
Citation: Ma, C.; Zhang, W.; Huang,

M.; Feng, S.; Wu, Y. Integrating

Relational Structure to Heterogeneous

Graph for Chinese NL2SQL Parsers.

Electronics 2023, 12, 2093. https://

doi.org/10.3390/electronics12092093

Academic Editor: Rui Pedro Lopes

Received: 11 March 2023

Revised: 17 April 2023

Accepted: 30 April 2023

Published: 4 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Integrating Relational Structure to Heterogeneous Graph
for Chinese NL2SQL Parsers
Changzhe Ma 1, Wensheng Zhang 1,2,*, Mengxing Huang 1,*, Siling Feng 1 and Yuanyuan Wu 1

1 School of Information and Communication Engineering, Hainan University, Haikou 570228, China;
20081000210024@hainanu.edu.cn (C.M.); fengsiling@hainanu.edu.cn (S.F.); 995042@hainanu.edu.cn (Y.W.)

2 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
* Correspondence: zhangwenshengia@hotmail.com (W.Z.); huangmx09@hainanu.edu.cn (M.H.)

Abstract: The existing models for NL2SQL tasks are mainly oriented toward English text and cannot
solve the problems of column name reuse in Chinese text data, description in natural language
query, and inconsistent representation of data stored in the database. To address this problem, this
paper proposes a Chinese cross-domain NL2SQL model based on a heterogeneous graph and relative
position attention mechanism. This model introduces relational structure information defined by the
expert to construct initial heterogeneous graphs for database schemas and natural language ques-
tions. The heterogeneous graph is pruned based on natural language questions, and the multi-head
relative position attention mechanism is used to encode the database schema and natural language
questions. The target SQL statement is generated using a tree-structured decoder with predefined
SQL syntax. Experimental results on the CSpider dataset demonstrate that our model better aligns
database schema with natural language questions and understands the semantic information in
natural language queries, effectively improving the matching accuracy of Chinese multi-table SQL
statement generation.

Keywords: NL2SQL; graph neural network; schema linking; semantic parsing; NLP

1. Introduction

In the age of the digital revolution, data have become an indispensable commodity that
drives almost all human activities, from business operations to scientific research [1]. Data
search and query play an important guiding role in enterprise production and people’s
daily life. Existing data are usually stored in a relational database system [2]. Relational
databases are widely used and store a lot of structured data. However, researchers need
to master database knowledge and SQL (Structured Query Language)-based [3] query
language to obtain the required data, which requires highly professional skills and is
difficult for ordinary users to achieve. In recent years, the question-answering system
based on natural language to SQL (NL2SQL) has become a research hotspot. Compared
with other question-answering systems based on retrieval and reading comprehension,
NL2SQL first generates structured queries and then provides the reasoning path of the
answer, so it has better interpretability. The NL2SQL task aims to parse natural language
with a given database into an SQL query and use this query statement to obtain the answer
to the question. However, in NL2SQL, similar queries with different database schemas
leads to different SQL queries. Thus, both the database schema and word representation
will affect the gold SQL query.

Because the same problem will have different SQL query statements on different
database models, it is very important to design a model that can learn both the question
representation and the database schema representation to improve the logical accuracy
and execution accuracy of the NL2SQL model. NL2SQL can be divided into two research
directions: (1) the method based on rule templates, that is, classifying natural languages
according to common SQL syntax and matching different categories with corresponding

Electronics 2023, 12, 2093. https://doi.org/10.3390/electronics12092093 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12092093
https://doi.org/10.3390/electronics12092093
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12092093
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12092093?type=check_update&version=1

Electronics 2023, 12, 2093 2 of 18

SQL templates. This method requires a manual summary of experience and has a high time
cost. In addition, with the switching of application scenarios, the existing templates are
often difficult to meet the requirements and have poor mobility. (2) Based on the method
of deep learning, the neural network is used for end-to-end realization. This method
can optimize itself by continuously adding sample information. It has the advantages of
high accuracy and strong adaptability and is attracting more and more attention from the
academic community. The deep learning model of NL2SQL needs to combine information
from the database itself and the user’s natural language to extract the associated database
table names, column names, and user intent patterns. However, the complex internal
structure of the database itself brings great challenges to the conventional deep learning
models, mainly in two ways. (1) The input of the traditional deep neural network is struc-
tured data, while there are table names, column names, and specific data corresponding to
column names in the database, and integrating multiple information sources undoubtedly
increases the complexity of the process. (2) There are significant dependencies between
the elements of the database, especially in multi-table SQL query scenarios, and it is a
major challenge to effectively extract and substitute into the model information, such as
table–table, table–primary key, and primary key–foreign key associations, to generate the
SQL statement; a complex SQL statement for multi-table connection is shown in Figure 1.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 18

according to common SQL syntax and matching different categories with corresponding
SQL templates. This method requires a manual summary of experience and has a high
time cost. In addition, with the switching of application scenarios, the existing templates
are often difficult to meet the requirements and have poor mobility. (2) Based on the
method of deep learning, the neural network is used for end-to-end realization. This
method can optimize itself by continuously adding sample information. It has the ad-
vantages of high accuracy and strong adaptability and is attracting more and more atten-
tion from the academic community. The deep learning model of NL2SQL needs to com-
bine information from the database itself and the user’s natural language to extract the
associated database table names, column names, and user intent patterns. However, the
complex internal structure of the database itself brings great challenges to the conven-
tional deep learning models, mainly in two ways. (1) The input of the traditional deep
neural network is structured data, while there are table names, column names, and spe-
cific data corresponding to column names in the database, and integrating multiple infor-
mation sources undoubtedly increases the complexity of the process. (2) There are signif-
icant dependencies between the elements of the database, especially in multi-table SQL
query scenarios, and it is a major challenge to effectively extract and substitute into the
model information, such as table–table, table–primary key, and primary key–foreign key
associations, to generate the SQL statement; a complex SQL statement for multi-table con-
nection is shown in Figure 1.

Question

Schema

SQL

Show the stadium name and capacity with most number of concerts in year 2014 or after.

SELECT T2.name , T2.capacity FROM concert AS T1 JOIN stadium AS T2 ON
T1.stadium_id = T2.stadium_id WHERE T1.year >= 2014 GROUP BY T2.stadium_id

ORDER BY count(*) DESC LIMIT 1

stadium name capacity concerts year

ColumnTable Column Table Column

Figure 1. Complex SQL statement for multi-table connection.

In recent years, recent advances in deep learning and the availability of large-scale
training data have significantly improved NL2SQL parsing by neural generation models.
Current research has been conducted by constructing a heterogeneous graph based on an
attention mechanism to jointly encode database schemas and natural language questions,
followed by the use of a tree-structured decoder with SQL syntax guidelines to parse the
SQL statements [4,5]. This approach treats the database schema and the natural language
questions as a heterogeneous graph, building relationships between words in natural lan-
guage questions, column names, and table names [6,7]. Subsequently, it learns the embed-
ding of these relationships as schema information and encodes it into the model. The
NL2SQL with graph neural networks (GNNs) [8] can accurately represent the association
information of database elements and can solve the above problems encountered by tra-
ditional deep learning models.

However, this approach constructs a heterogeneous graph based on the entire data-
base schema, which will lead to two main problems. (1) When the database schema is
large, the heterogeneous graph is too large for the model to capture and learn the correct
features. (2) The approach will ignore the importance of each element in the database
schema. For example, when a person’s height is asked, in fact, only height is useful among
all attributes of the human entity in the database schema, and attributes such as weight

Figure 1. Complex SQL statement for multi-table connection.

In recent years, recent advances in deep learning and the availability of large-scale
training data have significantly improved NL2SQL parsing by neural generation models.
Current research has been conducted by constructing a heterogeneous graph based on an
attention mechanism to jointly encode database schemas and natural language questions,
followed by the use of a tree-structured decoder with SQL syntax guidelines to parse the
SQL statements [4,5]. This approach treats the database schema and the natural language
questions as a heterogeneous graph, building relationships between words in natural
language questions, column names, and table names [6,7]. Subsequently, it learns the
embedding of these relationships as schema information and encodes it into the model.
The NL2SQL with graph neural networks (GNNs) [8] can accurately represent the associa-
tion information of database elements and can solve the above problems encountered by
traditional deep learning models.

