varying degrees compared to the initial
AOA and SCA.

• Last but not least, the enhanced technique in this study is used to resolve path plan-
ning issues as well as engineering issues. The experimental results show that, in
comparison to the original algorithm, the improved algorithm not only successfully
solves path planning problems in various environments but also produces relatively
smooth planned paths, demonstrating the improved algorithm’s effectiveness in solv-
ing engineering problems and further validating its performance.

Based on the foregoing analysis, it is clear that the improved algorithm presented in
this paper has some advantages. However, the results of the multimodal function test show
that the improved algorithm presented in this paper does not significantly differ from the
comparison algorithm in solving the multimodal function; it also has some limitations
and may fall into local extremes when there are multiple extremes. In the future, more
engineering problems will need to be applied to SSCAAOA before its efficacy can be fully
evaluated. Therefore, the algorithm in this paper can be further improved and enhanced.



Electronics 2023, 12, 1961 17 of 18

Author Contributions: All of the authors contributed extensively to the work. H.X. proposed the key
ideas; H.X. analyzed the key contents using a simulation and wrote the manuscript; L.L. obtained the
financial support for the project leading to this publication; B.W. and C.K. modified the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Natural Science Foundation of Fujian Province,
Grant/Award (Grant no. 2022H6005, 2022J01952), in part by the National Natural Science Foundation
of China (Grant no. 61973085).

Data Availability Statement: Data available on request due to restrictions eg privacy or ethical. The
data presented in this study are available on request from the corresponding author.

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new

metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [CrossRef]
2. Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm.

Knowl. Based Syst. 2020, 191, 105190. [CrossRef]
3. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila optimizer: A novel meta-heuristic

optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]
4. Zeng, N.; Wang, Z.; Liu, W.; Zhang, H.; Hone, K.; Liu, X. A dynamic neighborhood-based switching particle swarm optimization

algorithm. IEEE Trans. Cybern. 2020, 52, 9290–9301. [CrossRef]
5. Pan, J.S.; Zhang, L.G.; Wang, R.B.; Snášel, V.; Chu, S.C. Gannet optimization algorithm: A new metaheuristic algorithm for solving

engineering optimization problems. Math. Comput. Simul. 2022, 202, 343–373. [CrossRef]
6. Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks,

Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
7. Deng, W.; Zhang, X.; Zhou, Y.; Liu, Y.; Zhou, X.; Chen, H.; Zhao, H. An enhanced fast non-dominated solution sorting genetic

algorithm for multi-objective problems. Inf. Sci. 2022, 585, 441–453. [CrossRef]
8. Colorni, A.; Dorigo, M.; Maniezzo, V. An Investigation of Some Properties of an “Ant Algorithm”; Ppsn. 1992; Elsevier: Amsterdam,

The Netherlands, 1992.
9. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
10. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future

Gener. Comput. Systems 2020, 111, 300–323. [CrossRef]
11. Zervoudakis, K.; Tsafarakis, S. A mayfly optimization algorithm. Comput. Ind. Eng. 2020, 145, 106559. [CrossRef]
12. Yan, L.-J.; Li, Z.-B.; Wei, J.-H.; Du, X. A New Hybrid Optimization Algorithm and Its Application in Job Shop Scheduling. ACTA

Autom. Sin. 2008, 34, 604–608. [CrossRef]
13. Miao, C.; Chen, G.; Yan, C.; Wu, Y. Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm.

Comput. Ind. Eng. 2021, 156, 107230. [CrossRef]
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