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Abstract: Surrounded by structured data, such as medical data, financial data, knowledge bases,
etc., data-to-text generation has become an important natural language processing task that can
help people better understand the meaning of those data by providing them with user-friendly text.
Existing methods for data-to-text generation show promising results in tackling two major challenges:
content planning and surface realization, which transform structured data into fluent text. However,
they lack an iterative refinement process for generating text, which can enable the model to perfect the
text step-by-step while accepting control over the process. In this paper, we explore enhancing data-
to-text generation with an iterative refinement process via diffusion. We have four main contributions:
(1) we use the diffusion model to improve the prefix tuning for data-to-text generation; (2) we propose
a look-ahead guiding loss to supervise the iterative refinement process for better text generation;
(3) we extract content plans from reference text and propose a planning-then-writing pipeline to
give the model content planning ability; and (4) we conducted experiments on three data-to-text
generation datasets and both automatic evaluation criteria (BLEU, NIST, METEOR, ROUGEL, CIDEr,
TER, MoverScore, BLEURT, and BERTScore) and human evaluation criteria (Quality and Naturalness)
show the effectiveness of our model. Our model can improve the competitive prefix tuning method
by 2.19% in terms of a widely-used automatic evaluation criterion BLEU (BiLingual Evaluation
Understudy) on WebNLG dataset with GPT-2 Large as the pretrained language model backbone.
Human evaluation criteria also show that our model can improve the quality and naturalness of the
generated text across all three datasets.

Keywords: diffusion; data-to-text generation; natural language processing; artificial intelligence

1. Introduction

There are many structured data in real life, such as medical data, financial data,
knowledge bases, etc. They pose challenges for users to efficiently understand the impor-
tant information behind those data, especially when it requires professional knowledge.
For example, Gatt et al. [1] found that a textual report of medical data makes it easier for
patients to comprehend. Data-to-text generation has become an important task in natural
language processing. It processes structured data and automatically generates user-friendly
text to help users better understand the data. Figure 1 shows an example of data-to-text
generation.

In recent years, the success of data-driven deep learning models [2–4] with large-
scale datasets [5–7] has made the end-to-end model become mainstream in the field of
data-to-text generation. It faces two challenges in generating high-quality text: content
planning [8–11] and surface realization [12,13], which transforms important data into nat-
ural language. The former analyzes the structured data, selects important information
from the data, and orders them naturally, which makes the unordered data more in line
with human reading habits. The latter trains a text generation model to transform the
processed structured data into text. After the remarkable performance of a pretrained
language model (PLM) [14], using the linguistic knowledge in the PLM and adapting it
to the data-to-text generation task became popular. There are two methods: finetuning
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the PLM on the data-to-text generation dataset [15–17] or prefix tuning [18], which freezes
the PLM and prepend some trainable task-specific “virtual tokens” to adapt the PLM
to different tasks. Those “virtual tokens” help the PLM understand the requirement of
different tasks. For example, the “virtual tokens” for data-to-text generation must guide
the PLM to plan the structured data and generate fluent text. The latter shows the potential
to reduce the cost of adapting to the downstream tasks while outperforming the method
of finetuning PLM for data-to-text generation. However, the methods above generate the
text at once, without an iterative refinement process that enables the model to perfect the
text step-by-step while accepting any control or supervision during that process. In this
paper, we explore using diffusion [19] to improve the modeling of “virtual tokens” for
prefix tuning on data-to-text generationso that it can generate text of better quality.

Edwin E. Aldrin, Jr. was 
better known by his 
nickname of Buzz Aldrin 
and as a test pilot he was 
picked to crew Apollo 11 by 
NASA in 1963. Aldrin was 
born in Glen Ridge, New 
Jersey on January 20th,1930 
and in 1963 he graduated 
from MIT with a Sc. D.

ValueTypeEntity

Glen_Ridge,_New_JerseybirthPlaceBuzz_Aldrin

Edwin E. Aldrin, Jr.alternativeNamesBuzz_Aldrin

1963was selected by NASABuzz_Aldrin

Apollo_11was a crew member ofBuzz_Aldrin

Fighter_pilotoccupationBuzz_Aldrin

Massachusetts Institute of 
Technology, Sc.D. 1963almaMaterBuzz_Aldrin

1930-01-20birthDateBuzz_Aldrin

Structured Data Text

Figure 1. An illustration of an example for data-to-text generation. In this example, the structured
data are seven related triples from the knowledge base. Each triple consists of the name of the entity,
the type of this information, and the corresponding value. Given the structured data, a text report
faithfully expresses the information in the data.

Recently, diffusion models [19,20] have shown great potential in generating high-
quality examples in the domain of image [21,22] and audio [23,24] generation. They follow
a new paradigm of the noising and denoising process. The former corrupts data with
Gaussian noise, while the latter reconstructs the data from pure Gaussian noise step-by-
step. With the refinement process, the diffusion models are able to improve the output
gradually, and generate high-fidelity text.

However, there is a fundamental difference between image generation and text gen-
eration; the former deals with continuous data, while the latter processes discrete textual
data. Some works [25–27] try to bridge the gap between continuous and discrete data by
exploiting diffusion models on the continuous embedding space, then mapping them to the
discrete vocabulary to generate text. Although they show encouraging results in generating
text non-autoregressively, the rounding procedure of converting diffusion-empowered
embedding space to a discrete vocabulary limits the representation power of the diffusion
models. The diffusion-based generation model does not perform well on data-to-text
generation, based on our preliminary study.

In this paper, we empower the representation of the continuous prefixes (the “virtual
tokens”) with the step-by-step refinement process of the diffusion model to help PLM better
understand the requirement of tasks. In addition, we address two problems in this process:
how to provide a meaningful supervision signal for the refinement process and how to give
the model content planning ability. For the first question, we propose a look-ahead guiding
loss. For the denoised prefix of each diffusion step, we employ the denoising step one
more time to obtain a look-ahead denoised prefix. We require that the look-ahead denoised
prefix should perform better (i.e., lower loss for PLM) with the help of hinge loss. As for
the second question, we extract key phrases about data from the reference text and split
the training process into two stages: content planning and surface realization. The prefixes
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for learning content planning are used to initialize the prefixes for text generation, giving
the model content planning ability before training them to generate text.

We validated our proposed models on three data-to-text generation datasets, includ-
ing WebNLG, E2E, and DART. The results and case study show the proposed modules’
superiority over prefix tuning and other competitive methods across different datasets. We
have four main contributions:

• We propose to improve prefix tuning for data-to-text generation with the step-by-step
refinement diffusion model.

• We propose a look-ahead guiding loss to supervise the refinement process of the
diffusion model.

• We propose a planning-then-writing training pipeline to provide the model content
planning ability.

• We conducted experiments and analyses on three data-to-text generation datasets and
both automatic evaluation criteria (Sections 5.2 and 5.5) and human evaluation criteria
(Section 5.7) show the effectiveness of our model.

2. Literature Review
2.1. Data-to-Text Generation

In recent years, with the help of high-quality datasets [5–7] and sequence-to-sequence
architecture [2–4], data-driven neural data-to-text generation models [8,9,28] have become
mainstream and achieved remarkable performance. Traditionally [29], data-to-text genera-
tion models need to address two major problems: content planning and surface realization,
which is used to generate the final text. Many researchers [8–11] try to model content
planning in neural data-to-text generation models explicitly. The first work proposed a
two-stage generation pipeline that uses an attention-mechanism-based pointer network [30]
to select and plan important information from structured data, and then generate the final
text using another encoder–decoder model. The second one creates memory slots to track
and update the entity’s representation for the model to plan entities dynamically during
generation. The third one considers the previously generated text when planning which
data should be mentioned. The final one explores planning at a higher level by creating
paragraph plans for the entities. Others focus on improving the quality of the generated
text [12,13]. The first one defines some executable mathematical operations on structural
data to include more source information for generating more accurate text. The second one
utilizes a graph neural network [31] to strengthen the encoding of structural data.

In light of the success of the pretrained language model [14], adapting the pretrained
language model to data-to-text generation has gradually become popular. There are two
types of methods for that: finetuning the whole pretrained language model [15] or prefix
learning [18]. As for the first direction, some explore enhancing the reasoning ability for
data-to-text generation [32–34]. The first work proposes a new data-to-text generation
dataset that requires the model to perform logical inference when generating text. The sec-
ond work manually annotates the inference process with logical forms, enabling the model
to learn how to perform inference. The last work explores the data-to-text generation with
logical forms in a few-shot setting and uses self-training to enlarge the training corpus with
generated logical forms gradually. Some explore data-to-text generation in few-shot/zero-
shot setting [16,17,35]. The first work exploits the knowledge in pretrained language model
to finetune a data-to-text generation model with limited training instances in the target
domain. The second work takes a different path by using a language model to generate
new text to augment the limited corpus. The last work takes inspiration from the traditional
pipeline-style data-to-text system, including stages of ordering, aggregation, and paragraph
compression, and uses pretrained language models to implement these stages without
parallel data-text training pairs. Regarding prefix tuning [18], it provides an efficient
training paradigm for utilizing the pretrained language model. Specifically, it freezes the
parameters of the pretrained language model and only tunes a set of prepended trainable
continuous vectors to the language model, which consists of much fewer parameters. These
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vectors can be considered the “soft” descriptions of the task requirements to adapt the
language model to the given task. Based on this, Clive et al. [36] proposes to include some
input-dependent information to the prefix in addition to the original task-specific prefix,
and Chen et al. [37] proposes to bridge the prompt learning and adapter learning. While
pretrained language models achieve good performance for data-to-text generation, they
generate the final text in a single run without the iterative refinement of the generated text.
The iterative refinement process enables the model to accept control during generation
and correct potential mistakes. Since diffusion models’ [19,20] iterative refinement process
shows great potential in the image and audio generation, we explore using the diffusion
model to boost the performance of data-to-text generation.