However, this approach constructs a heterogeneous graph based on the entire database
schema, which will lead to two main problems. (1) When the database schema is large, the
heterogeneous graph is too large for the model to capture and learn the correct features.
(2) The approach will ignore the importance of each element in the database schema. For
example, when a person’s height is asked, in fact, only height is useful among all attributes
of the human entity in the database schema, and attributes such as weight and age are
useless, so the two attributes of weight and age should not have the same weight as height
in the composition. In general, the model needs to judge the importance of all elements in
the database schema based on the natural language question, rather than simply adding all
elements in the database schema to the heterogeneous graph.

Electronics 2023, 12, 2093 3 of 18

Compared with the widely carried out research on English NL2SQL tasks, the research
on Chinese NL2SQL tasks is more complex, the existing research works are few, and most
of these studies focus on simple SQL statements. The difficulty of the Chinese NL2SQL
task is that there is no word segmentation in Chinese questions, so the probability of
ambiguity is high. In addition, there are more synonyms and more diverse expressions
in Chinese, which further increases the difficulty of machine understanding. In practice,
the names of tables and columns stored in databases are usually stored in English, which
makes it more difficult to infer the tables and columns they refer to from Chinese natural
language expressions.

To address the above problems, we propose a Chinese cross-domain NL2SQL model
based on a heterogeneous graph and relative position attention mechanism. Our model
uses a sequence-to-sequence framework and consists of three main parts: heterogeneous
graph construction, encoder, and decoder. The heterogeneous graph construction module
constructs a preliminary heterogeneous graph using predefined relational structure infor-
mation defined by the expert. The encoder crops some edges of the heterogeneous graph to
eliminate unimportant elements in the database schema and uses relational graph attention
transformers to jointly learn vector representations of the natural language question and
database schemas, where the relation is the feature of the edge in the heterogeneous graph
and the word features are initialized using the XLM (cross-lingual language model) [9]
pre-trained language model for initialization. The decoder decodes the abstract syntax tree
(AST) [10] in steps with the help of pre-defined SQL syntax rules using a tree-structured
decoder and completes the information of the SQL statement by slot filling. We evaluate our
proposed model on the Chinese large-scale complex and cross-domain semantic parsing
and NL2SQL dataset CSpider [11]. The results of the experimental evaluation demonstrate
the effectiveness of our model. Specifically, our main contributions are summarized as
follows:

• We propose a novel method for Chinese cross-domain NL2SQL based on a heteroge-
neous graph and relative position attention mechanism, which has the advantage of
generality across databases compared with previous works.

• We design a graph-pruning task to prune the heterogeneous graph based on natural
language questions for better utilization.

• The empirical results show that our method achieves better performance on the
challenging CSpider benchmarks.

The remainder of this paper is structured as follows. Related methods for NL2SQL are
reviewed in Section 2. Section 3 introduces the NL2SQL problem definition and provides
specific details about the NL2SQL model. Section 4 introduces the evaluation criteria and
experiments in detail. Finally, Section 5 presents the conclusion.

2. Related Work
2.1. Natural Language to SQL

At present, the related work of NL2SQL can be roughly divided into three types
according to the modules in the model: question and database schema joint encoding,
structured query language decoding, and pre-trained word representation enhancement.

2.1.1. Question and Database Schema Joint Encoding

SQLNet solves the problem through the “column attention” mechanism to gather
information from columns for each question word and then uses the pointer network on
the predefined SQL template to complete the SQL information [12]. IRNet introduces the
intermediate presentation layer to solve the problem of the mismatch between the intention
expressed in natural language and the implementation details in SQL. First, the database
schema is linked to the question, and the table name, column name, and value mentioned
in the question are identified. Then the question is divided into different question spans
by the neural network according to the database schema and encoded by BiLSTM [13].
TypeSQL takes prior knowledge of column types and schema linking as additional input

Electronics 2023, 12, 2093 4 of 18

features [14]. RAT-SQL constructs a heterogeneous graph for database schema and ques-
tions to establish the relationship between database schema and question words and then
carries out vectorization representation of edges between nodes in the heterogeneous graph.
Finally, the relative position self-attention mechanism is used to encode heterogeneous
graph information into the model. Bogin et al. [15] proposed Global-GNN to solve the
problem of global reasoning about the structure of the output query; it uses a global gating
mechanism, which can further improve the performance of SQL generation compared with
the previous method using local information. Chen et al. [16] proposed ShadowGNN; this
model uses graph mapping networks to remove semantic information from natural lan-
guage and database schemas, reducing the influence of domain-specific information. Cao
et al. [7] proposed a line graph-enhanced NL2SQL (LGESQL) model to mine the relational
features. LGESQL uses the line graph and node graph to capture the topology of nodes
and edges, respectively, which improves the coding ability. However, the above methods
do not consider the filtering of database schema information; useless schema information
will magnify the noise in the process of model coding.

2.1.2. Structured Query Language Decoding

Recent works usually use tree-structured decoders to decode SQL statements, which
generate an abstract syntax tree to represent the SQL language after defining the base
syntax of the target language as prior knowledge [17]. RAT-SQL uses LSTM to generate the
abstract syntax tree of SQL in depth-first traversal order and then uses the pointer network
to fill in the slots of the missing table names and column names in the SQL syntax tree.
SmBoP uses a bottom-up decoding strategy to build top-K subtrees of height t or less at
the t-th step, which improves decoding efficiency since each subtree is decoded in parallel
each time it is decoded [18]. PICARD simply combines the model prediction score with the
greedy algorithm and the beam search algorithm. At each generation step, the prediction is
first limited to the maximum k probability tokens, and then those tokens that do not pass
extensive checks are deleted [19].

2.1.3. Pre-Trained Word Representation Enhancement

Some work focused on providing pre-trained word enhanced representations for
NL2SQL tasks. GraPPa first learns the syntax and SQL rules in the Spider [20] dataset
and then uses these rules to generate high-quality question–SQL pairs on other databases
that are similar to Spider’s construction rules. Then, it sets a pre-training task to let the
model directly generate SQL based on the question and database schema to capture the
structural information between the question and the database schema [21]. GAP improves
word representation through three different pre-training tasks. The first pre-training task
determines whether a column in a database table appears in a question. The second pre-
training task randomly replaced the column names in the question with the values of the
cells in that column and the model needed to recover the replaced column names. The third
pre-training task requires the model to generate SQL statements directly from the question
and database schema [22]. TAPEX simulates the behavior of the SQL execution engine on
tables by pre-training the language model (LM) on a diverse, large-scale, and high-quality
composite corpus, approximating the structural inference process of SQL queries and
automatically synthesizing executable SQL queries and their execution outputs [23].

2.2. Heterogeneous Graph Neural Networks

Heterogeneous graph modeling has been widely explored in natural language process-
ing (NLP) for many years. Zeng et al. [24] proposed a heterogeneous graph convolution
based on in-domain self-supervision for multimodal sentiment analysis; it makes full use
of domain knowledge by constructing a heterogeneous graph and integrating text modality
features. Mo et al. [25] proposed a relation-aware heterogeneous graph convolutional
network to learn different relationships of a specific node type. Fei et al. [26] proposed
to further enhance dual learning with structure matching that explicitly builds structural

Electronics 2023, 12, 2093 5 of 18

connections in between. Fang et al. [27] proposed a relation-aware graph convolutional
network to fully utilize relational information of multiple types. Fei et al. [28] proposed
a label-aware graph convolutional network to encode word representations, dependency
arcs, and labels. Wu et al. [29] propose a dependency-guided high-order interaction mecha-
nism to achieve explicit interactions between opinions and roles. Yu et al. [30] proposed
a novel dynamically pruned graph convolutional network to remove irrelevant content
from the dependency tree. Yu et al. [31] proposed a novel multi-stage graph embedding
technique based on graph neural networks to identify deep neural network topologies
and use reinforcement learning to find an appropriate compression policy. Fei et al. [32]
proposed a structure-aware generative language model to fully utilize syntactic structure
information in information extraction tasks.

In this paper, we combined XLM and RGAT (relational graph attention transform-
ers) [33] to enable our model to exploit schema linking and the syntactic dependency
information of questions. We use a graph neural network to read the association informa-
tion of many elements at the database level and encode the database information using
the neighbor node aggregation method, which is helpful for identifying the column name
and table name in the question. We use the graph-pruning mechanism to eliminate the
relatively irrelevant information and retain the relatively relevant information.

3. Methodology
3.1. Problem Definition

The input of the NL2SQL task is a natural language question and database schema,
and the output is a structured query statement.

