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Abstract: Over the past decade, significant technological advancements have led to a substantial
increase in data proliferation. Both scientific computation and Big Data workloads play a central
role, manipulating massive data and challenging conventional high-performance computing archi-
tectures. Efficiently processing voluminous files using cost-effective hardware remains a persistent
challenge, limiting access to new technologies for individuals and organizations capable of higher
investments. In response to this challenge, AwareFS, a novel distributed file system, addresses the
efficient reading and updating of large files by consistently exploiting data locality on every copy.
Its distributed metadata and lock management facilitate sequential and random I/O patterns with
minimal data movement over the network. The evaluation of the AwareFS local-write protocol
demonstrated efficiency across various update patterns, resulting in a performance improvement
of approximately 13%, while benchmark assessments conducted across diverse cluster sizes and
configurations underscored the flexibility and scalability of AwareFS. The innovative distributed
mechanisms outlined herein are positioned to contribute to the evolution of emerging technologies
related to the computation of data stored in large files.

Keywords: distributed file systems; HDFS; Big Data; distributed lock management; scientific data
analysis; data locality

1. Introduction

Crucial emerging technologies, such as generative artificial intelligence, place signifi-
cant demands on computational resources, including ample storage, potentially limiting
access for companies with constrained budgets [1]. Additionally, organizations leverage
information for decision making and to enhance competitiveness. Consequently, every dig-
ital action is treated as informational and systematically recorded, resulting in a significant
volume of data. Business data analytics requires the adoption of advanced technologies like
Big Data [2]. Over the last decade, an enormous number of companies have started using
Big Data technologies in their businesses, facing several challenges [2]. The IDC predicts
a significant surge in global data, expecting it to escalate from 33ZB in 2018 to 175ZB by
2025 [3]. Simultaneously, distributed file systems are widely used to store data related
to physics experiments. In [4], Blomer mentions experiment collaborations at the Large
Hadron Collider (LHC) that store over 1 billion files and hundreds of petabytes. Other
scientific data, such as weather or seismic data, are also extensive in size [5]. Meanwhile,
machine-generated data from sources like sensor devices and surveillance cameras are
prominent data generators for Big Data, leading to an amplification of both volume and
variety [5]. The unstructured nature of storage contributes to challenges in managing and
analyzing data effectively [4,5]. Advances in storage systems are required to effectively
read and write scientific data, corporate data, and machine data, aligning with the evolving
applications designed to handle them over the years.

The processing of such large volumes of data requires big clusters of servers, utilizing
commodity infrastructure to overcome associated costs. Due to their characteristics, the
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use of these clusters involves assuming hardware failure as the norm [6]. In this scenario,
Hadoop has become the most popular framework, especially because it can employ het-
erogeneous clusters of inexpensive hardware [7]. Owing to the volume of data, moving it
to the computational resources takes precious time, so Hadoop takes advantage of data
locality [7], with mechanisms and semantics closely related to its MapReduce processing
methodology. With Hadoop MapReduce, data are processed in chunks on the same servers
that store the data in a distributed file system called HDFS. Due to its ‘write-once, read-
many’ semantics, it is not practical to use HDFS with processing strategies other than map
and reduce, lacking better compatibility with scientific applications generally constructed
over embarrassingly data-parallel patterns [8].

In contrast to data-centric frameworks like Hadoop and its HDFS, traditional scientific
tools follow a compute-centric idea, also using clusters but moving the data to the required
computational resources [8]. Widely used distributed file systems for scientific computing
like Lustre [8,9] and PVFS [10] have architectures that are highly dependent on hardware
resilience, taking failure as the exception [6]. This implies that using commodity hardware
poses a challenge. Therefore, a significant redesign of such distributed file systems would
be necessary to accommodate Big Data characteristics.

As we observe in Big Data workloads, scientific data processing may require the
analysis of large datasets [8,11], leading to a high overload for data transfer in traditional
compute-centric clusters with MPI-based applications [8]. Scientific computing may require
more flexible I/O profiles, including random writes. MapR-FS, as a more sophisticated
data-centric distributed file system, implements POSIX semantics [12], allowing for random
I/O. However, with MapR-FS, data locality is not leveraged during write requests, as they
are exclusively handled by the node with the primary copy, using a remote-write proto-
col [13]. Despite its popularity, HDFS also poses challenges when working with metadata,
requiring more robust servers to manage the namespace with considerable complexity
for redundancy [14]. In fact, data locality can be exploited in various domains. Wang
et al. [15] emphasize the significance of leveraging data locality to effectively distribute
tasks associated with data-intensive workloads in synergy with storage resources. In ad-
dition, the evolution of storage systems for Big Data urges novel metadata management
strategies. Ceph [16] and GPFS [12] implement enhanced distributed and fail-safe metadata
management, even though their architectures are not inherently data-centric, causing data
movement to compute nodes for processing. In [11], Zou et al. propose a monolithic
approach for a distributed storage system that avoids the computational costs imposed
by layered architectures. However, this comes at the expense of compatibility with many
well-known Big Data and HPC applications that rely on a distributed file system for storage.

The architecture enabling high-performance data analytics (HPDA) systems is a recent
focus of research, aiming to integrate advancements from both Big Data and HPC technolo-
gies. Emphasizing data locality is crucial for ensuring efficiency, particularly concerning
time and energy considerations [17]. Usman et al. emphasize in [17] that, to prepare for the
upcoming exascale systems, it is essential to prioritize research in technologies capable of
efficiently working with locality-aware scheduling. These aspects highlight the potential
advantages of data locality for problems involving large datasets. However, traditional
Big Data distributed file systems are often incompatible with MPI-based programs like
mpiBLAST 1.6.0 and ParaView 3.14 [8], preventing the full realization of these benefits.

1.1. POSIX and Data Locality

The IEEE Computer Society specified the Portable Operating System Interface (POSIX)
as a set of standards to maintain compatibility among operating systems, enabling the
portability of software between them. Aligning a file system with POSIX facilitates software
development and expands its adoption. Various distributed file systems such as Lustre [9],
GPFS [12,17], Ceph [16], or BeeGFS [18] are largely POSIX-compliant but do not exploit
data locality. This implies that, before processing can occur, all data must be moved to
the location of computational resources (e.g., hosts with CPU and memory). On the other
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hand, distributed file systems like GFS [12] and HDFS [14,19] enable the leveraging of data
locality but are not fully POSIX-compliant. MapR-FS [12] is fully POSIX-compliant with
random-write capabilities managed by a single static node where the primary copy resides,
utilizing other copies solely for read purposes.

The HDFS relaxes certain POSIX requirements, restricting file access from allowing
random writes. Its write-once/read-many semantics drove the development of other
Hadoop components to alternative approaches in order to meet semantic constraints.
A notable example is HBase [20,21], a Hadoop column-oriented nonrelational database
management system. HBase introduced specific housekeeping procedures, known as
compactions, to generate new files by merging valid data from original files and removing
unnecessary entries, what would not be necessary with a rewritable storage. However,
running compactions in HBase clusters can impact performance [22].

1.2. Our Contributions

In recent years, concentrated efforts in research have aimed to integrate the advan-
tages of Big Data systems with those of scientific computing systems, combining these two
approaches in the development of new tools to address their respective requirements [17].
In this study, we present AwareFS, an innovative data-centric distributed file system, em-
powered by a robust locking mechanism. The initial architecture of AwareFS was first
introduced at the “2021 IEEE International Conference on Big Data”, where the concept of
the local-write protocol was initially presented, focusing solely on sequential I/O. Through
subsequent updates, AwareFS now supports a broader set of I/O profiles, leveraging
concurrent processing techniques to invalidate regions of chunks. This optimization sig-
nificantly enhances the efficiency of random I/O operations. Tailored for applications in
both MapReduce processing and MPI-based programs, AwareFS strategically employs data
locality in read and write workloads. The system utilizes a local-write primary-based proto-
col to minimize data movement while ensuring data persistence across available copies. In
contrast to HDFS, implemented in Java, AwareFS is entirely developed in C++, incorporat-
ing refined parallelism techniques to optimize performance. Deployable in heterogeneous
clusters of commodity hardware, it provides a multilanguage client development interface.
Engineered to mitigate single points of failure, AwareFS adopts a distributed horizontally
scalable architecture for managing both data and metadata. Consistency is ensured through
an advanced distributed locking management system. The evaluation of AwareFS encom-
passes a comprehensive analysis of its performance and scalability, highlighting the efficacy
of the local-write protocol in enhancing distributed write performance. Furthermore, we
demonstrate the read and write capabilities across various cluster configurations, block
sizes, and random-access patterns—features crucial for scientific computing that are not
supported by Hadoop and its HDFS.