Table 1 shows the comparison of significant studies in data-to-text generation in terms
of their contributions, datasets, and models’ performance based on BLEU score.

Table 1. Comparisons of data-to-text generation models. We report the evaluation criterion BLEU
(BiLingual Evaluation Understudy) score on the dataset in bold.

Author Contributions Dataset BLEU

Chen et al. [15] They propose to pretrain the data-to-text model with
large-scale unlabeled text and knowledge graph. E2E [5], WebNLG [6], WikiBio [38] 68.05

Chang et al. [17] They propose to use the pretrained language model
to generate new text to augment the limited corpus. E2E [5], WebNLG [6] 68.88

Li and Liang [18]
They propose to finetune lightweight task-specific

parameters while freezing the parameters of
pre-trained language model during training.

E2E [5], WebNLG [6], DART [7] 70.30

Hu et al. [39]

They propose to insert trainable rank
decomposition matrices into each layer of the model
and freeze the parameters of pretrained language

model (PLM) to reduce the cost of finetuning.

E2E [5], WebNLG [6], DART [7] 70.40

Chen et al. [33]
They propose to manually annotate the logical

inference process with logical forms and train the
model to do logical inference explicitly.

Logic2Text [33] 31.44

Nie et al. [12]
They propose to execute mathematical operations

on structural data to provide more data for
generating more accurate text.

RotoWire [28], ESPN [12] 14.74

Puduppully and Lapata [11] They propose to create paragraph plans for entities. RotoWire [28], MLB [9] 15.46

Puduppully et al. [8]
They propose a two-stage generation pipeline that

selects and plans important information from
structured data, and then generates the final text.

RotoWire [28] 16.50

Puduppully et al. [9]
They propose to use memory slots to track the

entity’s representation during generation for entity
planning.

RotoWire [28], MLB [9] 16.12

Chen et al. [10] They propose to consider the previously generated
text when planning the next structured data. RotoWire [28], NBAZhn [10] 16.38

2.2. Diffusion Model

Recently, the diffusion model [19,20] has become a new paradigm with great poten-
tial in generating high-quality examples in image [21,22] and audio generation [23,24].
During inference, diffusion models employ an iterative refinement process to denoise
and construct high-quality images or audio from Gaussian noise step-by-step. Nichol
et al. [21], Dhariwal and Nichol [22] show the generation diversity of the diffusion models.
In light of diffusion’s success in generating high-quality images and audio, some researchers
explore how to generate high-quality text via diffusion. However, there is a fundamental
difference between images and text. The images are represented in continuous space, which
can be naturally modeled by the diffusion model. However, the generation of words in
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the text, which uses the softmax function to pick a word with high probability from the
vocabulary, is discrete. The adaption of the diffusion model is not intuitive. To bridge
the above gap, Li et al. [25], Gong et al. [26], Gao et al. [40] first map each discrete word
into the continuous trainable word embedding (vectors), and then use the diffusion model.
During inference, after denoising and constructing the high-quality vector representation
for each word, they use a trainable linear transformation function, followed by softmax
function, to map those vector representations to the probability of generating each word
from the vocabulary. Li et al. [25] proposes a diffusion-based language model that can
be combined with control signals from a classifier for controllable text generation. Gao
et al. [40] analyzes some of the limitations of [25] and proposes three techniques to boost
the performance. Gong et al. [26] proposes a sequence-to-sequence diffusion-based text
generation model to adapt to conditional text generation tasks, such as summarization,
which needs to generate text based on the user’s input text, making it the closest work
to our model. In this paper, we combine the power of the diffusion model in continuous
space directly with prefix tuning for data-to-text generation, while the diffusion-based gen-
eration model above does not perform well, based on our preliminary study. In addition,
to better adapt to the data-to-text generation task, we introduce look-ahead guiding loss to
guide the diffusion process and planning-then-writing pipeline to mimic two core tasks of
data-to-text generation: content planning and surface realization.

Table 2 shows the comparison of significant studies of diffusion models in terms of
their domain, contributions, datasets, and models’ performance based on BLEU score. Since
BLEU is designed to evaluate text, Nichol et al. [21] and Kong et al. [23] explore image
generation and audio generation, and they do not have the BLEU score.

Table 2. Comparisons of diffusion models. We report the evaluation criterion BLEU (BiLingual
Evaluation Understudy) score on the dataset in bold. Since BLEU is designed to evaluate text,
the first two models on the image or audio generation do not have the corresponding results.

Author Domain Contributions Dataset BLEU

Nichol et al. [21] Image

They explore the diffusion model for
text-conditional image synthesis and
found that the classifier-free guidance

performs better.

GLIDE (filtered) [21] N/A

Kong et al. [23] Audio
They propose to use the diffusion model

for conditional and unconditional
audio generation.

LJ [41], Commands [42] N/A

Li et al. [25] Text They propose a diffusion-based language
model for controllable text generation. α-NLG [43] 7.1

Gong et al. [26] Text
They propose a sequence-to-sequence

diffusion-based text generation model for
conditional text generation.

Jiang et al. [44], Quasar-T [45] 36.22

Gao et al. [40] Text
They propose three techniques to

mitigate the limitation of the
diffusion-based language model [25].

WMT-14 [46], Gigaword [47] 27.23

3. Background
3.1. Task Formulation

Generally, text generation tasks take source document S as input and generate desired
text E. For example, for the data-to-text task, the input is a set of structured data, and the
desired output is a summary of important information in the data. Given the training
corpus, the goal is to train a text generator model fθ(E|S). For the data-to-text task,
the model fθ(E|S) needs to understand the structured information in the data, plan the
unordered data naturally and describe them in natural language.
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3.2. Diffusion Model

In the domain of images, Ho et al. [20] proposes an efficient Denoising Diffusion
Probabilistic Model (DDPM) to produce a high-quality image through a parametrized
Markov Chain. It contains two major processes: the forward process, which adds Gaussian
noise to the example gradually, and the reverse process, which reconstructs the example
from Gaussian noise.

Assuming the data example is y0, the forward process gradually adds noise to y0,
creating intermediate variables y1, y2, . . . , yT . With sufficient steps T, the final variable yT
follows a standard Gaussian distribution N (0, I). This step-by-step noising process can be
formalized as follows:

q(y1:T |y0) =
T

∏
t=1

q(yt|yt−1) (1)

For each q(yt|yt−1), it samples yt from a Gaussian distribution as follow:

q(yt|yt−1) = N (yt;
√

1− βtyt−1, βt I) (2)

The hyper-parameters in the equation are set manually, and are not trainable parame-
ters in the forward process.

As for the reverse process, given a Gaussian noise sampled from standard Gaussian
distribution, it attempts to reconstruct the data step-by-step:

pθ(y0:T) = p(yT)
T

∏
t=1

pθ(yt−1|yt) (3)

Each step of predicting yt−1, given the noise yt from the previous step, also follows
the Gaussian distribution as defined below:

pθ(yt−1|yt) = N (yt−1; µθ(yt, t), σ2
t I) (4)

Since the data example y0 is not known during the reverse process or inference,
the µθ(yt, t) is modeled by a neural network for prediction.

For training the parameters in the reverse process, Ho et al. [20] devise a simplified
objective function as follows:

Lsimple(y0) =
T

∑
t=1

E
q(yt |y0)

||µθ(yt, t)− µ̂(yt, y0)||2 (5)

This training process draws supervision signal µ̂(yt, y0) =

√
γ̂t−1βt

1−γ̂t
y0 +

√
γt(1−γ̂t−1)

1−γ̂t
yt

from the mean of the posterior q(yt−1|y0, yt) of the forward process, where γt = 1− βt
and γ̂t = ∏t

c=1 γc. Since the forward process contains no trainable parameter, this can be
obtained through the Gaussian process.