Specifically, give a question Q with length |Q| and a corresponding database schema

S = 〈C, T〉 consisting of columns C =
{

ct1
1 , ct1

2 , · · · , c
t|T|
1 , c

t|T|
2 } and tables T = {ti}

|T|
i=1. Each

column name ci =
{

ci,1, ci,2, · · · , ci,|ci |

}
consists of |ci| characters, and each table name

ti =
{

ti,1, ti,2, · · · , ti,|ti |

}
consists of |ti| characters. The generated structured query is

represented in the form of an abstract syntax tree.
Some columns in the database schema are called primary keys, whose values uniquely

identify every row in a table. There are also some columns called foreign keys, which are
used to index the primary key columns in different tables [34]. In addition, each column in
the table has a type field to constrain its cell values (e.g., TEXT and NUMBER).

The entire input node-centric heterogeneous graph G = (V, R) consists of all three
types of nodes mentioned above, that is, V = Q ∪ T ∪ C, with the number of nodes
|V| = |Q|+ |T|+ |C|, where |T| and |C| are the number of tables and columns, respectively.
The edge’s R is composed of expertly defined information about the structure of the
relationship.

3.2. Architecture of the Proposed Model

We provide the overview of our model in Figure 2. As shown in the figure, our
model follows the sequence-to-sequence framework. The proposed model consists of four
modules. First is the context encoder, which uses the XLM pre-trained language model to
transform the input question and database schema into semantic vector representations.
Second is the question–schema interaction graph, which uses the relational structure infor-
mation defined by the expert, and the input question and database schema are dynamically
constructed as a heterogeneous graph, which better establishes the connection between
the question and the database schema, using a graph-pruning mechanism to drop the
redundant nodes. Third is the relation-aware graph encoder. The encoder uses the relative
position attention mechanism to jointly encode the question, database schema informa-
tion, and heterogeneous graph into a high-dimensional hidden layer vector representation.
Fourth is the decoder. The decoder uses a tree decoder to decode high-dimensional hidden
layer vectors into high-quality, executable SQL statements.

Electronics 2023, 12, 2093 6 of 18

Electronics 2023, 12, x FOR PEER REVIEW 6 of 18

between the question and the database schema, using a graph-pruning mechanism to
drop the redundant nodes. Third is the relation-aware graph encoder. The encoder uses
the relative position attention mechanism to jointly encode the question, database schema
information, and heterogeneous graph into a high-dimensional hidden layer vector rep-
resentation. Fourth is the decoder. The decoder uses a tree decoder to decode high-dimen-
sional hidden layer vectors into high-quality, executable SQL statements.

Figure 2. The overall model architecture. 𝑋௤, 𝑋௖, and 𝑋௧ denote the embedding vectors of question,
column, and table, respectively. RGAT represents Relational Graph Attention Transformers. In the
decoder, FFN is a Feed-Forward Network that consists of two linear layers with a Tanh activation
function in between. AST means Abstract Syntax Tree. (The input was Chinese data)

3.2.1. Context Encoder
This module uses the XLM pre-training language model as the backbone network to

obtain initial semantic vector representations for nodes and edges. All natural language
question words and database schema items are flattened into a sequence and used as in-
put to XLM. To match XLM’s input, we appended the special token [/s]. The configuration
of the entire input sequence can be represented as follows: 𝐼 = [/𝑠ሿ, 𝑄, [/𝑠ሿ, [/𝑠ሿ, 𝑆, [/𝑠ሿ (1)

where 𝐼 represents the input sequence. 𝑄 denotes the natural language question. 𝑆
represents the database schema consisting of tables and columns. Hence, the input 𝐼 is
fed into the XLM to obtain the initial node embeddings matrix 𝑋 ∈ ℝቚV|ೂ|శ|೅|శ|಴|ቚ×ௗ，where 𝑑 is the graph hidden size, as shown in Equation (2): 𝑋 = 𝑋𝐿𝑀(𝐼) = (𝑞ଵ௜௡௜௧, ⋯ , 𝑞|ொ|௜௡௜௧; 𝑡ଵ௜௡௜௧, 𝑐௧௬௣௘భ௧భ 𝑐ଵ௧భ, 𝑐௧௬௣௘మ௧భ 𝑐ଶ௧భ, ⋯ , 𝑡|்|௜௡௜௧, 𝑐௧௬௣௘భ௧|౐| 𝑐ଵ௧|౐|, 𝑐௧௬௣௘మ௧|౐| 𝑐ଶ௧|౐|, ⋯) (2)

where |𝑄| denotes the number of words in the natural language question 𝑄. 𝑞୧௜௡௜௧ rep-
resents the word vector representation of the i-th token of the question. |𝑇| denotes the
number of tables 𝑇 . t௜௡௜௧ and 𝑐௜௡௜௧ represent the word vector representation of table
name and column name in the heterogeneous graph, respectively. For nodes that repre-
sent column names, additional features need to be added before the column name to in-
dicate whether the type is a text or a number. 𝑐௧௬௣௘ೕ௧೔ denotes the type information of the
j-th column in the i-th table.

3.2.2. Question–Schema Interaction Graph
In this module, we adopt a heterogeneous graph structure to model the natural lan-

guage question, the database schema, and predefined relations between question words
and tables or columns in the database schema.

The node set of a heterogeneous graph 𝐺 = (V, R) consists of column names, table
names in the database schema, and words in the question, which are labeled in the form

Figure 2. The overall model architecture Xq, Xc, and Xt denote the embedding vectors of question,
column, and table, respectively. RGAT represents Relational Graph Attention Transformers. In the
decoder, FFN is a Feed-Forward Network that consists of two linear layers with a Tanh activation
function in between. AST means Abstract Syntax Tree. (The input was Chinese data).

3.2.1. Context Encoder

This module uses the XLM pre-training language model as the backbone network to
obtain initial semantic vector representations for nodes and edges. All natural language
question words and database schema items are flattened into a sequence and used as input
to XLM. To match XLM’s input, we appended the special token [/s]. The configuration of
the entire input sequence can be represented as follows:

I = [/s], Q, [/s], [/s], S, [/s] (1)

where I represents the input sequence. Q denotes the natural language question. S
represents the database schema consisting of tables and columns. Hence, the input I is fed
into the XLM to obtain the initial node embeddings matrix X ∈ R|V|Q|+|T|+|C| |×d, where d is
the graph hidden size, as shown in Equation (2):

X = XLM(I) =
(

qinit
1 , · · · , qinit

|Q| ; tinit
1 , ct1

type1
ct1

1 , ct1
type2

ct1
2 , · · · , tinit

|T| , c
t|T|
type1

c
t|T|
1 , c

t|T|
type2

c
t|T|
2 , · · ·

)
(2)

where |Q| denotes the number of words in the natural language question Q. qinit
i represents

the word vector representation of the i-th token of the question. |T| denotes the number of
tables T. tinit and cinit represent the word vector representation of table name and column
name in the heterogeneous graph, respectively. For nodes that represent column names,
additional features need to be added before the column name to indicate whether the type
is a text or a number. cti

typej
denotes the type information of the j-th column in the i-th table.

3.2.2. Question–Schema Interaction Graph

In this module, we adopt a heterogeneous graph structure to model the natural
language question, the database schema, and predefined relations between question words
and tables or columns in the database schema.

The node set of a heterogeneous graph G = (V, R) consists of column names, table
names in the database schema, and words in the question, which are labeled in the form
of characters, that is, V = Q ∪ T ∪ C. Joining the tokens as a node in the question can
align the question of the words with the information in the database schema, enrich the
information of heterogeneous graph representation ability, and make the heterogeneous
graph effectively establish the connection between the questions and the database schema.
The edge R = {R}|V|,|V|i=1,j=1 of a heterogeneous graph is defined by experts according to the
database schema. One part is obtained by the unique structure of the database (such as
foreign key, primary key, etc.), and the other part is obtained by analyzing the error cases

Electronics 2023, 12, 2093 7 of 18

on the validation set and iteratively summarizing. The construction rules of heterogeneous
graph edges defined by experts are shown in Table 1.

Table 1. The predefined relations for heterogeneous graph edge construction.

Node A Node B Edge Label

Column Column
Same-Table
Foreign-F
Foreign -R

Column Table
Primary-Key

Has

Table Table
Foreign-Key-Tab-F
Foreign-Key-Tab-R
Foreign-Key-Tab-B

Question Table
None-Linking
Partial-Linking
Exact-Linking

Question Column

None-Linking
Partial-Linking
Exact-Linking
Value-Linking

Question Question
Syntax-F
Syntax-R

Syntax-None

There are generally three types of relations: schema structure, schema linking, and
question dependency structure [35].