2. Related Works

Many distributed file systems have been proposed so far [4], many of them widely used
like HDFS [14] for Big Data processing frameworks and Lustre [9] for high-performance
computing systems. With an architecture that considers hardware failure as a norm [6],
which allows its use with commodity hardware, HDFS is the de facto distributed file system
for Big Data applications, but it places significant challenges due to its write-once/read-
many semantics that do not allow random write access [4,19]. On the other hand, Lustre
permits a more flexible semantics with a robust locking mechanism [9]. The architecture of
Lustre considers hardware failure as the exception [6] and is a better fit for HPC applications
with more compute-centric characteristics [8]. Another robust compute-centric-focused file
system is Ceph [16]. Built upon a distributed object store known as RADOS, Ceph distin-
guishes itself by decoupling data and metadata management, employing a pseudo-random
data distribution algorithm named CRUSH. However, Ceph currently lacks a significant
data-locality exploitation mechanism. With a similar approach to optimizing metadata
management, BeeGFS [18] enables architectures with multiple metadata servers, distribut-
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ing the workload on a per-file or per-directory basis. It is designed for compute-centric
clusters without specific data-locality requirements. To leverage the use of commodity
hardware, GlusterFS [23] provides different replication strategies, from simple replications
to erasure coding, and eliminates the need for centralized metadata servers. Exploiting
data locality with GlusterFS poses a challenge due to its design, which was not initially
conceived for data-centric purposes. The latency introduced by replication may compro-
mise I/O efficiency. Other distributed file systems like PVFS [10] and GPFS [12] are used in
compute-centric clusters where the data must travel from storage hosts to where computa-
tion occurs. REHDFS [19] enhances HDFS by adding a lock/validation manager to permit
fully random data access. Data locality plays a crucial role in ODDS [8], which introduces
a data distribution monitor, a virtual I/O translation layer, and a data-locality scheduler.
These components are integrated with HDFS to enhance storage management for data-
centric computation. Instead of leveraging HDFS, MapR-FS [4,24] is another distributed
file system, focused on data-centric Big Data processing, with an architecture that considers
hardware failure as the norm. MapR-FS allows flexible semantics with random data access
using a remote-write protocol, where the primary copy is located on the node that acts as
the master of the replication chain, and it will not migrate to a different node. With this
approach, exploiting data locality for write operations in MapR-FS is restricted to just one
copy of the data. This limitation results in network traffic even for write operations initiated
on a node with a valid copy that is not the primary copy. MapR-FS does not rely on locks to
ensure data consistency and, if a conflict is detected, its lockless persistence mechanism will
force a costly undo of the write process. Nowadays, Big Data frameworks rely on a layered
architecture where the distributed file system is the persistence layer and is combined with
other layers like memory management and job execution. Despite this layering strategy
allowing for an easy combination of different systems with compatible interfaces, its adop-
tion may impose an overhead that is eliminated by the monolithic approach proposed
by Pangea [11]. Unlike AwareFS and other distributed file systems that support common
interfaces, Pangea cannot be integrated with widely used frameworks such as Spark and
other traditional workloads. Pangea is also incompatible with operational workloads due
to its required write-once/read-many semantics.

3. AwareFS Architecture

The idea of having a distributed file system for data-centric processing that would
also be a good fit for traditional scientific workloads, usually processed in HPC clusters,
posed an enormous challenge while defining the AwareFS architecture. All components
combined should be highly distributed to promote availability with no single point of
failure. At the same time, components should be organized in a manner that facilitates
scalability on top of clusters of commodity hardware, where we have failure as the norm.
Because of these attention points, all of the AwareFS architecture was designed to work
with distributed storage systems, where both data and metadata are stored and managed
in the same servers that should be used to process the data chunks. A robust distributed
lock management system was designed to guarantee data consistency with locks controlled
as close to the data as possible, leveraging data locality also for the computation involved
in the data access management.

3.1. Data Placement

All data stored in AwareFS [13] are divided in chunks, and each chunk is stored in a
container (Figure 1). Besides these chunks, a file in AwareFS also has its metadata stored in
an inode. In AwareFS, each container is a storage area that can be a compound of up to
256 entities that can be either chunks or inodes. Every container has at least three copies,
each one stored in a different storage node called a DS, from “Data Service”. A single DS can
store the data of several containers. The available containers are managed by a centralized
service called CS (Container Service). Every container created has a set of assigned DSs that
will have copies of its data; this set of DSs is the container’s replication chain. It is the CS’s
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responsibility to request the creation of new containers whenever needed and guarantee
that all DSs have a valid copy of the container list, that is, a simple list with the replication
chain of every available container.
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3.2. Architecture Overview

Considering the aforementioned data-placement strategy, we created the AwareFS
architecture in a manner that enables the distributed control of storage for both chunks
and inodes. Functions were organized in services that can reside in hosts of different
architectures, promoting the usage of heterogeneous clusters. All components were thought
to be easily restarted or replaced by a different instance, in case of any unresponsiveness.
Figure 2 shows a small distribution of AwareFS components, where each dashed space
limits the responsibility of a different host, i.e., two data nodes and one metadata node. In
this example, one of the data nodes also runs the AwareFS client.
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The AwareFS components are as follows:

• DS: Data Service, responsible for storing and controlling access to both chunks and
inodes organized in different containers. It is the DS’s responsibility to answer concur-
rent I/O requests in a consistent manner;

• LS: Locking Service, the AwareFS service that manages the locking requests required
to guarantee consistent read and write operations. Every DS has an associated LS
instance, controlling lock requests to I/O operations on the stored chunks and inodes;

• MS: Metadata Service, will control the access point of each file, maintaining a lookup
table from file path names to its inodes;
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• CS: Container Service, is responsible for maintaining the container list and organizing
the creation of new containers by the available DSs;

• Client: The AwareFS client is responsible for managing the interface between user
requests and other AwareFS components like the DS and MS.

The components within the system engage in continuous message exchanges to signal
their availability. It is the responsibility of the master Data Service (DS) within each
replication chain to replace an unresponsive DS. This process is initiated by the master
DS contacting the Container Service (CS) to obtain information about a new DS and
subsequently initiating the inclusion of this new DS into the replication chain through a
message exchange protocol.

In the event of a failure of the master DS within a replication chain, the addition of
a new DS is preceded by the execution of an election protocol. During this protocol, the
other DSs within the chain collaborate to determine the new master of the replication chain.
Upon the inclusion of a new DS into the replication chain, all associated chunks and inodes
are deemed invalid. The new DS then begins the process of receiving data from the other
DSs within the chain, swiftly attaining a consistent state. This expedited convergence is
facilitated by the relatively small size of a container. For any AwareFS cluster, singular
instances of both the Metadata Service (MS) and Container Service (CS) are mandated.
This necessity arises from the centralized and unique nature of the naming space governed
by the distributed file system. Despite this singular configuration, the global availability
of the cluster remains unaffected due to the architecture’s design, which facilitates seam-
less continuity through a straightforward restart or replacement of both components by
standby instances.

The restart or replacement process for both the Container Service and Metadata Ser-
vice is uncomplicated, facilitated by the simplicity inherent in the container list and the
pathname-to-inode lookup table. This design ensures the efficient restoration of these
critical components, underscoring the resilience and ease of maintenance within the
AwareFS architecture.

In this initial version of AwareFS, all data are stored in regular files of the DSs’ under-
lying Linux file system. Also, the CS is a very lightweight service while the MS is based on
a simple key/value table, while the inodes themselves are spread throughout the DSs.

3.3. Metadata Management

To facilitate scalable metadata management, AwareFS distributes the storage of meta-
data and the corresponding locking mechanisms necessary for maintaining consistency.
Unlike HDFS, AwareFS achieves this scalability without relying on powerful hosts with
larger RAM and fast disks [14]. For simplicity, metadata storage is delegated to Data
Services, aligning with the approach used for regular file chunks. This design naturally
increases metadata management capacity as storage capacity scales.