Based on the analysis by Li et al. [25], using Lsimple(y0) to supervise the training of the
diffusion model lacks the modeling of the structure of y0. Instead, they propose to directly
parameterize the reverse process by predicting y0 as follows:

Lreverse(y0) =
T

∑
t=1

E
yt
|| fθ(yt, t)− y0||2 (6)

During inference, for each reverse (denoising) time step t, the diffusion model first
predicts y0 through the trained fθ(yt, t), then sample the yt−1 through applying q(yt−1|yt−2)
iteratively.
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4. Methods

As illustrated in Section 1, (1) we use diffusion to improve the data-to-text generation
model. (2) We propose look-ahead guiding loss to supervise the refinement process for
better text generation. (3) We propose the planning-then-writing pipeline to provide the
model content planning ability.

4.1. DiffuD2T: Diffusion for Data-to-Text Generation

As illustrated in Section 1, we use prefix tuning as the base model for data-to-text
generation. In this paradigm, prefixes can be considered as “virtual tokens” that are
prepended to the pretrained language model. They consist of trainable parameters and
serve as task manuals that help the pretrained language model (PLM) adapt to different
tasks. The parameters in PLM are frozen during training. To boost the representation power
of the prefixes, we use the step-by-step refinement process of the diffusion model. For
example, given the structured data <Buzz_Aldrin | birthPlace | Glen_Ridge> (Figure 2),
DiffuD2T has three steps: (1) it samples noise from the Gaussian distribution N(0, I) and
obtains a high-quality latent representation y0 for prefix through the iterative refinement
process step-by-step; (2) it transforms the latent representation y0 into a prefix that matches
the shape of the pretrained language model (PLM); and (3) the PLM takes the prefix and
the structured data <Buzz_Aldrin | birthPlace | Glen_Ridge> as input and generates the
text “Aldrin was born in Glen Ridge.” word-by-word.

WebNLG (prefix)
PLM

Reverse
(Denoising)

Forward
(Noising)yT yT-1 yt yt-1 y0

E2E (prefix)

DART (prefix)

Aldrin was born in Glen Ridge …

Buzz_Aldrin | birthPlace | Glen_Ridge…

Figure 2. An illustration of the step-by-step optimizing process of the DiffuD2T. The left of the figure
presents the iterative refinement process of the diffusion model for the representation of prefixes,
as illustrated in Section 3.2. yT is random noise sampled from the Gaussian distribution N(0, I).
Through the reverse process that denoises yT step-by-step, we ultimately obtain a high-quality y0 for
the representation of the prefix. The forward process adds noise to the y0 step-by-step. After getting
y0, we use linear transformation to map it to the shape of PLM so that it can serve as “virtual
tokens” that help PLM adapt to different tasks. The parameters for the diffusion model and the linear
transformation are trainable while the parameters of PLM are frozen during training. The PLM takes
the structured data as input and generates the text with the help of prefixes.

Specifically, after sampling noise yT from the standard Gaussian distribution N(0, I),
we gradually denoise yT to y0 through the chain of denoising function pθ(yt−1|yt), which
is defined in Section 3.2. Then, we obtain the pre f ix as follows. It consists of a linear
transformation where Wa is the trainable parameter that will transform the shape of y0 to
the shape of PLM.

pre f ix = Way0 (7)

Then, the prefix is used to generate text through the text generator with the probability
p(E|[pre f ix, S]).

We propose to modify the training objective function of the diffusion model to ac-
company both the training of the diffusion model and the training of the text generator
as follows:

Ljoint(y0) = Lreverse(y0) + Lgen(y0) (8)

where Lreverse(y0) is defined in Section 3.2 and Lgen(y0) is defined as follows:
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Lgen(y0) = −
1
Z

G

∑
g=1

Mg

∑
t=1

log p(Eg,t|Eg,<t, [pre f ix, Sg]) (9)

Mg represents the length of the text, while G represents the number of batches. Z is
the normalization factor. The PLM takes both prefix and structured data Sg as input and
generates the target text sequence Eg word-by-word. The t in the Eg,t denotes the t-th word
in the sequence Eg. The training goal is to maximize the text generator’s probability on the
target text.

4.2. Look-Ahead Guiding Loss

The refinement process of the diffusion model allows control over the denoising
process. As illustrated in Figure 3, the prefix can have attributes of our desire by supervising
the denoising process. An intuitive way of supervising this process is to guide the denoised
representation yt−1 to perform better than the yt in terms of generating high-quality text
for the given input.

WebNLG (prefix) PLM

yT yt yt-1 y0

E2E (prefix)

DART (prefix)

WebNLG (prefix)

PLM

yT yt yt-1 yt-2 y0

E2E (prefix)

DART (prefix)

Predict 𝑦!"#$	through 𝑓%(𝑦", 𝑡)

𝐿!"#(𝑦$%&')

𝐿!"#(𝑦$%&()

<

Iteratively applying
𝑞(𝑦"#$|𝑦"#&)

Predict 𝑦!"#&	through 𝑓%(𝑦"#$, 𝑡)

Iteratively applying
𝑞(𝑦"#&|𝑦"#')

Figure 3. An illustration of our proposed look-ahead guiding loss. Please be reminded that during
each denoising step t, we first predict the yt−1

0 directly through fθ(yt, t), then obtain the yt−1 through
the forward process by iteratively applying q(yt−1|yt−2), according to Section 3.2. The top of the
figure shows that we use the predicted yt−1

0 to obtain the corresponding prefix and calculate the loss
Lgen(yt−1

0 ) of PLM on the target text, which indicates the denoised yt−1’s performance on generating
text. Then, as shown in the bottom part of the figure, we take one step further to denoise yt−1 again
to obtain yt−2

0 and yt−2. Similarly, we obtain its performance on generating text Lgen(yt−2
0 ). Since

the lower the loss, the better the performance, we propose a new look-ahead guiding loss Lahead
to supervise Lgen(yt−2

0 ) < Lgen(yt−1
0 ). That is, the denoised representation should obtain better

performance in generating text than its previous one.

Therefore, we propose the look-ahead guiding loss during training to confine the
denoising process. The general idea is that after obtaining the denoised yt−1, we take one
step further to denoise the predicted yt−1 into yt−2. As described in Section 3.2, during
each step of denoising, the model first predicts the y0 at time step t with yt directly through
fθ(yt, t), and then obtains the yt−1 through applying q(yt−1|yt−2) iteratively. So, when
we denoise yt to obtain yt−1, we can naturally obtain yt−1

0 , which refers to the predicted
y0 at the denoising timestep t. Similarly, when we take one step further to predict yt−2
with yt−1, we can also obtain the corresponding yt−2

0 . Then, we map the yt−1
0 and yt−2

0
to the corresponding prefixes with Equation (7). Afterward, we use a text generator to
obtain the corresponding loss on the batch data as Lgen(yt−1

0 ) and Lgen(yt−2
0 ), respectively.

Lgen is defined in Section 4.1. The idea is that the further denoised representation should



Electronics 2023, 12, 2136 9 of 24

perform better on the text generator than the noisier one, that is Lgen(yt−2
0 ) < Lgen(yt−1

0 ).
For example, given the prefix generated by yt−2

0 and the structured data <Buzz_Aldrin |
birthPlace | Glen_Ridge>, the text generator should have a higher probability to generate
the reference text “Aldrin was born in Glen Ridge” rather than given the prefix generated
by yt−1

0 . We use the hinge loss to supervise this process as follows. ξ is the expected gap
between Lgen(yt−2

0 ) and Lgen(yt−1
0 ).

Lahead(t) = max(0, ξ − Lgen(yt−1
0 ) + Lgen(yt−2

0 ))) (10)

In this way, we guide the diffusion model to progressively denoise the representation
to generate better text.

4.3. Planning-Then-Writing Pipeline

To give the model content planning ability, we first extract the content plan from the
target text. For words that appear in both the target text and source table, we assume them
to be the important information to be described and keep their order in reference text to
produce a content plan. Since structured data replace the space between words with “_”,
in order to match between text and structured data, we remove those “_”. Additionally,
we allow partial match of the phrases in structured data to increase the coverage of the
extracted content plan. As illustrated in Figure 4, during the first stage, we train a content
planner with the diffusion-based prefix tuning method DiffuD2T and the look-ahead
guiding loss described in Sections 4.1 and 4.2. For example, given the structured data
<Buzz_Aldrin | birthPlace | Glen_Ridge> and <Buzz_Aldrin | alternativeNames | Edwin
E. Aldrin, Jr.>, the content planner is trained to generate the content plan “Content plan
are: Edwin E. Aldrin, Jr.; Buzz Aldrin; Glen Ridge”. This content plan puts the nickname of
Edwin E. Aldrin, Jr. before his birthplace, which follows the reference text’s style of writing
(“Edwin E. Aldrin, Jr. was better known by his nickname of Buzz Aldrin . . . Aldrin was
born in Glen Ridge. . . ”). This model is trained to take the source data as input and plan
important information for the task. This also fits the paradigm, which traditionally splits
the data-to-text generation tasks into two stages: content planning and surface realization.