1. Schema Structure

Schema structure relations are the relationships between database schema items. This
includes Column–Column, Column–Table, and Table–Table relationships. As shown in
Table 1, Same-Table represents that A and B belong to the same table. Foreign-F represents
that A is a foreign key for B. Foreign-R represents that B is a foreign key for A. Primary-
Key represents A as the primary key of B. HAS represents that the column A belongs
to the table B. Foreign-Key-Tab-F represents that table A has a foreign key column in B.
Foreign-Key-Tab-R represents that table B has a foreign key column in A. Foreign-Key-Tab-B
represents that A and B have foreign keys in both directions.

2. Schema Linking

Schema linking relations refer to the relationship between database schema items and
natural language questions. We follow the settings in RAT-SQL [6], which uses n-gram
matches to indicate the natural language question mentions of the database schema items.
If the column name or table name matches the word in a natural language question, set
the schema linking between them. This relation includes Question–Table and Question–
Column relationships. As shown in Table 1, None-Linking represents no linking between
A and B. Partial-Linking represents that A is part of B, but the entire question does not
contain B. Exact-Linking represents that A is part of B, and B is a span of the entire question.
Value-Linking represents that A is part of the candidate cell values of column B.

3. Question Dependency Structure

Question dependency structure relations are the edges of a dependency tree of the
question. In this work, different dependencies are not distinguished in order to control
the total number of relationships and avoid unnecessary overfitting. This relation includes
Question–Question relationships. As shown in Table 1, Syntax-F represents that A has
forward syntactic dependencies on B. Syntax-R represents that A has reverse syntactic
dependencies on B. Syntax-None represents that A and B have no syntactic dependency.

Electronics 2023, 12, 2093 8 of 18

3.2.3. Relation-Aware Graph Encoder

In order to enable the model to learn the edge features, the encoder initializes each
edge of the preliminary heterogeneous graph constructed by the heterogeneous graph-
building module as a vector representation. Then, the encoder encodes the input using the
RGAT, so that the model can jointly learn the relationship between the question and the
database schema [36]. Unlike traditional methods, our encoder uses the edge vectors of the
heterogeneous map as the relative position encoding to incorporate the information of the
heterogeneous map into the model.

The RGAT enhances GATs (Graph Attention Networks) [37] by embedding edges
between heterogeneous graph nodes into key and value entries. By considering edge
information, the model gives more weight to the predefined relationships. During the
training process, these weight values are changed by the backpropagation process. Finally,
each relationship label will be given different weight values, reflecting the importance of
different relationship labels.

Following previous works [6,7,36], we set key relations rK
ij and value relations rV

ij by
splicing the features of all edges in the heterogeneous graph, as shown in Equation (3):

rK
ij = rV

ij = Concat
(

m(1)
ij ρ

(1)
ij , · · · , m(R)

ij ρ
(R)
ij

)
(3)

where Concat(·) means concatenate operation. ρij is a trainable edge vector representation
of edges. mij is a graph-pruning variable. Each edge in the heterogeneous graph is binary
classified according to the input natural language question to record whether this edge
needs to be preserved or not, and if it does not need to be preserved, then the vector
representation of the edge is set to a vector of the same dimension consisting of all zeros
using mij. R is the total number of relationship edge labels.

Equations (4)–(6) comprise an independent attention calculation formula.

e(h)ij =
xiW

(h)
q

(
xjW

(h)
k + rK

ij

)T√
dz/H|

(4)

α
(h)
ij =

exp
(

e(h)ij

)
∑n

j=1 exp
(

e(h)ij

) (5)

z(h)i = ∑n
j=1 α

(h)
ij

(
xjW

(h)
v + rV

ij

)
(6)

where rij encode the predefined relationship between the two elements in the input. Ma-
trices Wq, Wk, Wv are trainable parameters in self-attention. The parameter definition and
principle are the same as the paper on the self-attention mechanism with relative position
encoding.

Equation (7) is the calculation formula for the multi-head attention mechanism [38].
The value is obtained by concatenating multiple independent attention values.

zi = Concat
(

z(1)i , z(2)i , · · · , z(H)
i

)
(7)

where Concat(·) means concatenate operation. H is the number of heads, each head
focusing on a different semantic feature. As shown in Equation (8), after the calculation of
multi-head attention is completed, the multi-head attention results are added to the input
and layer normalization is performed. As shown in Equation (9), ỹi is processed by the
ReLU activation function after passing through a fully connected layer, and the output is
obtained by passing through a fully connected layer. Finally, yi is obtained after adding the
output to the input ỹi and performing layer normalization.

ỹi = LN(xi + zi) (8)

Electronics 2023, 12, 2093 9 of 18

yi = LN(ỹi + FC(ReLU(FC(ỹi)))) (9)

where LN(·) and FC(·) denote the layer normalization and the fully connected layer,
respectively.

3.2.4. Graph Pruning

In practice, we notice that some nodes become irrelevant and uninformative. These
unrelated nodes are distracting and can even disturb the subsequent generation. To drop
the redundant nodes in the interaction graph, we propose a Graph Pruning (GP) mechanism
similar to the Dynamic Graph Pruning (DGP) [39] mechanism. The GP employs the gate
mechanism to parse the connection between the schema node si ∈ S = T ∪ C based on its
relevance with the question node in the heterogeneous graph to achieve graph pruning.

Specifically, we compute the context vector x̃si from the question node embeddings
Xq for each schema node si via multi-head attention. For each schema node si in the
heterogeneous graph, we formulate its gates as below:

gji = sigmoid
(

WT
g tanh

(
Wexsi + Wdxqj

))
(10)

where Wg, We, Wd are learnable weight matrices. xsi is the representation of the schema
node si, and xqj is the representation of the question node. Correspondingly, we apply the
gate value to decide whether the node should be dropped or not by changing Equation (5).
as follows:

α
(h)
ij =

gji � exp
(

e(h)ij

)
∑n

m=1 gmj � exp
(

e(h)mj

) (11)

where � means multiplication. e(h)ij is the attention weight with edge information between
nodes si and node qj. Intuitively, if the value of gate gji is close to 0, then the connection
between node si and node qj will be significantly weakened, and therefore node si should

be removed from the interaction graph. α
(h)
ij is the attention score. By concatenating the

results of the multi-head attention mechanism, we obtain the context vector x̃si , as follows:

x̃si = ‖
H
h=1 ∑j α

(h)
ji xqjW

(h)
v (12)

where ‖ represents vector concatenation horizontally. W(h)
v is a learnable weight matrix.

We use a binary cross-entropy loss function as the training object for the GP. The
ground truth label yg

si of a schema item is 1 if si is mentioned in the target SQL query.
Pgp(ysi

∣∣xsi , Xq
)

determines the probability of the node si being removed. The training
object can be formulated as follows:

Pgp(ysi

∣∣xsi , Xq
)
= Sigmoid(x̃si) (13)

Lgp = −∑si
[yg

si log
(

Pgp(ysi

∣∣xsi , Xq
))

+
(

1− yg
si

)
log
(
1− Pgp(ysi

∣∣xsi , Xq
)]

(14)

3.2.5. Decoder

The decoder of our model follows the grammar-based syntactic neural decoder [17].
The SQL is first generated as an abstract syntax tree (AST) in a depth-first traversal order.
Then a sequence of actions is output through the LSTM network. Actions can be divided
into the following two categories: 1) The generated node is a non-leaf node, then the node
is extended to a syntax rule, called APPLYRULE; 2) The generated node is a leaf node and
selects a column name or table name from the database schema, called SELECTCOLUMN
and SELECTTABLE.

Electronics 2023, 12, 2093 10 of 18

The LSTM in the tree-structured decoder updates the state as shown in Equation (15):

(mt, ht) = f
([

at−1

∣∣∣∣∣∣hpt

∣∣∣∣∣∣apt

∣∣∣∣∣∣n ft

]
, mt−1, ht−1

)
(15)

where mt is the LSTM cell state. ht is the output of LSTM at t step. at−1 is the embedding
representation of the previous action. pt is the syntax tree parent node of the current node.
n ft is the embedding representation of the current node type.

APPLYRULE is calculated as shown in Equation (16):

Pr (at = APPLYRULE[R]|a<t , y) = Softmax (g(ht)) (16)

where g(·) is a 2-layer MLP with Tanh as the activation function.
SELECTCOLUMN is calculated as in Equation (17), and SELECTTABLE is calculated

in a similar way as SELECTCOLUMN.

Pr (at = SELECTCOLUMN[i]|a<t , y) = ∑|y|
j=1 λjLcol

j,i (17)

where λj is the weight vector. Lcol
j,i is the embedding representation of the edge.