In standard Unix file systems, an inode is a data structure that defines a stored object,
such as a file or directory. In AwareFS, the index associating pathnames with their respective
inodes is initially managed by a centralized service, the Metadata Service (MS). Notably,
most metadata reside within these inodes, which are stored and controlled in a distributed
manner by Data Services (DSs), mirroring the approach used for chunks.

To facilitate distributed access to inodes and chunks, the Metadata Service (MS) main-
tains an index associating each pathname with a unique structure. This structure includes
the identifier of the container used for storage, along with the inode number and a version
number. Each entry stored in the MS database has the pathname as the key, and the corre-
sponding values include the container identifier, inode identifier, and the inode version.
The Container List (CL) serves as a crucial reference for identifying Data Services storing
replicas of the inode. Much like the procedure for handling chunks, any Data Service with a
valid copy of the inode can be employed for retrieving the inode content in a read operation.
However, exclusive authority to alter attributes of the inode is reserved for the owner DS
of the inode. To access data associated with the file described by the inode, the CL is once
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again consulted to determine which DSs store copies of the chunk. Subsequently, read or
write operations are redirected to these identified Data Services (Figure 3). In Figure 3, a
file comprised of three chunks, namely, F1, F2, and F3, is distributed across three containers
labeled C1, C2, and C3. Taking F1 as an example, its replicas, denoted as F1′ and F1′′,
are stored in containers C1′ and C1′′. Data Services 1, 2, and 3 form the replica chain,
as illustrated.
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With the described mechanism, as locks are ultimately managed by the Locking
Service associated with the Data Service storing the inode, all lock-related management for
metadata stored in inodes is distributed across the cluster.

3.4. Replication and Checkpoints

To promote the redundancy of data storage, each chunk is replicated from its DS
owner to at least two other DSs. The replication chain compound of at least three DSs,
e.g., “{DS1, DS5, DS8}”, will dictate what are the DSs that will be engaged to create copies
of each chunk. Due to the primary-based local-write protocol of AwareFS [13,25], only one
of the DSs in the replication chain will have the primary copy of a chunk at a given point
in time; this DS is called the “owner DS” of the chunk. When data are initially written,
the DS attending the write requests is the first owner of the chunk, but the ownership will
move among the DSs in the replication chain whenever write requests are attended by
other DSs in the chain. As soon as data are written to a chunk, the other DSs are requested
to invalidate the chunk area being written, and then they will request and receive copies of
the new data, keeping all copies identical.

The initial version of AwareFS [13] was of great help to evaluate the ownership
migration strategy, although write mechanisms were efficient only for sequential I/O.
Invalidating entire chunks for partial updates results in an inefficient replication approach,
given the relatively large volume of data in chunks. To keep replicas identical, AwareFS
underwent a comprehensive revision, now implementing a strategy of invalidating only
the affected areas of a chunk. Each chunk carries information about its version, which is
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updated in every update. Upon performing a write, an invalidation message containing
the new version of the chunk, along with the offset and length of the affected area, is sent to
other Data Services in the replication chain. After receiving the invalidation message, the
DS sends a replication message requesting the data in the affected area. An entire chunk
replication is requested, only if the version in the invalidation message indicates a late or
out-of-order arrival. The same process applies to data replication messages.

Each container has a data structure called a “container content map” that stores the
identification of all stored chunks, e.g., if it is a data chunk or an inode, if it is invalid,
and which DS is the chunk owner, i.e., the DS with the primary copy of the chunk. The
container content map is stored in a file in the same directory where the container data
reside. Container data are stored in the underlying file system, using regular files. All
files of a container are stored in a directory named as “<CID>.<version>”, where CID is
the container identification number and version is a sequential number of each declared
version of the container.

Checkpoints

The container version is defined by a checkpoint process where all DSs in the repli-
cation chain exchange messages to assure that all the replicas have the same state of both
data and metadata. Each version of a container is stored in a specific directory. After a
given time, this checkpoint process is repeated, and a new directory for the new container
version is created; then, writing to the previous container versions is blocked. When a new
container version directory is created, hard links to the unchanged files are created, and
new files are stored for every new chunk. As write requests will modify chunk files in
directories for all versions, older versions will then have files to keep older data, touched
by the new writes, in a copy-on-write scheme [26], and these data will be used to revert all
to the state of a prior version.

With this approach, the container version is increased after a synchronization of the
container state among the DSs in the replication chain, assuring consistency and enabling
recovery to a previous valid state. Checkpoints will play an important role in recovery
procedures due to DS crashes or any permanent failure. The readmission of a DS in a
replication chain after transient failures will also take advantage of checkpoints to recover,
requesting new copies only for chunks and inodes touched after the last available checkpoint.

3.5. The Data Service and the Primary Copy Ownership Management

At the core of AwareFS lies its Data Service (DS), a fundamental component tasked
with overseeing replication, managing read and write requests, and facilitating resilience
strategies. The DS communicates through messaging passing protocol or Remote Procedure
Call (RPC) not only with other DS instances but also with additional components, including
the Container Service (CS), clients, and Locking Service (LS). To concurrently manage various
containers in different DS instances, a message passing processing protocol is employed.

Serving read and write requests is the most important activity that the DSs perform,
but several other important procedures are dealt with by the DS, the most important ones
being container creation, container checkpoint management, chunk replication, chunk
region invalidation, and chunk primary copy ownership transference. When creating a
container after a CS request, the master DS of the container replication chain, i.e., the
first DS of the chain, will send a message for the DSs to create the container and another
message to create a new communication context specific for exchanging messages related
to this container among the DSs in the chain, starting the parallel processing of messages
for synchronizing the container content map (Figure 4). The replication chain comprises
at least three DSs, with the master DS overseeing the chain. The Container Service (CS) is
responsible for managing the container list and initiating the container creation procedure.
Subsequently, the master DS ensures the proper establishment of the replication chain.
Entrusting the CS with initiating the container creation procedure is not an issue, as it
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involves a lightweight procedure that should occur infrequently, given the container size
and the pre-existence of containers across the cluster.
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The chunk replication is also guaranteed by a message passing protocol, where the
DS with a chunk completely or partially invalidated will request data replication to the
DS which owns the chunk. The replication protocol is more complex to accommodate
MPI implementation requirements, where the receive part of the process must be ready
when the send occurs. After a synchronous write request from the AwareFS client, the
affected region undergoes invalidation either synchronously or through message passing.
Following this, Data Servers (DSs) lacking the primary copy transmit messages to the DS
designated as the owner of the chunk, requesting the replication of the altered data. The
owner DS then dispatches a message to initiate the data reception process. Simultaneously,
the DS seeking the new data commences parallel reception and notifies the owner DS of its
readiness to receive the data. Subsequently, the owner DS initiates the transmission of the
data (Figure 6).

Read and write requests are attended synchronously. Any DS in the replication chain
is capable of answering read requests, as long as it has a valid copy of the required chunk.
However, adhering to the primary copy write protocol, only the DS designated as the
owner of the chunk will respond to write requests. Additionally, in accordance with a
local-write primary-based protocol, AwareFS transfers the ownership of the primary copy
to another DS if it resides on the same host as the client requesting the write. Considering
the file access references schema in Figure 3, a write request is started by the client and
may interact with more than one Data Service (Figure 7). To guarantee consistency of
concurrent reads and writes, the DS must request and acquire locks for each operation.
Such locks are managed by the LS attached to the owner DS of the chunk. The process
of transferring chunk ownership is carried out synchronously, employing a two-phase
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commit protocol. Initially, the former owner of the chunk conducts an inquiry among all
associated Data Servers (DSs) within the chain to determine the feasibility of ownership
transfer. If conditions permit, the former owner then instructs all DSs to officially recognize
the newly designated DS as the rightful owner of the chunk going forward. Conversely, if
the transfer is deemed unfeasible, the former owner directs all DSs to terminate the chunk
ownership transfer process (Figure 8). It is crucial to note that the successful transfer of
chunk ownership relies on the recipient DS possessing a valid copy or being able to obtain
one from the relinquishing owner.
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4. Distributed Locking Management

As explained in [13], the AwareFS coherency is based on a sequential consistency
model, where all writes are ordered by the DS which owns the primary copy of the affected
chunk or inode. For consistently attending concurrent read and write requests, AwareFS
provides coherency by a distributed lock management system. To manage locks for all the
chunks it owns, each DS will have a local LS instance. Considering that files are divided in
chunks, and chunks are spread throughout the several available DSs, lock management
will be as distributed as the chunks primary copy ownership, spreading the considerable
resource usage that such a workload requires and always leveraging data locality.