WebNLG (prefix)
PLM

Reverse
(Denoising)

Forward
(Noising)yT yT-1 yt yt-1 y0

E2E (prefix)

DART (prefix)

Aldrin was born in Glen Ridge …

Buzz_Aldrin | birthPlace | Glen_Ridge…

WebNLG (prefix)
PLM

Reverse
(Denoising)

Forward
(Noising)

yTyT-1ytyt-1y0

E2E (prefix)

DART (prefix)

Content plans are : Edwin E. Aldrin…

Buzz_Aldrin | birthPlace | Glen_Ridge…

InitializeEdwin E. Aldrin, Jr. 
was better known by 
his nickname of Buzz 
Aldrin and as a test 
pilot he was picked to 
crew Apollo 11 by 
NASA in 1963. Aldrin 
was born in Glen Ridge, 
New Jersey on January 
20th,1930 and in 1963 
he graduated from MIT 
with a Sc. D.

Text

Extract

Plan

Content plans 
are : Edwin E. 
Aldrin, Jr. ; 
Buzz Aldrin ; 
pilot ; Apollo 
11 ; NASA ;  
1963 ; Aldrin ; 
Glen Ridge ; 
New Jersey ; 20 ; 
1930 ; 1963 ;  
Sc. D. 

Figure 4. An illustration of the planning-then-writing pipeline. The bottom of the figure shows
the planning stage. We extract important information from the text to construct the content plan
by identifying words that both appear in the target text and the structured data. Then, we use the
structured data and the extracted plan to train a content planner with the same model structure as the
text generator, described in Sections 4.1 and 4.2. Then, we use the parameters of the content planner
to initialize the training of the text generator, which is at the top of this figure in gray, to help the text
generator produce better text with the ability to plan.

Then, we use the parameters of the content planner to initialize the training of the
final text generation model. Intuitively, the final model is first taught about how to plan
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the structured data, and then it uses this kind of knowledge to learn further about how to
transform the data into text.

4.4. Training and Inference
4.4.1. Training

Given a set of structured data, we linearized them into natural language S = (s1, s2, · · · ,
sm), and the model needs to learn to generate the target text E = (e1, e2, · · · , en). Dur-
ing training, for each batch of data, the training loss function is Ljoint(y0) + Lahead(t) un-
der the framework of multi-task training. There are two losses in the whole training
loss Ljoint(y0), as defined in Equation (8). For each batch, we sample a timestep t from
1, 2, · · · , T to calculate the loss of Lreverse(yt−1

0 ) and use the batch of <structured data, refer-
ence text> pair to calculate Lgen(yt−1

0 ). The sampled timestep t is also used for calculating
the look-ahead guiding loss Lahead(t).

4.4.2. Inference

Since the prefixes are task-specific instead of instance-specific, we only need to perform
inference on the diffusion model to obtain the prefixes once to evaluate each task. Specifi-
cally, we sample noise yT from the standard Gaussian distribution N(0, I), and gradually
denoise yT to y0 through denoising function pθ(yt−1|yt). In this way, unlike other diffusion-
based text generation methods, our method introduces little overhead for evaluating one
task. To alleviate the randomness in sampling during the whole process of denoising, we
sample 10 times for each task and use the average of the 10 prefixes as the final prefix.

4.5. Algorithm

We illustrate the iterative algorithm for model training in Algorithm 1. First, we pre-
train the model with the Ljoint(y0) + Lahead(t) on the content planning dataset. For example,
given the structured data <Buzz_Aldrin | birthPlace | Glen_Ridge> and <Buzz_Aldrin
| alternativeNames | Edwin E. Aldrin, Jr.>, the content planner is trained to arrange
the structured data naturally and generate the content plan “Content plan are: Edwin E.
Aldrin, Jr.; Buzz Aldrin; Glen Ridge.”. We regard the order of structured data in reference
text (“Edwin E. Aldrin, Jr. was better known by his nickname of Buzz Aldrin . . . Aldrin
was born in Glen Ridge . . . ”) as the gold standard for content plans. Then, we use it to
initialize the training of the text generator. At epoch o, We apply the diffusion-based prefix
tuning method and jointly optimize over the diffusion model loss, look-ahead guiding loss,
and text generator loss. For example, given the structured data <Buzz_Aldrin | birthPlace
| Glen_Ridge>, we use a diffusion-based prefix tuning method to learn the best prefix that
can help the pretrained language model (PLM) to maximize its probability to generate
reference text “Aldrin was born in Glen Ridge”.

Algorithm 1 Our approach DiffuD2T for data-to-text generation

Require: Dtrain (The whole training dataset consists of structured data and text),
Dcontentplan(The whole training dataset consists of structured data and extracted plan)

Ensure: θN (The parameters of the whole DiffuD2T model)
1: Pre-train θN on Dcontentplan for multiple epochs
2: for epoch o = 1 to N do
3: for each batch Dbatch in Dtrain do
4: sample a timestep t from 1, 2, · · · , T.
5: use diffusion model to denoise yt into yt−1 and calculate the corresponding text

generation loss Lgen(yt−1
0 )

6: further denoise the predicted yt−1 into yt−2 and calculate the corresponding text
generation loss Lgen(yt−2

0 )

7: Minimize Ljoint(yt−1
0 ) + Lahead(t) with Equations (8) and (10)

8: end for
9: end for
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5. Experiments
5.1. Dataset

Following Li and Liang [18], we conducted experiments on three standard data-to-text
datasets, namely E2E [5], WebNLG [6] and DART [7]. We describe the details of these
datasets below.

• The WebNLG dataset focuses on generating textual descriptions for 14 domains.
The structured data can be viewed as <entity, type, value> triple. Unlike the other
two datasets, it explicitly evaluates the model’s generalization performance on unseen
domains; that is, the domain is not covered during training. It consists of 18,025,
870, and 1862 instances for training, validation, and test set. The average input
length is 49.6 and the average output length is 30.7. Following the official evaluation
script (https://github.com/Yale-LILY/dart, accessed on 27 December 2022), we report
BLEU [48], METEOR (MET) [49], and TER [50] scores in this paper.

• The DART dataset focuses on open-domain data-to-text generation based on their
structured data. The structured data can be viewed as <entity, type, value> triple.
It consists of 62659, 2721, and 4159 instances for training, validation, and test set.
The average input length is 38.8 and the average output length is 27.3. Follow-
ing the official evaluation script (https://github.com/Yale-LILY/dart, accessed on
27 December 2022), we report BLEU [48], METEOR (MET) [49], TER [50], Mover-
Score [51], BERTScore [52] and BLEURT [53] scores in this paper.

• The E2E dataset focuses on generating restaurant descriptions based on their attributes.
The structured data can be viewed as <attribute, value> pairs. It consists of 42,061,
547, and 630 instances for training, validation, and test set. The average input length
is 28.5, and the average output length is 27.8. Following the official evaluation script
(https://github.com/tuetschek/e2e-metrics, accessed on 27 December 2022), we
report BLEU [48], NIST [54], METEOR (MET) [49], ROUGE-L (R-L) [55] and CIDEr [56]
scores in this paper.

5.2. Automatic Evaluation Criteria

• BLEU [48]: Based on n-gram matching, BLEU assesses the model’s performance
between the generated text and reference text. BLEU is calculated as follows:

Pn =

∑
C∈{GeneratedText}

∑
n-gram∈C

Countclip(n-gram)

∑
C′∈{GeneratedText}

∑
n-gram’∈C′

Count(n-gram’)
(11)

BrevityPenalty =

{
1 g > r

e(1−
r
g ) g ≤ r

(12)

BLEU = BrevityPenalty · exp(
N

∑
n=1

wn log Pn) (13)

Equation (13) has three components. The n-gram precision of the generated text
compared to the reference text (Equation (11)). The weight wn for each n-gram is
positive. The brevity penalty (Equation (12)) penalizes generated text that is shorter
than the reference text. g is the length of the generated text and r is the length of the
reference text. Following Papineni et al. [48], we use BLEU with N = 4 as the criteria.

• NIST [54]: Although it is still an n-gram-based metric similar to BLEU, it introduces
information-weighted n-gram precision that favors those more informative n-grams.
NIST is calculated as follows:

In f o(w1 . . . wn) = log2

(
the number of occurrences of w1 . . . wn−1

the number of occurrences of w1 . . . wn

)
(14)

https://github.com/Yale-LILY/dart
https://github.com/Yale-LILY/dart
https://github.com/tuetschek/e2e-metrics
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NIST =
N

∑
n=1

∑
co-occurrence of

all w1 . . . wn

In f o(w1 . . . wn)

∑
all w1 . . . wn

in generated text

(1)
· exp

{
β log2

[
min

(
Lgen

Lre f
, 1

)]}
(15)

The first fraction of Equation (15) is the information-weighted (Equation (14)) n-gram
precision of the generated text compared to the reference text. It gives more weight to
those n-grams that occur less frequently, which are considered more informative. Lgen
is the length of the generated text and Lre f is the average length of the reference texts.
Lgen

Lre f
is used to penalize short text generated by the model. N = 5, and β is chosen to

make this brevity penalty factor as 0.5 when Lgen

Lre f
= 2

3 .