4. Experiments
4.1. Dataset

We validated the performance of our model using the CSpider dataset. CSpider is
a Chinese large-scale complex and cross-domain semantic parsing and NL2SQL dataset
translated from Spider and keeps the original English database. The goal of the CSpider
challenge is to develop natural language interfaces to cross-domain databases for Chinese,
which is currently a low-resource language in this task area. It consists of 9691 questions
and 5263 unique complex SQL queries on 166 databases with multiple tables covering
138 different domains; the details of CSpider are shown in Table 2. These details cover mul-
tiple domains from other datasets such as Restaurants [40,41], GeoQuery [42], Scholar [43],
Academic [44], Yelp, and IMDB [45] datasets. CSpider uses a relational database structure;
names and column names of DB tables are typically represented in English, while ques-
tions are represented in Chinese. This adds to the challenges in question-to-DB mapping.
CSpider classifies each question as easy, medium, hard, or extra hard, based on the number
of keywords in the SQL query and the complexity of the structure.

Table 2. Statistics for dataset CSpider.

CSpider

Q # SQL # DB # Table/DB

all 9691 5263 166 5.28
train 6831 3493 99 5.38
dev 954 589 25 4.16
test 1906 1193 42 5.69

4.2. Evaluation Metrics

We report our results using Exact Match (EM) accuracy and Component Matching
score. We split each component in the prediction and the ground truth into clauses,
such as SELECT, WHERE, GROUP BY, ORDER BY. EM mainly evaluates the syntactic
structure of SQL statements and conducts set comparison in each SQL clause instead of
simply conducting string comparison between the predicted SQL and the gold SQL queries.
Component Matching score calculates the F1 value of the predicted and true values in
each section.

Electronics 2023, 12, 2093 11 of 18

4.3. Parameter Setting

We trained our models on one server with a single NVIDIA A100-PCIE-40GB GPU.
The models used in this study were all built using Pytorch [46]. Our models tokenize
and lemmatize the input of natural language questions, column names, and table names
with the Stanford Natural Language Processing toolkit [47] during pre-processing. For the
encoder, we encode the input natural language question Q and database schema S with
XLM. The default setting for the XLM pre-trained language model uses a 16-head attention
mechanism Transformer with 1280 hidden layer dimensions and a total of 570M parameters.
The GNN hidden size is set to 512. The number of GNN layers is 8. The maximum sequence
length used in this study is 512, and the batch size is 20. The position-wise feed-forward
network has an inner layer dimension of 1024. For the decoder, we use rule embeddings of
size 128, action embeddings of size 128, node type embeddings of size 64, and a hidden size
of 512 inside the LSTM with a recurrent dropout [48] of 0.2. The learning rate is 1× 10−4.
The number of heads in multi-head attention is 8 and the dropout rate of features is set
to 0.2 in both the encoder and decoder. During the evaluation, we adopt beam search
decoding with beam size of 5.

4.4. Model Comparisons

We evaluate our model via CSpider and compare it with the following models:
SyntaxSQLNet [49]: It introduces structural information into the decoding process,

and the decoded object is a tree structure composed of SQL statements.
RYANSQL [50]: It is a sketch-based slot-filling recursive model, combining blocks of

statements from each prediction to form the final SQL according to a nested structure.
DG-SQL [51]: It uses a meta-learning framework which targets zero-shot domain

generalization for semantic parsing.
RAT-SQL [6]: It presents a unified framework, based on the relation-aware self-

attention mechanism, and uses n-gram patterns to construct the question–schema graph.
LGESQL [7]: This model use a Line Graph-Enhanced NL2SQL model to mine the

underlying relational features without constructing metapaths.
Table 3 shows the comparison exact match accuracy results between our model

and other state-of-the-art models on CSpider. All results of the baselines are obtained
from the official leaderboard. As shown in Table 3, the model we propose is competi-
tive with the baselines in the identical sub-table. Our model obtains 66.2% accuracy on
CSpider and has a significant improvement (1.7%) on the prior state-of-the-art model,
LGESQL+ELECTRA [7,52]. By using the heterogeneous graph with relational labels and
a graph-pruning mechanism, our proposed model is able to capture richer features and
generate SQL statements with complex structure. The outstanding performance illustrates
the effectiveness of our proposed model in natural language-to-SQL tasks.

Table 3. Comparison to different models.

Model EM (%)

SyntaxSQLNet 16.4
RYANSQL 41.3
RAT-SQL 41.4
DG-SQL 50.4
LGESQL 58.6

RAT-SQL + GraPPa 59.7
LGESQL + Infoxlm 61.0

LGESQL + ELECTRA 64.5
Ours 66.2

To better validate the validity of the proposed model, we compare the fine-grained per-
formance of the model with the baseline models LGESQL [7] and RYANSQL [50] according
to the different hardness levels defined by Yu et al. [20]. As can be seen in Figure 3, the pro-

Electronics 2023, 12, 2093 12 of 18

posed model consistently outperforms the comparison models, achieving an exact match
accuracy of 85.6% in the Easy level, 69.5% in the Medium level, 55.2% in the Hard level, and
40.6% in the Extra Hard level. The overall exact match accuracy is 66.2%. RYANSQL is a
sketch-based slot-filling recursive model. Our proposed model is a significant improvement
over RYANSQL in all subdivisions. This is due to the fact that the proposed heterogeneous
graph with relational labels can provide richer semantic information. This validates the
superiority of the proposed heterogeneous graph with relational labels. Compared to
LGESQL, our proposed model achieves an absolute improvement of 1.7% in the overall
exact match accuracy, implying that our model can handle more complicated SQL parsing.
This is due to the fact that the proposed graph-pruning mechanism drops the redundant
node information. This verifies the superiority of the proposed graph-pruning strategy.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 18

improvement of 1.7% in the overall exact match accuracy, implying that our model can

handle more complicated SQL parsing. This is due to the fact that the proposed graph-

pruning mechanism drops the redundant node information. This verifies the superiority

of the proposed graph-pruning strategy.

Table 3. Comparison to different models.

Model EM (%)

SyntaxSQLNet 16.4

RYANSQL 41.3

RAT-SQL 41.4

DG-SQL 50.4

LGESQL 58.6

RAT-SQL + GraPPa 59.7

LGESQL + Infoxlm 61.0

LGESQL + ELECTRA 64.5

Ours 66.2

As shown in Figure 3, the predictive performance of our proposed model decreases

as the hardness level of the sample increases, with the exact match accuracy of the Easy

level sample being 85.6% and the Extra Hard level sample being 40.6%, indicating that the

model is a weak fit for the Extra Hard level sample. The reason for this is that the Medium

and Hard levels are mostly join queries, and the Extra Hard level is mostly nested queries.

Figure 3. The accuracy results on CSpider compared to LGESQL and RYANSQL by hardness lev-

els.

In order to further investigate the prediction effectiveness of the algorithm in differ-

ent parts of SQL, the F1 scores of the main modules of the model were experimentally

analyzed at multiple difficulties of CSpider, as listed in Table 4. IUEN is the general term

for the four operations INTERSECT, UNION, EXCEPT, and NONE in nested queries;

these operations are only present in the samples of Hard and Extra Hard levels. The Easy

and Medium levels of hardness questions in the dataset do not involve IUEN operations,

so the F1 scores of IUEN at Easy and Medium levels of hardness are not considered. KEY-

WORDS represents a collection of SQL keywords without column names and operators.

As shown in Table 4, due to the embedded database schema and question association

information when coding, the F1 scores are generally higher for the predicted column and

59.7

41.5

32.4

22.7

41.3

83.2

67.7

54

39.4

64.5

85.6

69.5

55.2

40.6

66.2

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

Easy Medium Hard Extra Hard All

A
cc

u
ra

cy
 o

f
F

1
(%

)

RYANSQL

LGESQL + ELECTRA

Ours

Figure 3. The accuracy results on CSpider compared to LGESQL and RYANSQL by hardness levels.

As shown in Figure 3, the predictive performance of our proposed model decreases
as the hardness level of the sample increases, with the exact match accuracy of the Easy
level sample being 85.6% and the Extra Hard level sample being 40.6%, indicating that the
model is a weak fit for the Extra Hard level sample. The reason for this is that the Medium
and Hard levels are mostly join queries, and the Extra Hard level is mostly nested queries.