AwareFS lock types can be “file lock”, “metadata lock”, “path lock”, or “chunk lock”.
File locks are the ones requested by the users using the Linux flock or POSIX fcntl function.
Metadata locks are for metadata/inode manipulation. Path locks are for pathname-to-inode
lookup table consistency. Chunk locks are used to guarantee data consistency and are
treated by chunk region. Like Lustre [9], AwareFS lock management uses a strategy based
on the VAX distributed lock manager, but the lock management distribution uses a different
approach, as it is based on the inode or chunk primary copy ownership. As detailed in [13],
AwareFS locks are controlled managing a structure called aw_lock_request, containing
the lock mode, the identification of the entity associated with the lock (e.g., chunk or
pathname), the requested lock type and mode, and the affected region of the file. The
available lock modes are protective read/write (PR and PW), concurrent read/write (CR
and CW), and exclusive (EX). Protective locks are used for coordinating data updates,
and concurrent locks are especially for metadata updates that may happen concurrently
without any consistency loss. Exclusive locks will cause all other accesses to be denied and
are used for chunk ownership transferences. Table 1 has a column and a line per available
lock mode, and it shows the compatibility between them. Locks are compatible with each
other if the crossing cell for their modes has a 1 in Table 1, or if the respective regions of
the file are not overlapping. For instance, considering Table 1, a protective read (lock PR)
will be denied if requested for a chunk region for which a protective write lock (PW) was
granted before because the PR/PW cell is 0 since these lock types are not compatible.

Table 1. Lock compatibility matrix: lock modes are compatible if the cell at the intersection has 1.

CR CW PR PW EX

CR 1 1 1 1 0
CW 1 1 0 0 0
PR 1 0 1 0 0
PW 1 0 0 0 0
EX 0 0 0 0 0
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The consistency of data operations is guaranteed by the DSs by using chunk locks,
while other lock types are used for file lock and metadata consistency. Each LS controls all
lock acquisition by manipulating a list of locks granted, named GrantedList, and a list of
locks that were requested and are waiting to be granted, named WaitingList. When a lock is
requested, the LS of the corresponding DS with the primary copy of the chunk or inode will
first check if the lock lists have any other lock incompatible with the one being requested.
The lock is granted if no other incompatible lock is registered. If an incompatible lock is
present in the granted lock list, the lock being requested is added to the waiting list. When
locks are released, they are removed from the granted list, and the waiting list is checked to
see if any other lock can be finally granted.

5. Implementation Details

The AwareFS components follow a distributed processing organization where syn-
chronization and communication are guaranteed through message passing or RPC. All
development was conducted in C++ using Apache Thrift [26,27] and MPI [28].

Multithreading capabilities were enabled by both OpenMP [28,29] and native C++14 [30]
thread control features. The initial number of threads in use by each AwareFS component
can be configured and is scalable. OpenMP locking structures are largely used and play a
key role along with C++ conditional variables to avoid costly busy waits while processing
data replication, container checkpoints, and container creation.

The concurrent use of LS GrantedList and WaitingList require the use of semaphores
for their thread safe management, and the DS has a C++ unordered_map container where
each register associates each lock request (aw_lock_request structure) with a dynami-
cally allocated OpenMP lock (i.e., omp_lock_t). All dynamic memory allocation was
implemented using C++14 smart pointers, avoiding memory leaks without any garbage
collection mechanism.

Container management is highly parallelized by using an MPI communicator for
dealing with each container in a different thread. The number of threads in use is config-
urable, and the same system thread will be reused for different containers avoiding costly
thread creation processes. For example, during the container creation, the master DS of the
container replication chain will send a message for the DSs to create the MPI communicator
for all messages related to this container, and all communication about this new container
will then be dealt in parallel, using another thread (Figure 4).

The use of MPI for message passing was an enabler, allowing the creation of a robust
multiplatform distributed file system. By creating a replication protocol where MPI_Send
starts only after its equivalent MPI_Recv, the efficient data transfer capabilities of MPI could
be leveraged. Besides using an MPI communicator for each container, MPI communication
functions are highly parallelized by using a special MPI tag as a hash of the related chunk
identifier, the offset, and the length of the affected region.

Another important enabler for AwareFS implementation was using Thrift for all RPC
communication and for data serialization. The powerful Thrift TNonblockingServer class
was used in both the DS and MS, allowing the efficient use of several concurrent connections
with a minimum configurable number of threads. Thrift being a multilanguage library
means that new clients and all interaction with the AwareFS components can also be written
in different languages like Java, Python, Ruby, Go, and many others.

The AwareFS prototype was built following the entire conceptual design, including
check points and data replication. Failure detection and component resilience were not
developed in this initial version since their absence would not affect points being evaluated
now, like the benefit of taking advantage of data locality with the primary copy local-
write protocol.

5.1. Easy Deployment with Configuration Files

AwareFS is easily deployable by initializing the Metadata Service and Container
Service, followed by the deployment of Data Services on each node within the cluster.
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Parameterization of all services can be accomplished either through the command line or
by specifying parameter values in configuration files.

The Metadata Service offers the option to specify the TCP port for the service, the
quantity of threads allocated for service I/O processing, and the number of threads dedi-
cated to concurrently processing metadata management requests. The Container Service
requires parameters to include the TCP port number, the initial count of Data Services in
the cluster, and the default chunk size. The Data Service permits different configurable
parameters, allowing users to determine whether writes should be directly sent to disks,
and defining the number of threads engaged in the concurrent processing of replication,
checkpoints, and replica invalidation. Furthermore, the Data Service configuration file
enables the definition of the underlying Linux file system directory for data storage.

The deployment process is very simple using any scripting language for constructing
the configuration files or through commonly used automation tools.

5.2. Fuse Client

Considering the importance of POSIX compliance, the most important AwareFS inter-
face is its FUSE-based [31,32] client. FUSE or “file system in user space” is a library that
allows the development of a file system interface without the need of dealing with delicate
kernel adaptations. As with many other distributed file systems [16,23,24], AwareFS uses
FUSE to implement functions for reading and writing data and for metadata manipula-
tion. This easiness provides a regular Unix mountable file system interface (e.g., running
commands like cat, cd, ls, rm, mkdir) and interaction with POSIX-compliant applications
including proven benchmark applications such as IOR [33] and fio [34].

Each AwareFS FUSE client instance works with multiple threads, allowing the concur-
rent manipulation of files. Whenever a file is opened, it is created a data structure with all
information required in a context for interacting with the different available DSs and their
LSs, the CS, and the MS. Such contexts are reusable, meaning that the overhead required in
its creation is minimized. When files are closed the resources associated with the context
are released if not required anymore [13].

Read requests are accelerated with a prefetch algorithm where data are read from the
DS starting at the required offset up to the end of the chunk. Subsequent read operations
will return right away if the requested block was already brought from the DS. Any DS
with a valid copy of the required chunk is an option for being contacted.

When receiving a write request for creating chunks, the AwareFS FUSE client may use
any DS in an equivalent container replication chain; the first step is deciding which DS to
call, and the first option will be the DS hosted in the same server of the client, and if this is
not possible, the first DS of the replication chain will then be used.

For rewrites of existing chunks, the DS to be used will be the one specified as the last
known owner (i.e., lko) in the chunk’s metadata. Write requests of existing chunks can
only be honored by the DS that is the actual owner of the chunk. If the lko information is
outdated and a DS that is not the actual owner is requested to rewrite a chunk, it replies
with the information of the actual owner, which is then called and the lko information is
then updated.

Buffering for write requests is used to minimize client–DS costly communications.
Whenever a write request occurs, it is first stored in an AwareFS FUSE client local buffer,
which is sent over to the equivalent DS only if the next block being written is not in
sequence. With this mechanism, write requests are grouped before being sent over to
the DS.

Metadata operations like unlink, rename, readdir, or rmdir are dealt with by the
AwareFS FUSE client which translates the request in equivalent MS RPC requests.

6. Results and Discussion

Different tests evaluated various aspects of the AwareFS I/O characteristics and
efficiency. We divide the AwareFS evaluation into two different approaches, as follows:
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The first approach was to compare the performance gain of its local-write protocol to
the performance loss of a distributed file system that uses a remote-write protocol. The
distributed file system used with a remote-write protocol was MapR-FS 6.1, which is a
commercial distributed file system that does not take advantage of local copies while
writing data.