• METEOR (MET) [49]: While N-gram matching tends to perform exact string match-
ing between the system-generated text and target text, METEOR uses WordNet to
match synonyms because the meanings are the same. In addition, it proposes to
organize words into chunks and use this to determine how well-ordered the words
are. METEOR is calculated as follows:

P =
number of unigrams matched

number of unigrams in generated text
(16)

R =
number of unigrams matched

number of unigrams in reference text
(17)

Fmean =
10PR

R + 9P
(18)

Penalty = 0.5 ·
(

number of chunks
number of unigrams matched

)
(19)

METEOR = Fmean · (1− Penalty) (20)

The Fmean in Equation (20) is the harmonic mean (Equation (18)) of unigram precision
(Equation (16)) and unigram recall (Equation (17)), which gives more weight on recall.
Penalty (Equation (19)) is calculated based on the number of chunks, which is used to
measure how well-ordered the words are.

• ROUGEL [55]: Unlike BLEU, this metric mainly focuses on the models’ performance
on recall. Additionally, it uses the Longest Common Subsequence (LCS) to match the
system-generated text and reference text.

Rlcs =
LCS(reference text, generated text)

length of reference text
(21)

Plcs =
LCS(reference text, generated text)

length of generated text
(22)

ROUGEL =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs
(23)

Equation (23) shows that ROUGEL is the F-measure of the LCS precision (Equation (22))
and LCS recall (Equation (21)), which places more weight on recall since β is a
large number.

• CIDEr [56]: Similar to the NIST score, this metric also focus on tokens that are
more informative. Differently, it uses Term Frequency Inverse Document Frequency
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(TF-IDF) to serve the purpose, as it will give more weight to infrequently occurring
but informative words in the corpus. CIDEr is calculated as follows:

gk(rij) =
hk(rij)

∑
wl∈Ω

hl(rij)
log

 |I|
∑

Ip∈I
min(1, ∑

q
hk(rpq))

 (24)

CIDErn(ci, ri) =
1
m ∑

j

gn(ci) · gn(rij)

||gn(ci)||||gn(rij)||
(25)

Equation (25) shows that CIDEr uses a TF-IDF (Equation (24)) vector to represent the
generated text and reference text, and uses cosine similarity to calculate the score. m is
the number of reference texts. The first fraction in Equation (24) is the n-gram wk’s
term frequency in the text. The second fraction is its inverse document frequency
across the documents in the corpus. Ω is the vocabulary of all n-grams and I consists
of all texts in the corpus.

• TER [50]: TER is the abbreviation of the Translation Edit Rate. It measures the quality
of the system-generated text by calculating the number of edit operations to an
exact match between the system-generated text and reference text. TER is calculated
as follows:

TER =
number of edits

average number of words in reference text
(26)

• MoverScore [51]: Unlike previous metrics that compare system-generated text and
reference text only in their surface form, it uses contextualized embedding with Earth
Mover’s Distance to evaluate the texts in the semantic level. MoverScore is calculated
as follows:

WMD(xn, yn) = minF∈R|xn |×|yn | < C, F >,

s.t.F1 = fxn , FT1 = fyn
(27)

xn and yn represent the generated text and reference text. C is a matrix of transporta-
tion costs to transform xn into yn. F consists of n-gram weights. fxn is the n-gram
weights for text sequence xn. fyn is the n-gram weights for text sequence yn. This
criterion measures the semantic distance between xn and yn.

• BLEURT [53] and BERTScore [52]: Similar to MoverScore, they are different from those
n-gram-based criteria by using a pretrained language model to measure performance
in the semantic level. BERTScore is calculated as follows:

RBERT =
1
|x| ∑

xi∈x
maxx̂j∈x̂xT

i x̂j (28)

PBERT =
1
|x̂| ∑

x̂j∈x̂
maxxi∈xxT

i x̂j (29)

FBERT = 2
PBERT · RBERT

PBERT + RBERT
(30)

BERTScore (Equation (30)) is the combination of precision (Equation (29)) and recall
(Equation (28)) scores of generated text x̂ and reference text x. PBERT and RBERT
maximize the similarity score between the two texts via greedy matching.
BLEURT is calculated as follows:

ŷ = f (x, x̂) = Wv̂CLS + b (31)

Equation (31) uses BERT [57] to model both generated text x̂ and reference text x and
uses its representation of the special token (CLS) to predict the rating of the generated
text via linear transformation. W and b are trainable parameters.
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5.3. Comparing Methods

We compare the following methods on data-to-text generation datasets:

• Diffuseq [26]: While some attempts are made for language modeling with a diffusion
model, this is the first and latest diffusion-based sequence-to-sequence model for text
generation. We ran their publicly accessible codes and the suggested hyperparameters
on WebNLG, E2E, and DART datasets.

• GAS [58]: They propose to model the local and global structural information through
a graph neural network and use reinforcement learning to train the model.

• LoRA [39]: LoRA stands for Low-Rank Adaptation, which inserts trainable rank
decomposition matrices into each layer of the model and fixes the parameters of the
pretrained language model (PLM) to reduce the cost of finetuning.

• Xie et al. [59]: they explore the pretrained language model’s performance on data-to-
text generation tasks.

• HierBlock [60]: Based on prefix tuning, this paper integrates hierarchical discourse
information into modeling.

• Shen et al. [61]: They draw inspiration from computational pragmatics, which follows
the intuitive that the “speaker should generate output text that a listener can use to
identify correctly”. They experiment on the E2E dataset, and we report the result in
the table.

• An et al. [62]: They propose to finetune both prefixes and input data’s representations
so that PLM can better understand unfamiliar input data.

• Hou et al. [63]: They propose to use meta learning to adapt PLM to different tasks better.
• Finetune: This stands for finetuning the corresponding pretrained language model on

the corresponding datasets.
• Adapter [64]: It introduces a trainable small-scale neural network module adapter to

attach to the pretrained language model. For different tasks, different adapters can be
attached to a single PLM to adapt to different tasks.

• Prefix [18]: It freezes the pretrained language model while prepending multiple
trainable prefixes to the PLM to adapt it to different tasks. This can be considered our
base model.

• +Diff: We combine the diffusion model with prefix tuning. This is the model described
in Section 4.1.

• +Diff+LG: Additionally, we apply the look-ahead guiding loss (Section 4.2) to +Diff,
in order to better supervise the denoising process of the diffusion model.

• +Diff+LG+CS: This is the full model, which combines the diffusion model (Section 4.1),
look-ahead guiding loss (Section 4.2) and the planning-then-writing pipeline (Section 4.3).

5.4. Implementation Details

For all of three data-to-text generation tasks, we conducted experiments on two
types of backbone pretrained language models, including GPT-2 Median and GPT-2 Large.
Regardless of whether the input structured data are triple or <attribute, value> pairs, we
use the rule to linearize them into a sequence that is in the form of natural language,
as suggested by Li and Liang [18]. We use AdamW as the optimizer and linear learning
rate scheduler as suggested by Li and Liang [18]. We select the number of epochs as 10
from {5, 10, 15}, learning rate as 0.00015 from {0.00005, 0.0001, 0.00015, 0.0002}, and prefix
length as 15 from {5, 10, 15, 20}. We also tune the introduced hyperparameters in this paper.
The diffusion step is set to be 20 from {10, 20, 50, 100, 200, 500}, pretrained number of
epochs for the content planning stage as 4 from {3, 4, 5} and ξ as 1.0 from {0.5, 1.0, 1.5}. We
did not specifically tune the batch size, but used the largest batch size 15 that can fit in the
GPU. The models are trained on a single NVIDIA A100 80GB, and it takes 9 min to train an
epoch on the WebNLG dataset, which has 18K training data, using GPT-2 Large. During
decoding, we follow suggestions by Li and Liang [18] and use beam search with the beam
size as 5.
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5.5. Automatic Evaluation Results

Tables 3–5 show the automatic evaluation results on the three data-to-text generation
datasets. We observe the following facts:

• Our models outperform the methods of finetune, adapter, and prefix tuning on the
WebNLG dataset’s whole test set (A category), with respect to both GPT-2 Medium
or GPT-2 Large as the backbone. For example, our full model +Diff+LG+CS outperforms
the prefix tuning by 1.31% on BLEU with GPT-2 Medium. Additionally, our full model
outperforms the prefix tuning by 2.19% on BLEU with GPT-2 Large. In addition, our full
model (+Diff+LG+CS) on GPT-2 Large outperforms Diffuseq, a Sequence-to-Sequence
diffusion-based text generation method, and other competitive baselines as listed in the
part of Other Methods. The results above show the effectiveness of our proposed model.