In order to further investigate the prediction effectiveness of the algorithm in different
parts of SQL, the F1 scores of the main modules of the model were experimentally analyzed
at multiple difficulties of CSpider, as listed in Table 4. IUEN is the general term for the four
operations INTERSECT, UNION, EXCEPT, and NONE in nested queries; these operations
are only present in the samples of Hard and Extra Hard levels. The Easy and Medium
levels of hardness questions in the dataset do not involve IUEN operations, so the F1
scores of IUEN at Easy and Medium levels of hardness are not considered. KEYWORDS
represents a collection of SQL keywords without column names and operators. As shown
in Table 4, due to the embedded database schema and question association information
when coding, the F1 scores are generally higher for the predicted column and table names
such as SELECT, WHERE, and GROUP, showing that our proposed model has a significant
effect. However, there is still room for improvement in the query performance of the
WHERE clause and IUEN. From these results, it is clear that F1 scores do not decrease
significantly as the hardness levels of the dataset increase from Easy to Extra Hard. This
proves that our proposed model can basically solve the natural language-to-SQL task in
cross-domain scenarios.

Electronics 2023, 12, 2093 13 of 18

Table 4. F1 scores of components in CSpider at different hardness levels.

Component Easy (%) Medium (%) Hard (%) Extra Hard (%) All (%)

SELECT 88.0 75.0 87.4 73.5 80.0
WHERE 79.6 65.2 52.7 46.9 62.5

WHERE (no OP) 80.6 68.0 65.9 55.9 68.1
GROUP (no
HAVING) 78.3 78.6 78.6 73.7 77.2

GROUP 73.9 72.5 76.2 71.3 72.8
ORDER 60.0 68.4 78.2 78.0 73.0

AND/OR 99.6 98.0 96.7 92.5 97.3
IUEN - - 35.3 35.1 34.1

KEYWORDS 90.9 91.1 80.0 72.4 85.2

4.5. Ablation Study

To confirm the viability of our suggested strategy, we also carried out ablation tests
to examine the effects of different modules in the proposed model. The results of ablation
experiments are shown in Table 5.

Table 5. Ablation study of different modules. GP: graph pruning; RS: relational structures information.

Model EM (%)

Ours 66.2
w/o GP 65.9
w/o RS 65.5

w/o RS+GP 64.7

As can be seen from the ablation study results in Table 5, the complete model achieves
optimal performance compared with the different ablation models. Eliminating relational
structure information and the graph-pruning module lowers the model’s performance.
In order to explain the reason for the decreased effect of the ablation model, this paper
analyzes the case shown in Figure 4, where the wrong SQL comes from the ablation model
without relational structure information and the graph-pruning module, and the right SQL
comes from the self-complete model. In addition, the database schema information is listed
in Table 5.

As can be seen from Figure 4, the wrong SQL fails to recognize that “amc hornet
sportabout (sw)” is a complete slot value because “sw” happens to be a value in the “model”
column of the “model_list” table and “amc hornet” also happens to be a value in the “Make”
column of the “car_names” table. Therefore, “amc hornet sportabout (sw)” is split into
“amc hornet” and “sw” slot values and matched to their corresponding column names.

After constructing the heterogeneous graph with relational structure information,
“amc hornet sportabout (sw)” and column name “Make” are connected to the edge labeled
EXACT-MATCH, while “amc hornet” and column name “Make” will be connected with
the edge marked PARTIAL-MATCH. The heterogeneous graph constructed in this way
enables the model to establish a more fine-grained relationship between questions and
database schemas.

Since the semantic information in the question is obviously about the acceleration of
the car equipped with the “amc hornet sportabout (sw)” package and is not related to the
car’s module (model), the graph-pruning module removes the edge related to the column
name “Model”. In this way, the model can better eliminate the graph information irrelevant
to the question, retain the relatively relevant information, and reduce the introduction
of noise.

After combining relational structure information and the graph-pruning module,
because different edges of heterogeneous graphs have strong feature information, the graph-
pruning module can also learn the behavior of preferentially clipping edges marked as
PARTIAL-MATCH when there are edges marked as EXACT-MATCH in this case. Therefore,

Electronics 2023, 12, 2093 14 of 18

the combination of the two modules can further improve the effect of the model, which is
also consistent with the results of the ablation study. From the above experimental results
and case analysis, it is proved that the relational structure information and graph-pruning
mechanism designed in this paper are effective in improving the performance of the model.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 18

Since the semantic information in the question is obviously about the acceleration of
the car equipped with the “amc hornet sportabout (sw)” package and is not related to the
car’s module (model), the graph-pruning module removes the edge related to the column
name “Model”. In this way, the model can better eliminate the graph information irrele-
vant to the question, retain the relatively relevant information, and reduce the introduc-
tion of noise.

After combining relational structure information and the graph-pruning module, be-
cause different edges of heterogeneous graphs have strong feature information, the graph-
pruning module can also learn the behavior of preferentially clipping edges marked as
PARTIAL-MATCH when there are edges marked as EXACT-MATCH in this case. There-
fore, the combination of the two modules can further improve the effect of the model,
which is also consistent with the results of the ablation study. From the above experi-
mental results and case analysis, it is proved that the relational structure information and
graph-pruning mechanism designed in this paper are effective in improving the perfor-
mance of the model.

Figure 4. Results of the validity analysis of the ablation study. (The input was Chinese data)

4.6. Case Study
In Figure 5, we compare the SQL generated by our model with that generated by the

baseline model LGESQL. We can see that our model performs better than the baseline
model. For example, in the first case, LGESQL predicts the name and continent incorrectly.
In the second case, LGESQL predicts the min operator as a max operator and loses the
query to GNP. In the third case, which is a join of three tables, LGESQL fails to identify
the existence of the table “Treatment_Types”; however, our model successfully constructs
a connected subgraph by joining the table “Treatments” with “Treatment_Types”.

Figure 4. Results of the validity analysis of the ablation study. (The input was Chinese data).

4.6. Case Study

In Figure 5, we compare the SQL generated by our model with that generated by the
baseline model LGESQL. We can see that our model performs better than the baseline
model. For example, in the first case, LGESQL predicts the name and continent incorrectly.
In the second case, LGESQL predicts the min operator as a max operator and loses the
query to GNP. In the third case, which is a join of three tables, LGESQL fails to identify the
existence of the table “Treatment_Types”; however, our model successfully constructs a
connected subgraph by joining the table “Treatments” with “Treatment_Types”.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 18

Figure 5. Case study: some comparisons with LGESQL show that our model can generate more
accurate SQL. (The input was Chinese data)

5. Conclusions
In this paper, we propose a Chinese cross-domain NL2SQL model based on hetero-

geneous graph and relative position attention mechanism. The proposed model constructs
and heterogeneous graphs by introducing relational structure information to model the
schema information in structured data, which can better help the model to learn the rele-
vant features of structured query language. Then, the graph-pruning module is used to
cut part of the edges in the heterogeneous graph, so that the model can eliminate the rel-
atively irrelevant information and retain the relatively relevant information, thus achiev-
ing fine-grained data filtering and reducing useless information in the heterogeneous
graph. Extensive experiments have been conducted on the CSpider dataset and the results
show that the proposed model outperforms previous SOTA works and achieves a new
SOTA performance.

In our future work, we will try to find automated or semi-automated methods for
mining relational structure information to further improve the exact match accuracy of
the model under complex SQL parsing tasks such as cascade query and nested subquery.
In addition, the current model only has the ability to generate SQL in a single round. Fac-
ing the needs of users who may obtain information through multiple Q&A in actual in-
teraction scenarios, future work will focus on generating SQL in a session to obtain higher
practical application value.

Author Contributions: Conceptualization, C.M.; methodology, C.M.; software, C.M.; validation,
C.M., S.F., and Y.W.; formal analysis, C.M., W.Z., and M.H.; writing original draft, C.M.; writing-
review and editing, C.M., W.Z., and M.H.; funding acquisition, W.Z. and S.F. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(Grant #: 82260362，62241202), in part by the National Key R&D Program of China (Grant #:
2021ZD0111000)

Data Availability Statement: CSpider can be downloaded at https://github.com/taolusi/chisp (ac-
cessed on 7 July 2022).

Conflicts of Interest: The authors declare no conflicts of interest.

Figure 5. Case study: some comparisons with LGESQL show that our model can generate more
accurate SQL. (The input was Chinese data).

Electronics 2023, 12, 2093 15 of 18

5. Conclusions

In this paper, we propose a Chinese cross-domain NL2SQL model based on heteroge-
neous graph and relative position attention mechanism. The proposed model constructs
and heterogeneous graphs by introducing relational structure information to model the
schema information in structured data, which can better help the model to learn the rel-
evant features of structured query language. Then, the graph-pruning module is used
to cut part of the edges in the heterogeneous graph, so that the model can eliminate the
relatively irrelevant information and retain the relatively relevant information, thus achiev-
ing fine-grained data filtering and reducing useless information in the heterogeneous
graph. Extensive experiments have been conducted on the CSpider dataset and the results
show that the proposed model outperforms previous SOTA works and achieves a new
SOTA performance.