The aim of the second approach was to evaluate the scalability of AwareFS and
how the local-write protocol would improve the performance, especially in random-write
workloads, using different cluster sizes and block sizes used for writing data. For all tests,
containers were created with up to 256 chunks of 64 MB each. Confidence intervals were
calculated with a 5% significance level with different sample sizes for each set of tests.

6.1. I/O Evaluation

To understand the correct behavior of I/O operations in AwareFS, we used two well-
known benchmark tools: IOR [33], a parallel I/O benchmark tool that can be used to
test distributed file systems, and fio [34], another benchmark tool with several options to
configure different I/O profiles. IOR is particularly useful due to its ability to run read
and write operations in different hosts in a synchronized fashion, but for testing random
access on large files, fio is best due to its ability to run operations during a specified amount
of time [23].

6.2. Comparing the Local-Write Protocol with a Commercial File System Remote-Write Protocol

To guarantee consistency, directing all write requests to just one of the available copies
may be a strategy to enforce the sequence of write operations in distributed file systems,
and this approach is referred to as a primary-based write protocol [25]. In [25], the authors
divide the primary copy protocols into two categories:

• Remote-write protocols: the write operation is forwarded to the node with the
primary copy;

• Local-write protocols: the primary copy migrates to the node that initiated the
write operation.

Considering distributed file systems used for Big Data, the write operations divide
every file into chunks that are replicated throughout the cluster. In HDFS, the distributed
file systems most widely used for Big Data processing; the semantics do not even allow
programs to rewrite data. On the other hand, for MapR-FS, another commercially used
Big Data file system, data can be rewritten using a primary copy remote-write protocol,
where just one node manages the primary copy of each chunk, meaning that just one fixed
node will attend every write request, causing nodes with a secondary copy to redirect write
requests to the node with the primary copy, causing data to travel over the network.

Big Data processing frameworks like Hadoop spread the processing tasks throughout
the cluster considering data locality, which means that tasks involving rewrite operations
should be located in nodes capable of writing data to physical disks. Tasks involving
rewrite operations will exploit data locality only on nodes with the primary copy, especially
in file systems employing remote-write protocols.

For this set of evaluation tests, the objective was to reproduce the comparison showed
in [13], where the authors proposed a test where a set of files were created using a single
node, then rewritten in parallel by different nodes, forcing the situation where file systems
using remote write protocols have to send all data over the network to be written to
disk using the node with the primary copy, which does not happen for AwareFS and its
local-write protocol.

6.2.1. The Experimental Setup

For evaluating how the I/O performance can benefit of a local-write protocol, we
created a cluster of six virtual machines spread throughout three different physical hosts.
The hardware used was a Dell EMC vxRail cluster with four nodes running VMware
vSphere 7.0.3 (Table 2).
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Table 2. Hardware and software specifications.

Component Hardware Characteristics Software Characteristics

Physical Hosts

vxRail P570 nodes with 1×Intel Xeon Silver 4110
@2.10 GHz, 8 cores (16 logical processors),

127.62 GB RAM, 4× 1.09TB HDD SAS Disks,
and 2× 10GbE network interfaces

VMware ESXi version 7.0.3.
Vmware vSphere

vSAN 7.0.3 storage system

Switches Cisco Nexus 3000 with 48× 10GbE NX-OS version 6.0(2)U3(1)

Virtual Machines 6 vCPUs, 32 GB RAM, 1 vNIC and 300 GB virtual disks CentOS 7.7.1908 using XFS

The six virtual nodes were distributed throughout the servers as depicted in Figure 9
with Data Services and Locking Services in all nodes. The Metadata Service and Container
Service were installed only in Virtual Node 1.
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Figure 9. Host disposition and connection along with virtual machine and service distribution.

The bandwidth observed for communication among virtual nodes is shown in Table 3,
measures obtained with the iperf benchmark. The communication between virtual nodes
collocated in the same physical host is naturally higher as it does not go through the
physical network.

The utilized distributed file systems were AwareFS and “MapR-FS version 6.1.1”. Both
were configured to drive reasonable comparisons. The strategy was to use some cautions:

• Compression was disabled for MapR-FS directories;
• Since AwareFS writes to regular Linux files, MapR-FS was installed using block-based

storage on top of Linux regular files;
• The client writeback cache was disabled to make AwareFS and MapR-FS acknowledge

write requests only after a date is written to storage servers;
• Chunk size was configured to 64 MB for both AwareFS and MapR-FS.

The IOR benchmark (version 3.3.0) was configured to use a 1 GB file per process
without using client page caching. Write requests had 128 KB, running fsync upon POSIX
write close.
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Table 3. Iperf benchmark obtained for different node communications.

Source Target Data Transferred
(GB)

Transfer Rate
(Gbps)

Virtual Node 5 Virtual Node 3 2.74 4.71
Virtual Node 5 Virtual Node 4 5.49 9.43
Virtual Node 5 Virtual Node 2 15.50 26.70
Virtual Node 4 Virtual Node 3 5.49 9.44
Virtual Node 4 Virtual Node 2 5.49 9.43
Virtual Node 3 Virtual Node 2 5.49 9.43
Virtual Node 6 Virtual Node 2 5.18 8.89
Virtual Node 6 Virtual Node 4 5.48 9.42
Virtual Node 6 Virtual Node 3 15.10 25.90
Virtual Node 6 Virtual Node 1 5.48 9.42
Virtual Node 6 Virtual Node 5 5.48 9.41
Virtual Node 1 Virtual Node 4 15.10 26.00
Virtual Node 1 Virtual Node 3 5.49 9.43
Virtual Node 1 Virtual Node 5 5.49 9.43
Virtual Node 2 Virtual Node 1 3.03 5.28

6.2.2. About the Tests

For these tests, MapR-FS played the role of the file system with remote-write protocol,
while AwareFS assumed the role of the file system that uses a local-write protocol. As
proposed in [13], we used the POSIX clients of both file systems to rewrite six files in
two different forms, using different nodes of the cluster:

• Concentrated write: All six files were created and rewritten using just one node of the
cluster, with chunk replicas being sent to different nodes in the cluster. The purpose
was to show sequential write performance when using a single node as the gateway
for the cluster.

• Distributed write: All six files previously created on the concentrated write test were
rewritten by different nodes (i.e., DS1 writes the file F1, DS2 writes F2, . . ., DS6 writes
F6). Since primary copies were all stored in DS1, this time, write requests were all
initiated in parallel in different nodes, many of them storing secondary copies of the
modified chunks. In the case of using a remote-write protocol, every write request
causes data to be sent to DS1, while write requests are attended to locally whenever
possible when using a local-write protocol. The goal here was to demonstrate how
beneficial writing directly to the local copies can be, as it avoids the need to send data
through the network.

As described in [13], to illustrate the test concept, Figure 10 displays the arrangement
of chunks for a test involving four files and four nodes. In this representation, each cell
corresponds to a chunk, each column constitutes a set of chunks composing a file, and each
group of four columns represents the chunks in a DS. Solid-colored cells denote primary
copies, while light-colored cells denote replicas. As mentioned in [13], the arrows on top
indicate the Data Service generating the write requests.

Upon closer examination of the behavior of write requests imposed on the first chunk,
for instance, the first test (concentrated write) is intended to assign ownership of the chunks
of all files to the first node, where all primary copies were initially situated. Figure 11
illustrates where write requests are processed for a single chunk, depicting the placement
of primary copy ownership and nodes acting as replica sources. In Figure 11a, we see that
all files are written on the first node, and each chunk is replicated to two other nodes with
the first node as the source. Since the example depicts only a single container with two
replicas, the fourth node does not have any copies, as the copies were distributed among
the first three nodes. In Figure 11b, write requests are initiated in all four nodes. All data
must travel to the first node because the primary copy ownership is fixed, and all primary
copies are located in the first node. The first node serves as the source for all replication
workloads. In Figure 11c, we see the behavior of write requests with a local-write protocol,
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where the primary copy ownership moves to the node requesting the write, avoiding data
movement between nodes by leveraging the use of local copies whenever available. For the
situation depicted in Figure 11c, only requests initiated by the fourth node cause data to be
sent over the network, as there is no local replica of the required container. Also, replication
workloads use different nodes as sources for the situation depicted by Figure 11c.
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Figure 10. (a) Chunk distribution on concentrated write test, initial primary copy placement; (b) chunk
distribution on distributed write test, primary copy disposition after ownership relocated.
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Analyzing Figure 11, for write-based workloads, data locality would be leveraged
only for the first node if a remote-write protocol is used, while three nodes would leverage
data locality if a local-write protocol is used.