• Our models also outperform finetuning, adapter, and prefix tuning on GPT-2 Medium
by 1.69% in terms of BLEU, compared with prefix tuning and 1.66% in terms of BLEU
on GPT-2 Large on the DART dataset. The comparison with other methods also
indicates the effectiveness of our model on the DART dataset.

• Our models show similar patterns as described above on the E2E dataset. The full
model improves prefix tuning by 0.88% in terms of BLEU on GPT-2 Medium and
1.14% on GPT-2 Large. They also outperform other methods on most metrics.

Since WebNLG provides unique and comprehensive evaluation metrics that show the
models’ ability on both seen and unseen domains, we find that the finetuning method excels
in the seen domains, as it can better use learned knowledge on those domains. However, it
comes at the price of the generalization ability of the model, as its performance on unseen
domains lags behind prefix-tuning-based methods, especially on BLEU and TER. This
shows the great potential of generalization for the prefix-tuning method. Additionally, our
model can push the generalization ability even further, as indicated by the BLEU score on
unseen domains in WebNLG.

Table 3. Automatic evaluation results (higher is better, except for TER) for data-to-text generation on
WebNLG dataset. The best scores are boldfaced for pretrained language model (PLM) GPT-2MEDIUM

and GPT-2LARGE, respectively. In the header, S refers to the seen category in WebNLG’s test set,
which means the domain of this subset of test set is seen during training. U refers to the unseen
category, which means the domain of this subset of test set is never seen during training. A is the
average performance across seen and unseen categories. +Diff+LG+CS is our proposed full model
with the three modules described in Section 4. +Diff and +Diff+LG are two ablations. +Diff only uses
the module in Section 4.1 and +Diff+LG use both modules in Sections 4.1 and 4.2. Our full model
improves the prefix tuning method by 2.19% in terms of BLEU metric in A category (58.61 vs. 57.35).

BLEU MET TER ↓
S U A S U A S U A

Other Methods
DiffuSeq 42.74 7.80 28.07 36.52 17.29 27.36 47.62 77.15 61.16
GAS [58] 57.79 26.55 44.00 41.00 26.00 34.00 41.00 66.00 53.00

LoRA [39] 64.00 48.40 57.00 45.00 39.00 42.00 32.00 45.00 38.00

GPT-2MEDIUM
Finetune 64.13 35.34 50.57 45.67 34.51 40.33 33.19 64.73 47.65
Adapter 54.71 43.66 49.72 39.64 35.38 37.67 39.85 47.33 43.28

Prefix 62.29 47.23 55.49 44.38 38.22 41.51 33.71 46.04 39.36
+Diff 62.48 47.30 55.63 44.22 38.23 41.43 33.84 46.00 39.41

+Diff+LG 62.87 47.43 55.91 44.49 38.09 41.51 33.18 45.41 38.78
+Diff+LG+CS 63.06 47.86 56.22 44.77 38.69 41.93 33.74 46.29 39.50

GPT-2LARGE
Finetune 63.60 45.46 55.78 44.80 38.49 41.83 34.10 51.35 42.01
Adapter 62.04 49.39 56.30 43.83 38.48 41.35 34.23 44.35 38.87

Prefix 64.43 48.72 57.35 45.61 39.20 42.61 32.70 45.82 38.72
+Diff 63.63 50.11 57.52 44.96 39.46 42.39 33.35 44.75 38.58

+Diff+LG 65.19 48.87 57.84 45.86 39.12 42.71 32.24 46.23 38.65
+Diff+LG+CS 65.18 50.58 58.61 45.55 39.78 42.85 32.45 44.01 37.75
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Table 4. Automatic evaluation results (higher is better, except for TER) for data-to-text generation
on the DART dataset. The best scores are boldfaced for both GPT-2MEDIUM and GPT-2LARGE,
respectively. Our model improves the prefix tuning method by 1.66% in terms of the BLEU metric
(47.60 vs. 46.82).

BLEU MET TER ↓ MoverScore BERTScore BLEURT

Other Methods
DiffuSeq 12.63 31.77 60.53 62.84 89.01 27.62

Xie et al. [59] 46.89 55.76 60.97 - 95.00 30.00
GAS [58] 39.87 32.00 57.00 - - -

HierBlock [60] 46.60 39.00 45.00 54.00 95.00 -
LoRA [39] 47.50 39.00 45.00 - - -

GPT-2MEDIUM
Finetune 45.98 38.57 45.70 67.86 94.82 39.07
Adapter 42.77 36.59 47.96 66.57 94.48 34.23

Prefix 45.94 38.49 45.49 67.94 94.90 39.80
+Diff 46.06 38.79 46.01 68.10 94.88 40.69

+Diff+LG 46.39 38.75 45.47 68.10 94.91 40.47
+Diff+LG+CS 46.72 38.70 45.41 68.06 94.95 40.34

GPT-2LARGE
Finetune 46.90 39.01 45.09 68.23 94.95 40.08
Adapter 46.24 38.41 45.56 67.89 94.88 39.22

Prefix 46.82 38.90 45.06 68.33 94.99 41.17
+Diff 47.15 38.96 44.73 68.31 95.01 41.26

+Diff+LG 47.43 38.96 44.70 68.35 95.03 41.23
+Diff+LG+CS 47.60 39.21 44.70 68.45 95.05 41.60

Table 5. Automatic evaluation results (higher is better, except for TER) for data-to-text generation on
the E2E dataset. The best score are boldfaced for both GPT-2MEDIUM and GPT-2LARGE , respectively.
Our model improves the prefix tuning by 1.14% in terms of BLEU (70.89 v.s. 70.09).

BLEU NIST MET ROUGE-L CIDEr

Other Methods
DiffuSeq 48.90 7.37 39.34 59.15 1.53

Shen et al. [61] 68.60 8.73 45.25 70.82 2.37
An et al. [62] 68.70 8.74 46.10 70.70 2.42

HierBlock [60] 67.20 8.70 45.10 69.10 2.35
LoRA [39] 70.40 8.89 46.80 72.00 2.47

Hou et al. [63] 69.70 8.78 46.90 72.10 2.51

GPT-2MEDIUM
Finetune 68.37 8.71 45.93 70.89 2.41
Adapter 66.24 8.53 43.59 69.21 2.26

Prefix 69.75 8.79 46.39 71.54 2.51
+Diff 70.03 8.81 46.57 71.64 2.51

+Diff+LG 69.83 8.79 46.21 71.38 2.50
+Diff+LG+CS 70.37 8.86 46.42 71.77 2.52

GPT-2LARGE
Finetune 68.98 8.77 45.91 71.36 2.42
Adapter 68.73 8.68 46.28 71.01 2.50

Prefix 70.09 8.82 46.33 72.13 2.48
+Diff 70.34 8.85 46.38 71.76 2.52

+Diff+LG 70.43 8.86 46.24 71.83 2.48
+Diff+LG+CS 70.89 8.93 46.51 72.14 2.51

5.6. Ablation Study

We also include the ablation study results in Tables 3–5. Based on the prefix tuning
baseline, we progressively add the proposed modules and observe each module’s contri-
bution to the improvement, where +Diff only employs DiffuD2T in Section 4.1, +Diff+LG
employs both DiffuD2T and look-ahead guiding loss (Section 4.2) and +Diff+LG+CS refers
to the full model that additionally includes the planning-then-writing pipeline (Section 4.3).
As shown in the tables, our model peaks the performance when the diffusion model, look-
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ahead guiding loss, and the planning-then-writing training pipeline are combined in most
cases with few exceptions. This demonstrates the effectiveness of all our proposed modules.

5.7. Human Evaluation

In order to provide a more comprehensive analysis of the models’ performance, we
employ three graduates who are proficient in English to conduct the human evaluation,
comparing the performance of Finetune, Prefix tuning, and our full model +Diff+LG+CS,
trained with GPT-2 Large, on all three datasets. For each dataset and each model, we sample
50 examples from the test set, arrange the generated text from three models into three pairs,
and ask the human raters to determine which one in the pairs is better. Following Dušek
et al. [65], we ask raters to consider two aspects: quality and naturalness. Quality focuses
on whether the text faithfully describes information in the structured data, and naturalness
focuses on whether the text is fluent. The results in the table are calculated as the percentage
of times a model is deemed better minus the percentage of times a model is deemed worse.
The results range from −100% to 100%, and the higher the results, the better quality of
the text. We also use Kappa [66] to analyze rater agreement. The results are illustrated
in Table 6’s caption. As shown in Table 6, in terms of both the faithfulness of the text
(Quality) and the fluency of the text (Naturalness), prefix tuning performs better than
finetuning using the GPT-2 Large language model on all three datasets. Additionally,
our proposed model +Diff+LG+CS is better than the prefix tuning across all datasets and
human evaluation metrics.