In our future work, we will try to find automated or semi-automated methods for
mining relational structure information to further improve the exact match accuracy of the
model under complex SQL parsing tasks such as cascade query and nested subquery. In
addition, the current model only has the ability to generate SQL in a single round. Facing
the needs of users who may obtain information through multiple Q&A in actual interaction
scenarios, future work will focus on generating SQL in a session to obtain higher practical
application value.

Author Contributions: Conceptualization, C.M.; methodology, C.M.; software, C.M.; validation,
C.M., S.F. and Y.W.; formal analysis, C.M., W.Z. and M.H.; writing original draft, C.M.; writing-review
and editing, C.M., W.Z. and M.H.; funding acquisition, W.Z. and S.F. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(Grant #: 82260362, 62241202), in part by the National Key R&D Program of China (Grant #:
2021ZD0111000).

Data Availability Statement: CSpider can be downloaded at https://github.com/taolusi/chisp
(accessed on 7 July 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Katsogiannis-Meimarakis, G.; Koutrika, G. A Survey on Deep Learning Approaches for Text-to-SQL. VLDB J. 2023, 1–32.

[CrossRef]
2. Codd, E.F. A Relational Model of Data for Large Shared Data Banks. Commun. ACM 1970, 13, 377–387. [CrossRef]
3. Chamberlin, D.D.; Astrahan, M.M.; Eswaran, K.P.; Griffiths, P.P.; Lorie, R.A.; Mehl, J.W.; Reisner, P.; Wade, B.W. SEQUEL 2: A

Unified Approach to Data Definition, Manipulation, and Control. IBM J. Res. Dev. 1976, 20, 560–575. [CrossRef]
4. Zhou, G.; Luo, P.; Cao, R.; Xiao, Y.; Lin, F.; Chen, B.; He, Q. Tree-Structured Neural Machine for Linguistics-Aware Sentence

Generation. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February
2018; Volume 32. [CrossRef]

5. Wang, B.; Titov, I.; Lapata, M. Learning Semantic Parsers from Denotations with Latent Structured Alignments and Abstract
Programs. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; Association for
Computational Linguistics: Cedarville, OH, USA, 2019; pp. 3772–3783.

6. Wang, B.; Shin, R.; Liu, X.; Polozov, O.; Richardson, M. RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL
Parsers. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020;
Association for Computational Linguistics: Cedarville, OH, USA, 2020; pp. 7567–7578.

7. Cao, R.; Chen, L.; Chen, Z.; Zhao, Y.; Zhu, S.; Yu, K. LGESQL: Line Graph Enhanced Text-to-SQL Model with Mixed Local and
Non-Local Relations. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online, 1–6 August 2021; Association
for Computational Linguistics: Cedarville, OH, USA, 2021; pp. 2541–2555.

8. A New Model for Learning in Graph Domains. In Proceedings of the 2005 IEEE International Joint Conference on Neural
Networks, Montreal, QC, Canada, 31 July–4 August 2005; IEEE: Piscataway, NJ, USA, 2005; Volume 2, pp. 729–734.

https://github.com/taolusi/chisp
https://doi.org/10.1007/s00778-022-00776-8
https://doi.org/10.1145/362384.362685
https://doi.org/10.1147/rd.206.0560
https://doi.org/10.1609/aaai.v32i1.11969

Electronics 2023, 12, 2093 16 of 18

9. Conneau, A.; Lample, G. Cross-Lingual Language Model Pretraining. In Proceedings of the Advances in Neural Information
Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Wallach, H., Larochelle, H., Beygelzimer, A., dAlché-Buc, F.,
Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32.

10. Baxter, I.D.; Yahin, A.; Moura, L.; Sant’Anna, M.; Bier, L. Clone Detection Using Abstract Syntax Trees. In Proceedings of
the International Conference on Software Maintenance (Cat. No. 98CB36272), Bethesda, MD, USA, 20 November 1998; IEEE:
Piscataway, NJ, USA, 1998; pp. 368–377.

11. Min, Q.; Shi, Y.; Zhang, Y. A Pilot Study for Chinese SQL Semantic Parsing. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), Hong Kong, China, 3–7 November 2019; Association for Computational Linguistics: Cedarville, OH, USA, 2019;
pp. 3650–3656.

12. Katsogiannis-Meimarakis, G.; Koutrika, G. A Deep Dive into Deep Learning Approaches for Text-to-SQL Systems. In Proceedings
of the 2021 International Conference on Management of Data, Virtual Event China, 9 June 2021; ACM: New York, NY, USA, 2021;
pp. 2846–2851.

13. Guo, J.; Zhan, Z.; Gao, Y.; Xiao, Y.; Lou, J.-G.; Liu, T.; Zhang, D. Towards Complex Text-to-SQL in Cross-Domain Database with
Intermediate Representation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
Florence, Italy, 28 July–2 August 2019; Association for Computational Linguistics: Cedarville, OH, USA, 2019; pp. 4524–4535.

14. Yu, T.; Li, Z.; Zhang, Z.; Zhang, R.; Radev, D. TypeSQL: Knowledge-Based Type-Aware Neural Text-to-SQL Generation. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers), New Orleans, LA, USA, 1–6 June 2018; Association for Computational
Linguistics: Cedarville, OH, USA, 2018; pp. 588–594.

15. Bogin, B.; Gardner, M.; Berant, J. Global Reasoning over Database Structures for Text-to-SQL Parsing. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; Association for Computational Linguistics:
Cedarville, OH, USA, 2019; pp. 3657–3662.

16. Chen, Z.; Chen, L.; Zhao, Y.; Cao, R.; Xu, Z.; Zhu, S.; Yu, K. ShadowGNN: Graph Projection Neural Network for Text-to-SQL
Parser. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Online, 6–11 June 2021; Association for Computational Linguistics: Cedarville, OH, USA, 2021;
pp. 5567–5577.

17. Yin, P.; Neubig, G. A Syntactic Neural Model for General-Purpose Code Generation. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, BC, Canada, 30 July–4 August 2017;
Association for Computational Linguistics: Cedarville, OH, USA, 2017; pp. 440–450.

18. Rubin, O.; Berant, J. SmBoP: Semi-Autoregressive Bottom-up Semantic Parsing. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Online, 6–11 June
2021; Association for Computational Linguistics: Cedarville, OH, USA, 2021; pp. 311–324.

19. Scholak, T.; Schucher, N.; Bahdanau, D. PICARD: Parsing Incrementally for Constrained Auto-Regressive Decoding from
Language Models. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana,
Dominican Republic, 7–11 November 2021; Association for Computational Linguistics: Cedarville, OH, USA, 2021; pp. 9895–9901.

20. Yu, T.; Zhang, R.; Yang, K.; Yasunaga, M.; Wang, D.; Li, Z.; Ma, J.; Li, I.; Yao, Q.; Roman, S.; et al. Spider: A Large-Scale
Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; Association
for Computational Linguistics: Cedarville, OH, USA, 2018; pp. 3911–3921.

21. Yu, T.; Wu, C.-S.; Lin, X.V.; Wang, B.; Tan, Y.C.; Yang, X.; Radev, D.; Socher, R.; Xiong, C. GraPPa: Grammar-Augmented
Pre-Training for Table Semantic Parsing. arXiv 2021, arXiv:2009.13845.

22. Shi, P.; Ng, P.; Wang, Z.; Zhu, H.; Li, A.H.; Wang, J.; dos Santos, C.N.; Xiang, B. Learning Contextual Representations for Semantic
Parsing with Generation-Augmented Pre-Training. arXiv 2020, arXiv:2012.10309. [CrossRef]

23. Liu, Q.; Chen, B.; Guo, J.; Ziyadi, M.; Lin, Z.; Chen, W.; Lou, J.-G. TAPEX: Table Pre-Training via Learning a Neural SQL Executor.
arXiv 2022, arXiv:2107.07653.