Similar to Figures 10 and 11, in our tests, we used a set of six files to have a better
vision of how primary copy ownership migration would influence the sequential write
performance on a six-node cluster. As proposed in [13], the evaluation was performed in
two steps: first, running the concentrated write test using IOR to create and fully rewrite
the six 1 GB files only on the first node, and then, running the distributed write test using
IOR to fully rewrite the same six 1 GB files using all six nodes in parallel, each node dealing
with a specific file.

A default MapR-FS install has different characteristics that would not permit us to
compare its remote-write protocol with the AwareFS local-write protocol. To guarantee
a reasonable comparison, we disabled the MapR POSIX client writeback cache and data
compression. Also, the persistence mechanism used in MapR-FS writes data straight to
block devices, while AwareFS in its initial implementation still uses regular files on top of
the Linux XFS file system, so the comparison was made possible by configuring MapR-FS
to write to Linux loop devices (pseudo devices accessible as block devices but persist
data to regular files). With these specific configurations, it was possible to compare the
performance differences for both MapR-FS and AwareFS caused by the write workloads
over files created remotely.

For tests ran using AwareFS, Node 1 was also used for running MS and CS, which are,
respectively, the Metadata Service and the Container Service. Similarly, for tests ran using
MapR-FS, Node 1 was also used for the MapR container database (CLDB).

6.2.3. Test Results

After running the IOR tests with both the local-write protocol and remote-write proto-
col, we can observe the performance difference between the concentrated and distributed
write tests in Figure 12 and Table 4. Each test was executed 100 times, measuring the write
speed, and then calculating the arithmetic average, the standard deviation, and the 95%
confidence intervals, using a normal distribution.
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As anticipated, upon examining the results of the remote-write protocol, it becomes
apparent that, despite the focused write test utilizing only DS1 for the entire workload,
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the overall performance is 18% lower when all six Data Services are concurrently engaged
for the same purpose. This discrepancy is attributed to the substantial data movement
occurring from other Data Services to DS1 when write requests are processed in parallel
across all Data Services.

Table 4. Average transfer rate, standard deviation, and 95% confidence intervals (normal distribution).

Test Write Protocol Transfer Rate
(MB/s) Std. Dev. Conf. Int.

Concentrated Remote-write 238.978586 10.16399 [236.9865: 240.9707]
Concentrated Local-write 431.830808 7.730645 [430.3156: 433.3460]
Distributed Remote-write 195.54899 2.975474 [194.9658: 196.1322]
Distributed Local-write 465.216869 20.08817 [461.2797: 469.1541]

In a real-world scenario involving Big Data processing, if data persistence predomi-
nantly relies on a single DS, especially when this workload coincides with data processing,
the heightened utilization of DS resources for handling write requests can significantly
impact the final performance of the Big Data workload. Conversely, when write requests
are distributed across all six DSs, the observed behavior of the remote-write protocol un-
derscores that the requisite data movement negatively influences performance, thereby
impacting the final output of real-world Big Data workloads.

Focusing on the right side of Figure 12, the observed behavior for AwareFS and its
local-write protocol goes counterclockwise to what is explained about the results observed
for the remote-write protocol. We observed a performance improvement of about 8%
when comparing the concentrated write test performance to the distributed write test,
meaning that if we spread the Big Data processing and its write requests throughout
the cluster by using a local-write protocol, the resulting performance would improve
accordingly by leveraging the use of local copies in all DSs as primary copies, not raising
the data movement between nodes. It is reasonable to expect higher rates of performance
improvement in real-life situations than the observed 8% rate, if we consider that the tests
used virtual machines in a VMware cluster with a 10GbE network, where every two DSs
were running on a same host not even requiring the use of any network physical hardware.

Considering the influence of the write protocol on common Big Data workloads,
it is important to compare the distributed write performance of both local-write and
remote-write protocols. The AwareFS local-write protocol improved the distributed write
performance by about 140% compared to the performance achieved by the MapR-FS remote-
write protocol. Also, the difference of both protocols, observed for the concentrated write
tests, exposes a performance gain of 80% when using the two different distributed file
systems with the same environment under the same constraints, although the MapR-FS
setup was not the one commercially used, e.g., avoiding writing directly on block devices.

The local-write protocol of AwareFS caused the relocation of the primary copies of
34 chunks out of the 96 in total, which means that it was not necessary to send the data
to the DS1 to rewrite 35% of the chunks, writing locally in other DSs with valid copies,
avoiding the network traffic that would be created by a remote-write protocol.

After the initial assessment of AwareFS as outlined in [13], focusing exclusively on
sequential writes with 128 KB write requests, a comprehensive reengineering effort was
undertaken, optimizing all components. The current observations indicate that the en-
hancements in Data Service concurrency, coupled with refinements in lock management,
have yielded substantial benefits. The performance improved by approximately 56% in the
distributed write test when compared to the metrics reported in [13]. Additionally, there
was a 2.5-fold reduction in the statistical uncertainty of the results.

6.3. Random I/O and Scalability Evaluation

The evaluation tests described so far were all using sequential writes on a fixed-size
relatively small cluster, but different applications may use I/O requests of different block
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sizes and may require different cluster sizes, especially Big Data workloads. To best evaluate
AwareFS and its local-write protocol, it is important to use different cluster sizes and other
write profiles. This section describes a set of evaluation tests where AwareFS is used with
different I/O profiles, going from reading to writing with different block sizes, i.e., with
different numbers of bytes per write operation and with cluster sizes ranging from 8 to
36 nodes. With this approach, it will be possible to evaluate how the overall performance
changes, varying the number of bytes transferred per operation along with changes in the
number of nodes working. Since the used infrastructure would not allow the installation
of any other commercial distributed file system, we observed the advantages of using the
AwareFS local-write protocol by running tests with the primary copy ownership migration
disabled, then repeating the tests after it was reenabled and comparing the obtained results.

To evaluate the time spent while reading and writing to disks, we configured the DSs
to not acknowledge I/O operations before writing data to disks. In all tests, FUSE AwareFS
clients had to wait until the data to be written on disks before resuming operation in each
I/O thread. This is key to understanding how AwareFS can behave in situations where
I/O operations must be committed to disks to guarantee data persistence.

6.3.1. The Effects of Page Cache

As explained in [33], if write operations are followed by reads of the same files using
the same hosts, all read performance is dramatically raised due to the cache capabilities
present in the host operating systems. Usually, different operating systems have means to
keep in their memory the data being written to disk in a way that modifications applied
to the same region will be made in memory, taking advantage of memory access speed
that is much faster than accessing the disk. The use of such page cache capability is very
beneficial and will make read measures observed in benchmarks usually much higher than
writes. Since the page cache is beneficial if the data being read were put into the cache by
a previous read/write operation, such a benefit is not observed for files written in other
nodes. So, the chosen strategy used to evaluate the underneath file system performance is
accessing the files created by a neighbor node [33].

6.3.2. The Experimental Setup

We ran AwareFS on top of up to 72 nodes of an HPC cluster (Table 5) without enabling
the InfiniBand low-latency high-performance connectivity. Nodes were connected to a “top
of rack” switch, and racks were connected at 10 Gbps through an aggregation switch.

Table 5. Hardware and software specifications—HPC cluster.

Component Hardware Characteristics Software Characteristics

Physical Hosts

Dell Technologies PowerEdge C6620 servers with 2×
Intel Xeon Platinum 8480+ processors of 2.0 GHz,

56 cores per socket (8 NUMA regions), 512 GB RAM at
4800 MHz, 1× 1GbE network card, NVMe disks.

RedHat Linux 8.6 operating system with
407 GB XFS file system

Aggregation Switch Dell Technologies Z9100-ON with 32× 10GbE OS9 operating System

Top of Rack (TOR) Switches Dell Technologies S3048-ON with 48× 1GbE OS9 operating System

The 1GbE network interface of every node was advertising full duplex mode with
auto-negotiation on. The detected speed was 1000 Mb/s, and iperf showed a 0.96 Gbps
throughput for all nodes.

The deployed MPI version was OpenMPI 4.0.2, along with OpenMP version 201511.
The Thrift version was 0.12.0.