Table 6. Human evaluation results on WebNLG, DART, and E2E datasets. Quality focuses on whether the
text faithfully describes information in the structured data, and naturalness focuses on whether the text is
fluent. The results in the table are calculated as the percentage of times a model is deemed better minus
the percentage of times a model is deemed worse. We utilize Kappa [66] to analyze the rater agreement.
In terms of quality, the kappas are 0.36 for the WebNLG dataset, 0.45 for the DART dataset, and 0.55 for
the E2E dataset. In terms of naturalness, the kappas are 0.46 for the WebNLG dataset, 0.52 for the DART
dataset, and 0.44 for the E2E dataset. The best results in different datasets are in bold.

Dataset Model Quality Naturalness

WebNLG
Finetune −6.11 −19.22

Prefix 9.67 −1.22
+Diff+LG+CS 28.22 32.00

DART
Finetune −0.67 −18.67

Prefix 15.67 1.44
+Diff+LG+CS 33.00 32.11

E2E
Finetune 1.33 −17.22

Prefix 7.67 -3.33
+Diff+LG+CS 39.44 37.67

6. Case Study
6.1. Diffusion Steps

We present generated texts using the iterative refinement process of the diffusion
model with different steps (Table 7). The settings of this case study are listed below:

• The structured data and corresponding reference text are sampled from the test set of
WebNLG.

• Given the structured data, we use our proposed full model +Diff+LG+CS model with
GPT-2 Large as its pretrained language model backbone to generate text. We explore
two settings of diffusion steps: 10 denoising steps and 20 denoising steps (Section 4.1).

These examples show that the iterative refinement process of the diffusion model
can perfect the representation of the prefixes step-by-step and improve the quality of text.
For example, in the first example, the generated text via 10 diffusion steps missed important
information such as “He was a crew member of Apollo 14”, while more diffusion steps
mitigate this problem. Additionally, in the second example, the generated text produced



Electronics 2023, 12, 2136 18 of 24

using 10 diffusion steps misunderstood the relationship between “Ticino” and “Mendrisio”,
and put “Ticino” before “Mendrisio” while Mendrisio is a municipality in the district of
Mendrisio in the canton of Ticino in Switzerland.

6.2. Content Planning

We presented generated texts from the content planning stage (Table 8) to provide
an intuitive illustration of our proposed planning-then-writing pipeline (Section 4.3). The
settings of this case study are listed below:

• The data and corresponding reference text are sampled from WebNLG’s test set.
• Content plans are generated by our proposed full model +Diff+LG+CS model with

GPT-2 Large as its pretrained language model backbone.
• Extracted plans are automatically extracted from reference text (Section 4.3) and used

to train the content planner.

As for the content planning stage’s performance, we have the following observations:

• As shown in all three examples, our model, trained in the content planning stage,
obtains good coverage performance, that is, the information in the data is covered in
the content plans, by comparing the generated plan and extracted plan.

• However, the overall order of the data in the plans can be different from the one in
the reference text, indicating a different style of writing compared to the reference.
For instance, in the second example, the generated plan puts “Costa Crociere” and
“Genoa” at the end of the plan while the extracted plan from the reference text puts
them at the start of it, which means the model tends to first describe “The operator of
AIDAstella” before mentioning “Costa Crociere” in the next surface realization stage,
as illustrated in Table 9. However, our model may make mistakes during content
planning. In the first example, the generated plan puts “Amar Osim” at the end of the
plan, which makes it less natural, while the extracted plan and reference text put it in
the middle of the text. However, in the planning-then-writing pipeline, models for
surface realization can mitigate this, as illustrated in Table 9.

Table 7. Generated examples to examine the effect of different diffusion steps on our proposed
model (+Diff+LG+CS). The data and reference text are from the WebNLG test set. We present the
generation results of utilizing the iterative refinement process of the diffusion model for 10 steps
and for 20 steps. Texts are generated by the +Diff+LG+CS model with GPT-2 Large as its pretrained
language model backbone.

Data Diffusion Steps: 10 Diffusion Steps: 20 Reference Text

(Apollo 14, was a crew member of, Alan
Shepard), (Department of Commerce Gold

Medal, higher, Distinguished Service Medal
(United States Navy)), (California, deathPlace,
Alan Shepard), (New Hampshire, birthPlace,
Alan Shepard), (NASA, operator, Apollo 14),
(Distinguished Service Medal (United States

Navy), awards, Alan Shepard)

Alan Shepard was born in
New Hampshire and died in
California. He was awarded

the Distinguished Service
Medal by the United States
Navy, which ranks higher

than the Department of
Commerce Gold Medal.

Alan Shepard was born in
New Hampshire and died in

California. He was a crew
member of Apollo 14

operated by NASA and was
awarded the Distinguished

Service Medal by the United
States Navy, which is higher

than the Department of
Commerce Gold Medal.

Alan Shepard was born in
New Hampshire and died in

California. He was a crew
member of Apollo 14 which

is operated by NASA. He
was awarded the

Distinguished Service Medal
in the US Navy, which is
higher than the Dept of
Commerce Gold Medal.

(Switzerland, country, Accademia di Architettura
di Mendrisio), (Mario Botta, dean, Accademia di

Architettura di Mendrisio), (Mendrisio, city,
Accademia di Architettura di Mendrisio), (1996,

established, Accademia di Architettura di
Mendrisio), (100, academicStaffSize, Accademia
di Architettura di Mendrisio), (Ticino, location,

Accademia di Architettura di Mendrisio)

The Accademia di
Architettura di Mendrisio is
located in Ticino, Mendrisio,

Switzerland. It was
established in 1996 and has

100 academic staff. Its dean is
Mario Botta.

The Accademia di
Architettura di Mendrisio in

Ticino, Switzerland was
established in 1996. Its dean
is Mario Botta and it has 100

academic staff.

Accademia di Architettura di
Mendrisio in Mendrisio,

Switzerland has
100 employees, was

established in 1996 and is
overseen by Dean Mario

Botta. The school’s location
is Ticino.

(2006-12-31, epoch, 110 Lydia), (6.7 (kilograms),
mass, 110 Lydia), (377,016,000,000.0, periapsis,

110 Lydia)

110 Lydia has a mass of
6.7 (kilograms) and a

periapsis of 377,016,000,000.0.
It was published in 2006.

110 Lydia, which has a mass
of 6.7 kg and periapsis of

377,016,000,000.0, was
published in 2006.

110 Lydia’s epoch is
31 December 2006, it has a

mass of 6.7 kg and a periapsis
of 377,016,000,000.0.
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Table 8. Generated examples during the content planning stage (+Diff+LG+CS) in the planning-then-
writing pipeline (Section 4.3). The data, extracted plan, and reference text are from the WebNLG
test set, and the generated plan is from the +Diff+LG+CS model with GPT-2 Large as its pretrained
language model backbone.

Data Generated Plan Extracted Plan Reference Text

(Al Kharaitiyat SC, club, Alaa
Abdul-Zahra), (Al Khor, ground,

Al Kharaitiyat SC), (Shabab
Al-Ordon Club, club, Alaa
Abdul-Zahra) (Amar Osim,
manager, Al Kharaitiyat SC)

Content plans are: Alaa Abdul
Zahra; Al Kharaitiyat SC; Al Khor;

Shabab Al Ordon Club; Amar
Osim.

Content plans are: Alaa Abdul
Zahra; Al Kharaitiyat SC; Al Khor;

Amar Osim; Shabab Al Ordon
club; Alaa Abdul Zahra.

Alaa Abdul Zahra plays for Al
Kharaitiyat SC which is located at
Al Khor and managed by Amar

Osim. The Shabab Al-Ordon club
is associated with Alaa

Abdul-Zahra.

(Genoa, location, Costa Crociere),
(AIDA Cruises, operator,

AIDAstella), (Costa Crociere,
owner, AIDAstella)

Content plans are: AIDAstella;
AIDA Cruises; Costa Crociere;

Genoa.

Content plans are: Costa Crociere;
AIDAstella; Genoa; AIDAstella;

AIDA Cruises.

Costa Crociere is the owner of the
AIDAstella and are based in

Genoa. The operator of
AIDAstella is AIDA Cruises.

(Euro, currency, Netherlands),
(Stellendam, birthPlace, Ab Klink),

(Netherlands, nationality,
Ab Klink)

Content plans are: Ab Klink;
Stellendam; Netherlands; Euro.

Content plans are: Ab Klink;
Stellendam; Netherlands; euro.

Ab Klink was born in Stellendam
in the Netherlands, where the
national currency is the euro.

Table 9. Examples of models’ generated text on the test set of WebNLG. Following the setting in Li
and Liang [18], the 6 examples are from the unseen categories, that is, the domain of these examples
is not seen during training, which shows the generalization ability of the models. +Diff+LG+CS is
our model. Prefix and Finetune are two competitive methods, and the reference is the gold text. All
three models use GPT-2 Large as their pretrained language model backbone. Text that contradicts the
structured data is marked in red.