24. Zeng, Y.; Li, Z.; Tang, Z.; Chen, Z.; Ma, H. Heterogeneous Graph Convolution Based on In-Domain Self-Supervision for
Multimodal Sentiment Analysis. Expert Syst. Appl. 2023, 213, 119240. [CrossRef]

25. Mo, X.; Tang, R.; Liu, H. A Relation-Aware Heterogeneous Graph Convolutional Network for Relationship Prediction. Inf. Sci.
2023, 623, 311–323. [CrossRef]

26. Fei, H.; Wu, S.; Ren, Y.; Zhang, M. Matching Structure for Dual Learning. In Proceedings of the 39th International Conference on
Machine Learning, Baltimore, MD, USA, 17–23 July 2022; Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S.,
Eds.; PMLR. Volume 162, pp. 6373–6391.

27. Fang, Y.; Li, X.; Ye, R.; Tan, X.; Zhao, P.; Wang, M. Relation-Aware Graph Convolutional Networks for Multi-Relational Network
Alignment. ACM Trans. Intell. Syst. Technol. 2023, 14, 37. [CrossRef]

28. Fei, H.; Li, F.; Li, B.; Ji, D. Encoder-Decoder Based Unified Semantic Role Labeling with Label-Aware Syntax. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2–9 February 2021; Volume 35, pp. 12794–12802.

https://doi.org/10.1609/aaai.v35i15.17627
https://doi.org/10.1016/j.eswa.2022.119240
https://doi.org/10.1016/j.ins.2022.12.059
https://doi.org/10.1145/3579827

Electronics 2023, 12, 2093 17 of 18

29. Wu, S.; Fei, H.; Li, F.; Zhang, M.; Liu, Y.; Teng, C.; Ji, D. Mastering the Explicit Opinion-Role Interaction: Syntax-Aided Neural
Transition System for Unified Opinion Role Labeling. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver,
BC, Canada, 22 February–1 March 2022; Volume 36, pp. 11513–11521.

30. Yu, B.; Mengge, X.; Zhang, Z.; Liu, T.; Yubin, W.; Wang, B. Learning to Prune Dependency Trees with Rethinking for Neural
Relation Extraction. In Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, 8–13
December 2020; International Committee on Computational Linguistics: Praha, Czech Republic, 2020; pp. 3842–3852.

31. Yu, S.; Mazaheri, A.; Jannesari, A. Topology-Aware Network Pruning Using Multi-Stage Graph Embedding and Reinforcement
Learning. In Proceedings of the 39th International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022;
Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S., Eds.; PMLR. Volume 162, pp. 25656–25667.

32. Fei, H.; Wu, S.; Li, J.; Li, B.; Li, F.; Qin, L.; Zhang, M.; Zhang, M.; Chua, T.-S. LasUIE: Unifying Information Extraction with
Latent Adaptive Structure-Aware Generative Language Model. In Proceedings of the Advances in Neural Information Processing
Systems, New Orleans, LA, USA, 28 November–9 December 2022; Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K.,
Oh, A., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2022; Volume 35, pp. 15460–15475.

33. Wang, K.; Shen, W.; Yang, Y.; Quan, X.; Wang, R. Relational Graph Attention Network for Aspect-Based Sentiment Analysis. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; Association for
Computational Linguistics: Cedarville, OH, USA, 2020; pp. 3229–3238.

34. Forta, B. Sams Teach Yourself SQL in 10 Minutes; Pearson Education: London, UK, 2013; ISBN 0-672-33607-3.
35. Qi, J.; Tang, J.; He, Z.; Wan, X.; Cheng, Y.; Zhou, C.; Wang, X.; Zhang, Q.; Lin, Z. RASAT: Integrating Relational Structures into

Pretrained Seq2Seq Model for Text-to-SQL. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, Abu Dhabi, United Arab Emirates, 7–11 December 2022; Association for Computational Linguistics: Cedarville, OH,
USA, 2022; pp. 3215–3229.

36. Shaw, P.; Uszkoreit, J.; Vaswani, A. Self-Attention with Relative Position Representations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2
(Short Papers), New Orleans, LA, USA, 1–6 June 2018; Association for Computational Linguistics: Cedarville, OH, USA, 2018;
pp. 464–468.

37. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the
International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

38. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need.
In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 6000–6010.

39. Li, L.; Geng, R.; Li, B.; Ma, C.; Yue, Y.; Li, B.; Li, Y. Graph-to-Text Generation with Dynamic Structure Pruning. In Proceedings of
the 29th International Conference on Computational Linguistics, Gyeongju, Republic of Korea, 12–17 October 2022; International
Committee on Computational Linguistics: Praha, Czech Republic, 2022; pp. 6115–6127.

40. Popescu, A.-M.; Etzioni, O.; Kautz, H. Towards a Theory of Natural Language Interfaces to Databases. In Proceedings of the
8th International Conference on Intelligent User Interfaces, Miami, FL, USA, 12–15 January 2003; Association for Computing
Machinery: New York, NY, USA, 2003; pp. 149–157.

41. Tang, L.R.; Mooney, R.J. Automated Construction of Database Interfaces: Intergrating Statistical and Relational Learning for
Semantic Parsing. In Proceedings of the 2000 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing
and Very Large Corpora, Hong Kong, China, 7–8 October 2000; Association for Computational Linguistics: Cedarville, OH, USA,
2000; pp. 133–141.

42. Zelle, J.M.; Mooney, R.J. Learning to Parse Database Queries Using Inductive Logic Programming. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence—Volume 2, Portland, OR, USA, 4–8 August 1996; AAAI Press: Washington, DC,
USA, 1996; pp. 1050–1055.

43. Iyer, S.; Konstas, I.; Cheung, A.; Krishnamurthy, J.; Zettlemoyer, L. Learning a Neural Semantic Parser from User Feedback. In
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver,
BC, Canada, 30 July–4 August 2017; Association for Computational Linguistics: Cedarville, OH, USA, 2017; pp. 963–973.

44. Li, F.; Jagadish, H.V. Constructing an Interactive Natural Language Interface for Relational Databases. Proc. VLDB Endow. 2014, 8,
73–84. [CrossRef]

45. Yaghmazadeh, N.; Wang, Y.; Dillig, I.; Dillig, T. SQLizer: Query Synthesis from Natural Language. Proc. ACM Program. Lang.
2017, 1, 63. [CrossRef]

46. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing
Systems, Vancouver, BC, Canada, 8–14 December 2019; Curran Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32.

47. Manning, C.D.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard, S.J.; McClosky, D. The Stanford CoreNLP Natural Language Processing
Toolkit. In Proceedings of the Association for Computational Linguistics (ACL) System Demonstrations, Baltimore, MD, USA,
22–27 June 2014; pp. 55–60.

48. Gal, Y.; Ghahramani, Z. A Theoretically Grounded Application of Dropout in Recurrent Neural Networks. In Proceedings of the
Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; Curran Associates, Inc.: Red Hook,
NY, USA, 2016; Volume 29.

https://doi.org/10.14778/2735461.2735468
https://doi.org/10.1145/3133887

Electronics 2023, 12, 2093 18 of 18

49. Yu, T.; Yasunaga, M.; Yang, K.; Zhang, R.; Wang, D.; Li, Z.; Radev, D. SyntaxSQLNet: Syntax Tree Networks for Complex
and Cross-Domain Text-to-SQL Task. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, Brussels, Belgium, 31 October–4 November 2018; Association for Computational Linguistics: Cedarville, OH, USA,
2018; pp. 1653–1663.

50. Choi, D.; Shin, M.C.; Kim, E.; Shin, D.R. RYANSQL: Recursively Applying Sketch-Based Slot Fillings for Complex Text-to-SQL in
Cross-Domain Databases. Comput. Linguist. 2021, 47, 309–332. [CrossRef]

51. Wang, B.; Lapata, M.; Titov, I. Meta-Learning for Domain Generalization in Semantic Parsing. In Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Online, 6–11 June 2021; Association for Computational Linguistics: Cedarville, OH, USA, 2021; pp. 366–379.

52. Clark, K.; Luong, M.-T.; Le, Q.V.; Manning, C.D. ELECTRA: Pre-Training Text Encoders as Discriminators Rather than Generators.
In Proceedings of the 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April
2020. OpenReview.net; 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1162/coli_a_00403

	Introduction
	Related Work
	Natural Language to SQL
	Question and Database Schema Joint Encoding
	Structured Query Language Decoding
	Pre-Trained Word Representation Enhancement

	Heterogeneous Graph Neural Networks

	Methodology
	Problem Definition
	Architecture of the Proposed Model
	Context Encoder
	Question–Schema Interaction Graph
	Relation-Aware Graph Encoder
	Graph Pruning
	Decoder

	Experiments
	Dataset
	Evaluation Metrics
	Parameter Setting
	Model Comparisons
	Ablation Study
	Case Study

	Conclusions
	References