OpenMP was initialized with the following parametrization:

• OMP_NUM_THREADS = 39
• OMP_PROC_BIND = spread
• OMP_PLACES = cores(39)
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• GOMP_CPU_AFFINITY = 1–39
• GOMP_DEBUG = 1

SLURM was the job scheduling system, and all AwareFS parametrization files were
created automatically by the submission script, always assigning the Container Service and
Metadata Service to the first node, while all other nodes were dedicated for running the
Data Service and Locking Service.

6.3.3. Sequential I/O Leveraging Data Locality

For evaluating the performance of AwareFS while reading and writing large files, we
used the fio benchmark tool to read a 1 GB file sequentially from its start to its end and
then rewriting the file the same way. Every node in the cluster has its own file, created by
itself right before the tests, and it is the file used with fio. At the same time, all nodes ran
the fio benchmark for reading their own files, allowing the observation of how AwareFS
could be capable of managing several I/O operations in parallel. This was followed by
another fio execution to rewrite the files, using the same approach. Since each DS was
responsible for reading then writing a file created by itself, all caches available in FUSE
and in the operating system were used at their full potential, leveraging the advantages
gained with data locality. This was done to evaluate a real scenario where the data is
created and manipulated by each node of a cluster using a Big Data distributed process-
ing framework such as Hadoop. To evaluate the scalability of AwareFS, we repeated the
same tests increasing the nodes available in the cluster while increasing the number of
files and total number of containers proportionally. Each node ran four threads of fio
tests, pushing the number of files simultaneously managed by AwareFS up to a number
equal to the number of nodes in the cluster multiplied by four. After speed measure-
ments, the arithmetic average, the standard deviation, and the 95% confidence intervals
were calculated using a normal distribution. Measurements were taken in each half-
second interval. Sample sizes varied from 3833 measurements for the 8-node cluster up to
77,697 measurements for the 36-node cluster.

Figure 13 shows that the transfer rate raises considerably if we compare the same tests
using 4 KB and 128 KB blocks, but the difference is quite small if we compare results for the
128 KB block size with the results for the 1 MB block size. This best behavior observed when
using 128 KB as the block size is expected as the default configuration of FUSE is optimized
for read and write operations of 128 KB blocks [31,32]. It is also clear that performance
increases linearly as the cluster size increases along with the number of files and threads
used for running fio. Since files were created locally, i.e., files were created by the same
node running the DS and the FUSE client, the better read performance is expected due to
the page cache effects. This shows how AwareFS improves sequential read performance by
leveraging local OS cache features in a common situation of a cluster node consuming data
created by itself.

6.3.4. Random Reads and Mixed Random Reads and Writes

Besides the large-volume reads and writes, some applications may need to read
and/or write to distinct locations of Big Data files in a random fashion. Measuring the I/O
operations per unit of time is an option to evaluate the performance for this kind of I/O
profile. For evaluating random I/O performance in terms of IOPS, fio is also a valuable
tool because of its ability to measure the total number of I/O operations after a specific
amount of time. With that said, we measured the AwareFS random I/O performance by
starting simultaneously a set of fio threads on each node and aggregating the obtained
results [23]. We configured all fio executions performing random I/O operations to run
reads or writes varying the offset randomly in a 64 MB area of the file (the size of a chunk),
changing to a different area only after 64 MB of data was read or written. We chose this
control of random offsets in areas because in real-life Big Data workloads, jobs will process
files in chunks [14], which makes it less likely the random access jumping from one chunk
to another. After obtaining IOPS measures, the arithmetic average, the standard deviation,
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and 95% confidence intervals were calculated using a normal distribution. For random I/O
evaluations, the duration of tests started at 60 s for an 8-node cluster, rising to 270 s for the
36-node cluster, and further to 540 s for the 72-node cluster. Measurements were taken in
each half-second interval. Sample sizes varied from 442 measurements for random read
tests with the 8-node cluster to up to 68,912 measurements for the random write tests with
the 36-node cluster.
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Random read operations were evaluated by running four fio threads simultaneously
in each node but reading the file created in its neighbor node. The idea of not reading a
chunk locally created is to cancel the effects of the page cache by reading a file written by a
neighbor node.

The results observed in Figure 14 show how the number of random read requests
served scales close to linearly, as denoted by the linear-trending dotted lines. It is clear
in Figure 14a that the linearity is less evident when using 4 KB blocks, as the number
of files used and nodes in the cluster grows. This is due to the randomness of read
requests affecting the effectiveness of buffering in the AwareFS FUSE client. In its initial
configuration, the AwareFS FUSE client uses a “read ahead” buffering strategy where all
data from the required read offset to the end of the file chunk are read and buffered, making
subsequent read requests to be fulfilled without communicating with any DS if the required
data are already locally buffered. The number of IOPS observed for random reads grow as
the cluster size increases from 8 nodes to 36 nodes, considering smaller block sizes like 4 KB
(Figure 14a) and larger block sizes like 1 MB (Figure 14b). Additionally, for an intermediary
block size like 128 KB, Figure 14c demonstrates the growing behavior for the number of
IOPS, continuing up to the 72-node cluster.

Another important I/O profile involves alternating random reads with random writes.
This I/O profile was observed using fio, similar to the approach for random reads but
specifying the “randrw” pattern that mixes random reads and writes. As done for other
I/O patterns, the duration of each test in seconds was the cluster size multiplied by 7.5. The
offset for read/write requests varied randomly in a 64 MB area of the file. Clusters ranging
from 8-nodes to 72-nodes were benchmarked for reading/writing locally created files
(Figure 15). Error bars were added to indicate a statistical significance with 95% confidence
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intervals, calculated using a normal distribution. As fio records measurements every half
second, the number of samples varied from 2055 for the 8-node cluster, to 292,884 for the
72-node cluster.
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The current implementation of the AwareFS FUSE client employs a single buffer for
both reads and writes, ensuring consistency by discarding the buffer when transitioning be-
tween read and write operations. The AwareFS read-ahead strategy optimistically requests
more data than initially requested, anticipating the next operation to be read. However,
this strategy loses its benefit when switching to a write operation, as the buffer is discarded.
On the other hand, write requests are buffered and transmitted to the Data Service in
64 MB chunks. The buffers used in write operations are flushed either upon receiving a
write request with an out-of-order offset or when transitioning to a read operation. The
observed behavior in Figure 15, where read operations show a lower IOPS measurement
compared to write operations, can be attributed to this single-buffer approach. Neverthe-
less, it is evident that performance improves as the cluster size increases.

6.3.5. Strategy for Evaluating the Local-Write Protocol with Random Operations

With AwareFS, all write operations are consistently managed by a primary-based write
protocol [13]. With this strategy, the order of write operations is assured by concentrating all
requests in only one of the copies a piece of data may have [25]. As stated in [13], AwareFS
uses a primary-based local-write protocol where the primary copy role migrates to the
node that initiated the write operation, instead of redirecting the write requests to the node
which currently owns the copy acting as the primary. With this protocol, write operations
will require less network traffic, as they will be done locally in a DS if it has a valid copy of
the chunk being written. To fully evaluate the efficiency and performance of random writes
with AwareFS, as a first step, it is important to take performance measures forcing the use of
a remote-write protocol, simply by writing in chunks created by a neighbor node, without
the primary copy role migration capability. Then, as a second step, the same operations
can be repeated using the local-write protocol, and the new performance measures can
be compared to the first observation, to identify the advantages of migrating the primary
copy role and then leveraging the local copy for the write. Since the primary copy role had
migrated in the second step, the same operations can be repeated once more as a third step,
still using the local-write protocol, and this will show the performance of write requests
done leveraging the local copy without the overhead required for changes of primary copy
ownership. This way, to better evaluate the scalability of AwareFS, the performance of
random write operations was observed with three different write block sizes, 4 KB, 128 KB,
and 1 MB, and these observations were a compound of three steps:

1. Move disabled: Chunks created on a neighbor node are randomly written after
disabling the primary copy ownership migration capability;

2. Move enabled: After reenabling primary copy ownership migration, chunks created
on a neighbor node are written randomly;

3. Move enabled—2nd round: Chunks created on a neighbor node are randomly written,
and the ownership of the primary copy may have been migrated to the local node
during the previous test.

To enable comparison, the same write operations randomly created in Step 1 are
repeated in Steps 2 and 3.

The following sections will describe these three steps initially in a 12-node cluster
using 128 KB blocks, then using 4 KB blocks and 1 MB blocks, and finally the three steps
are used to measure performance in different clusters sizes.