Data Source or Model Name Content

Source [Unseen, Athelete] (Al Kharaitiyat SC, club, Alaa Abdul-Zahra), (Al Khor, ground, Al Kharaitiyat SC), (Shabab Al-Ordon Club,
club, Alaa Abdul-Zahra) (Amar Osim, manager, Al Kharaitiyat SC)

+Diff+LG+CS Alaa Abdul-Zahra plays for Al Kharaitiyat SC, which is managed by Amar Osim. He also plays for Shabab
Al-Ordon Club.

Prefix Al Kharaitiyat SC are managed by Amar Osim and play at their ground at Al Khor. Al Kharaitiyat SC are also
the club for which Alaa Abdul-Zahra is a player.

Finetune Alaa Abdul-Zahra plays for Al-Kharaitiyat SC and Shabab Al-Ordon Club. He also plays for Al-Khor and
manages Al-Kharaitiyat SC.

Reference Alaa Abdul Zahra plays for Al Kharaitiyat SC which is located at Al Khor and managed by Amar Osim.
The Shabab Al-Ordon club is associated with Alaa Abdul-Zahra.

Source [Unseen, Transportation] (Genoa, location, Costa Crociere), (AIDA Cruises, operator, AIDAstella), (Costa Crociere, owner, AIDAstella)

+Diff+LG+CS AIDAstella is operated by AIDA Cruises and owned by Costa Crociere in Genoa.
Prefix AIDAstella is operated by Aida Cruises and is owned by the Costa Rican tourist resort of Genoa.
Finetune AIDAstella, operated by AIDA-Cruises, is located in Genoa and is owned by the Costa Rican government.

Reference Costa Crociere is the owner of the AIDAstella and are based in Genoa. The operator of AIDAstella is
AIDA Cruises.

Source [Unseen, Politician] (Euro, currency, Netherlands), (Stellendam, birthPlace, Ab Klink ), (Netherlands, nationality, Ab Klink)

+Diff+LG+CS Ab Klink was born in Stellendam, the Netherlands, where the currency is the Euro.
Prefix Ab Klink was born in Stellendam and is a national of the Netherlands where the currency is the Euro.
Finetune Ab Klink is a national of the Netherlands where the currency is the Euro. He was born in Stellendam.
Reference Ab Klink was born in Stellendam in the Netherlands, where the national currency is the euro.

Source [Unseen, Politician] (Robert E, Lee, commander, Battle of Salem Church), (American Civil War, isPartOfMilitaryConflict, Battle of
Salem Church), (Battle of Salem Church, battles, Aaron S. Daggett)

+Diff+LG+CS Robert E. Lee is the commander of the Battle of Salem Church which is part of the American Civil War.
The Battle of Salem Church is a military conflict.

Prefix Robert E. Lee was the commander of the Battle of Salem Church which was part of the military conflict in the
American Civil war.

Finetune The Battle of Salem Church is part of the American Civil War and was commanded by Robert E. Lee.

Reference Robert E Lee was a commander in the Battle of Salem Church, which was one of the military conflicts in the
American Civil War. Aaron S Daggett fought in the same battle.
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Table 9. Cont.

Data Source or Model Name Content

Source [Unseen, Artist] (Christian alternative rock, musicSubgenre, Alternative rock), (Alternative rock, genre, Andrew White (musician))

+Diff+LG+CS Christian alternative rock is the genre of music Andrew White ( musician ) plays.
Prefix Andrew White is a Christian alternative rock musician.
Finetune Andrew White, a Christian alternative rocker, performs.

Reference The musician Andrew White’s genre is alternative rock, the genre which has the sub genre Christian
alternative rock.

Source [Unseen, Artist] (Hip hop music, genre, Allen Forrest), (solo singer, background, Allen Forrest)

+Diff+LG+CS Allen Forrest is a solo singer who was born in the genre of Hip Hop music.
Prefix Allen Forrest is a solo singer.
Finetune Born in
Reference Allen Forrest is a solo singer whose genre is Hip Hop music.

6.3. Surface Realization

Following the case study setting in Li and Liang [18], the settings of this case study
are listed below:

• We sample six structured data and reference text from the test set of WebNLG’s
unseen categories, that is the domains of these examples are not seen during training,
to demonstrate the generalization ability of the models. We compare our proposed full
model +Diff+LG+CS with two competitive methods: Prefix and Finetune. All three
models use GPT-2 Large as their pretrained language model backbone. The results are
reported in Table 9.

• We sample three structured data and reference text from the test set of E2E and three
from the test set of DART. We compare our proposed full model +Diff+LG+CS with
the baseline model Prefix. Both models use GPT-2 Large as its pretrained language
model backbone. Results are reported in Table 10.

Table 10. Examples of the models’ generated text on the test set of the E2E and DART datasets.
+Diff+LG+CS is our model. Prefix is the competitive baseline method. Both models use GPT-2 Large
as its pretrained language model backbone. The reference is the gold text.

Data Source or Model Name Content

Source [E2E] (name, Cocum), (Type, coffee shop), (customer rating, high), (near, Burger King)

+Diff+LG+CS Cocum is a highly rated coffee shop near Burger King.
Prefix Cocum is a coffee shop near Burger King with a high customer rating.
Reference Near Burger King there is a highly rated coffee shop named Cocum.

Source [E2E] (name, The Mill), (Type, restaurant), (food, English), (price, less than £ 20), (customer rating, low),
(area, city centre), (family friendly, no), (near, Café Rouge)

+Diff+LG+CS The Mill is a restaurant providing English food in the less than £ 20 price range. It is located in the
city centre near Café Rouge. It has a low customer rating and is not family - friendly.

Prefix The Mill is a restaurant providing English food in the less than £ 20 price range. It is located in the
city centre near Café Rouge. Its customer rating is low.

Reference The Mill is restaurant in the city centre, near Café Rouge, serving low-priced English food. It is has
a low customer rating and is not family-friendly.

Source [E2E] (name, The Plough), (Type, pub), (food, Chinese), (price, cheap), (area, riverside), (family friendly,
yes), (near, Raja Indian Cuisine)

+Diff+LG+CS The Plough is a family friendly Chinese pub in the riverside area near Raja Indian Cuisine with a
cheap price range.

Prefix The Plough is a pub providing Chinese food in the cheap price range. It is located in the riverside.
It is near Raja Indian Cuisine.

Reference The Plough is a Chinese pub and pub in the riverside area near Raja Indian Cuisine. It is family
friendly and has cheap pricing.
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Table 10. Cont.

Data Source or Model Name Content

Source [DART] (Mark Rutte, leader_name, Netherlands)

+Diff+LG+CS The leader of the Netherlands is Mark Rutte.
Prefix Mark Rutte is the leader of the Netherlands.
Reference The leader of the Netherlands is Mark Rutte.

Source [DART] (Michigan, country, United States)

+Diff+LG+CS Michigan is in the United States.
Prefix Michigan is located within the United States.
Reference Michigan is in the United states.

Source [DART] (Alfa Romeo 164, assembly, Arese)

+Diff+LG+CS Alfa Romeo 164 was assembled by Arese.
Prefix Alfa Romeo 164 is assembled arese.
Reference The Alfa Romeo 164 was assembled in Arese.

As for the cases, we have the following observations:

• In unseen domains (Table 9), both the prefix-tuning method and finetuning method
tend to omit some of the information in the data, as the pattern may not be seen
during training. However, our model (+Diff+LG+CS) can sometimes generalize better.
For instance, in the sixth example, prefix tuning omitted the genre of the music and
finetuning failed to generate fluent text, while our model can include both pieces of
information in the structured data.

• Additionally, our model can sometimes generate more faithful content when the
domain is unseen. In the second example, both the prefix-tuning and finetuning
methods failed to understand what the “owner” in the structured data meant and
generated the incorrect owner in this case. Our model can generate it correctly.

• As for generation results on E2E and DART datasets (Table 10), our model can generate
more faithful text with higher coverage, that is, cover more information in data, as shown
in the second example. In the second example, our model correctly describes “not family-
friendly”, while prefix tuning omitted this information. Additionally, the third example
shows that our model can generate more fluent text than prefix tuning.

7. Conclusions

Data-to-text generation has become an important research task in natural language
processing. In this paper, we explore how to introduce an iterative refinement process for
data-to-text generation. We propose three modules: (1) we use the diffusion model to
improve data-to-text generation with the iterative refinement process; (2) we propose a
look-ahead guiding loss to supervise the iterative refinement process; and (3) we extract
content plans from the reference text and propose a planning-then-writing pipeline that
can give the model content planning ability. We conducted experiments on three data-
to-text generation benchmarks. The automatic evaluation results show that our model
can outperform the prefix tuning model in terms of the BLEU (BiLingual Evaluation
Understudy) metric by 2.19% on the WebNLG dataset with GPT-2 Large as its backbone.
Human evaluations and analyses show that our model can generate high-quality and more
natural text across different datasets.

However, this work also has its limitation that we extract the content plans from
reference text for our planning-then-writing pipeline heuristically. The extracted plan may
miss some information in the text, creating noise in the training process. In the future, we
will explore more sophisticated extraction methods to improve the quality of the extracted
plans for training.
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