6.3.6. Random Write Performance with 128 KB Blocks

The first evaluated block size was 128 KB, the default size used by FUSE. We ran fio
benchmarks for random writes of 128 KB blocks for 90 s, using the mentioned approach
of the three consecutive steps. The 128 KB writes were done randomly in a 64 MB area
of the file (the size of a chunk), changing to a different area only after 64 MB of data
was written. This write profile was chosen because partitioning the data is a common
practice for applications that may take advantage of data locality for improving execution
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performance. Hadoop workloads, for example, will use 64 MB as the size of input, split to
match the size of a block of the underlying distributed file system [14].

Figure 16 shows the performance gain for both set of measures taken with the primary
copy ownership migration enabled. Even with the overhead imposed by migrating the
primary copy role, thanks to the reduction in the volume of data sent over the network in a
write request, an improvement of 9% is noticed with the first measures taken right after
enabling the primary copy ownership migration. Also, we observed an improvement of
13% for the number of achieved IOPS, when comparing the higher measure obtained with
the local-write protocol with values observed when it is disabled. The extra improvement
with the third step, also performed with the primary copy ownership migration enabled,
is due to the write being performed leveraging the local copy without the overhead re-
quired for changing primary copy ownership, since most of the ownership migration had
already happened.
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6.3.7. Random Write Performance with Different Block Sizes

Even though the configured FUSE block size is 128 KB, write requests of different
block sizes can be made depending on the Big Data application. If the application updates
the files randomly in smaller pieces in a concentrated chunk, the number of IOPS may
increase considerably due to cache hits. When larger blocks (e.g., 1 MB) are updated, the
observed IOPS decreases due to longer disk write times and increased communication with
a DS, resulting in fewer operations per second.

This time, the same three-step approach proposed and used with 128 KB blocks was
repeated by running fio for 90 s with 4 KB blocks and 1 MB blocks. Figure 17 shows
that while using a 12-node cluster, the observed increase in IOPS was of around 43%
for 4 KB blocks and 17% for the 1 MB block size, while it was around 13% for 128 KB
blocks (Figure 16). The obtained measures show that the local-write protocol is beneficial
for the three evaluated block sizes with the 12-node cluster. The improvement observed
with 4 KB blocks is more significant because the number of operations performed in 90 s
is higher with smaller blocks, and the local-write protocol improves response rate per
operation. Comparing results for 128 KB blocks and 1 MB blocks, the latter showed a
greater improvement. This is due to more expensive data movement over the network
being avoided when larger blocks are used, in addition to the active local-write protocol.
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Figure 17. Primary copy ownership migration influence in random writes for different block sizes—
12-node cluster: (a) using 4 KB blocks; (b) using 1 MB blocks.

The 12-node cluster setup serves as a meaningful example to illustrate the statistical
significance of observed performance differences. Table 6 summarizes all values used to
create the charts in Figures 16 and 17, including error bars. The uncertainty estimation
involved computing 95% confidence intervals using established statistical techniques for
normal distributions.

Table 6. Performance gain of local-write protocol for a 12-node cluster in terms of IOPS, with 95%
confidence intervals calculated using a normal distribution.

Observation Step Block Size IOPS
Average Samples Standard

Deviation
95% Confidence Interval
(Normal Distribution)

Move disabled 4 KB 1,929,046 6537 605,447.00 [1,914,369.078:1,943,722.922]
Move enabled 4 KB 2,005,977 6970 571,088.00 [1,992,569.903:2,019,384.097]

Move enabled 2nd round 4 KB 2,762,293 7399 732,518.00 [2,745,602.095:2,778,983.905]
Move disabled 128 KB 249,789 5942 51,390.00 [248,482.347:251,095.653]
Move enabled 128 KB 272,589 5932 58,474.00 [271,100.975:274,077.025]

Move enabled 2nd round 128 KB 281,622 5989 63,949.00 [280,002.411:283,241.589]
Move disabled 1 MB 66,678 5505 8913.00 [66,442.553:66,913.447]
Move enabled 1 MB 75,944 5377 15,512.00 [75,529.384:76,358.616]

Move enabled 2nd round 1 MB 78,316 5473 19,774.00 [77,792.122:78,839.878]

6.3.8. Random Write Performance with Different Cluster Sizes

To show how the cluster size affects random write performance, we ran the evaluation
with different block sizes but also varying the number of nodes used in the cluster and in-
creasing the duration of the tests proportionally. Like it was done to evaluate the sequential
I/O and the random read performances, we started four fio threads simultaneously in each
node, randomly writing the file created in its neighbor node, causing AwareFS to manage
an intense workload comprised of a total number of files equal to the number of nodes in
the cluster multiplied by four, all of them randomly updated concurrently.

The chart in Figure 18 shows that the overall performance of random writes increases
along with the cluster size. A similar behavior to the one described for the three block sizes
(4 KB, 128 KB, and 1 MB) with a 12-node cluster is observed for clusters ranging from an
8-node cluster to a 36-node cluster. Additionally, the evaluations for the 128 KB block size
were done increasing the cluster size up to 72 nodes, and the same behavior was observed
even with larger clusters.
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Comparing the initial primary copy ownership with the primary copy ownership after
all evaluation steps, the ownership change rate decreased as shown in Table 7. Nevertheless,
the performance for fio using the local-write protocol is still higher than observed when it
is disabled, even for bigger clusters, showing how write performance can benefit from data
locality with the primary copy ownership migration process of AwareFS.

Table 7. Total number of chunks vs. chunks whose primary copy ownership changed (1 MB blocks).

Cluster Size Test Duration (s) Total Chunks Changed Owner Change Rate

8 60 512 87 17.0%
12 90 768 104 13.5%
16 120 1024 113 11.0%
20 150 1280 80 6.3%
24 180 1536 76 4.9%
28 210 1792 69 3.9%
32 240 2048 54 2.6%
36 270 2304 49 2.1%
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7. Conclusions and Future Works

Keeping data close to computational resources is key for Big Data challenges as mov-
ing large amounts of data from storage can take precious time. While high-performance
computing storage systems have reached their maturity, Big Data distributed file systems
have emerged enabling the exploitation of data locality for parallelizing computation with
minimum data movement over a network. Now, advanced computation like scientific
modeling or generative artificial intelligence systems require more robust storage, pushing
data management technologies further ahead. Different distributed file systems have been
developed to efficiently manage different I/O patterns. In most cases, storage resources
are decoupled, and data are transferred to nodes specifically designated for processing.
The Hadoop Distributed File System (HDFS), serving as the most popular distributed file
system for Big Data, adopts a data-centric approach that exploits data locality, ensuring the
proximity of processing to storage resources. However, its design imposes more constrained
semantics. More robust distributed file systems for Big Data have been developed using
primary-based protocols, enabling the rewriting of large files in just one of the available
copies. This demands data movement even for writes over the replicas. In this work, we
describe AwareFS, a distributed file system that facilitates the efficient use of large files
across various I/O patterns. It employs a primary-based local-write protocol to exploit
data locality, even for updates, and features a robust distributed lock management system
to ensure consistency in a distributed manner. The efficiency of AwareFS was initially
assessed by comparing its local-write protocol with the remote-write protocol of another
distributed file system. In a small cluster with limited resources, the results indicated a
performance improvement of about 8% after migrating the primary copy role and using the
local copy for writing. In contrast, measurements with the remote-write protocol showed
a decline of 18% in transfer rates. The AwareFS local-write protocol, complemented by
its distributed lock management capabilities, facilitated random writing in various block
sizes. It efficiently updated areas ranging from 4 KB to megabytes, ensuring a consistent
and efficient process while handling requests from multiple clients simultaneously. The
advantages of exploiting data locality during writes were demonstrated across clusters of
varying sizes, resulting in a 43% improvement in measurements of IOPS for writes with a
4 KB size, underscoring the significance of minimizing data movement. The AwareFS client
currently supports integration with traditional high-performance computing workloads,
extending the advantages of a data-centric architecture to MPI-based scientific applications
and emerging technologies for processing data stored in large files. Fault tolerance is yet to
be fully developed in AwareFS, along with block-based storage management. Enhance-
ments to the POSIX interface and refined client-side cache management will cater to other
compatibility and performance requirements. Additionally, the integration of an HDFS
protocol will position AwareFS as a storage system for commercial Big Data frameworks.
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