
Citation: Wan, G.; Yao, L. LMFRNet:

A Lightweight Convolutional Neural

Network Model for Image Analysis.

Electronics 2024, 13, 129. https://

doi.org/10.3390/electronics13010129

Academic Editor: Ping-Feng Pai

Received: 17 November 2023

Revised: 22 December 2023

Accepted: 25 December 2023

Published: 28 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

LMFRNet: A Lightweight Convolutional Neural Network Model
for Image Analysis
Guangquan Wan and Lan Yao *

School of Mathematics, Hunan University, Changsha 410082, China; gqw@hnu.edu.cn
* Correspondence: yao@hnu.edu.cn

Abstract: Convolutional neural networks (CNNs) have transformed the landscape of image analysis
and are widely applied across various fields. With their widespread adoption in fields like medical
diagnosis and autonomous driving, CNNs have demonstrated powerful capabilities. Despite their
success, existing models face challenges in deploying and operating in resource-constrained environ-
ments, limiting their practicality in real-world scenarios. We introduce LMFRNet, a lightweight CNN
model. Its innovation resides in a multi-feature block design, effectively reducing both model complex-
ity and computational load. Achieving an exceptional accuracy of 94.6% on the CIFAR-10 dataset, this
model showcases remarkable performance while demonstrating parsimonious resource utilization.
We further validate the performance of the model on the CIFAR-100, MNIST, and Fashion-MNIST
datasets, demonstrating its robustness and generalizability across diverse datasets. Furthermore,
we conducted extensive experiments to investigate the influence of critical hyperparameters. These
experiments provided valuable insights for effective model training.

Keywords: machine learning; deep learning; convolutional neural networks; lightweight model;
image classification

1. Introduction

Convolutional neural networks (CNNs) are a type of deep learning neural network.
They have revolutionized various fields, including image classification [1], object detec-
tion [2], and image segmentation [3]. CNNs leverage convolutional layers to extract features
from input images, and fully connected layers to classify images. This architectural design
enables CNNs to capture both local and global information in images, facilitating the
learning of relationships between image content and semantics. In various domains, CNNs
have been widely applied, demonstrating their versatility and effectiveness [4]. These
applications encompass diverse areas such as lesion detection [5,6] and diagnostic support
within the medical field, autonomous driving [7], and face recognition [8], among others.

Since the introduction of AlexNet [9], CNNs have undergone rapid development.
AlexNet demonstrated the potential of large-scale deep convolutional neural networks for
image recognition tasks. It employed an eight-layer convolutional network structure and
achieved breakthrough performance on the ImageNet dataset. Subsequently, VGGNet [10]
simplified network design by stacking small convolutional filters to achieve a balance
between depth and efficiency. The Inception [11] module enabled CNNs to learn more
complex feature representations by combining filters of different sizes. The ResNet [12] ar-
chitecture effectively addressed the vanishing gradient problem, enabling the construction
of models with over a hundred layers. DenseNet [13] promoted efficient feature reuse by
connecting every layer to every other layer.

Deep learning models have achieved significant success in the field of image analysis,
demonstrating outstanding accuracy in tackling challenging image recognition tasks. How-
ever, improving accuracy often implies increased demands on computational resources.

Electronics 2024, 13, 129. https://doi.org/10.3390/electronics13010129 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13010129
https://doi.org/10.3390/electronics13010129
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8704-7124
https://doi.org/10.3390/electronics13010129
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13010129?type=check_update&version=1


Electronics 2024, 13, 129 2 of 16

Real-world tasks often demand optimal accuracy within constrained resources, in-
fluenced by factors such as the specific platform requirements and diverse application
scenarios [14–17]. Merely pursuing accuracy might constrain their practical applicability
on resource-limited mobile devices. Therefore, designing a model that balances parameter
quantity and accuracy is a challenging task.

As a result, some lightweight models have emerged, such as SqueezeNet , ShuffleNet-
V2, MobileNetV2, and EfficientNet. SqueezeNet [18] decreases the model size by com-
pressing convolutional filters and employing a small number of 1x1 convolutional kernels.
ShuffleNet-V2 [19] reduces computational costs through group convolution and channel
shuffling techniques, maintaining strong performance in resource-constrained environ-
ments. MobileNetV2 [20] reduces the number of parameters by using Depthwise Separable
Convolution, making it suitable for deployment on mobile and embedded devices. Effi-
cientNet [21] adopts compound scaling, balancing model depth, width, and resolution to
enhance performance while retaining a relatively compact model size.

In this study, inspired by these classic models, we introduce LMFRNet, a lightweight
network designed specifically for image classification tasks. The experimental results
demonstrate that the proposed model achieves an exceptional accuracy of 94.6% on the
CIFAR-10 dataset, despite having only 0.52 million parameters. It was compared to state-
of-the-art (SOTA) models on the CIFAR-10 dataset, and the model achieved superior
accuracy under equivalent parameter conditions. Additionally, we substantiate the model’s
effectiveness through validation on the CIFAR-100, MNIST, and Fashion-MNIST datasets.
Furthermore, the model does not use residual blocks, which also provides an idea for
exploring scenarios without such blocks. This underscores the efficiency and feasibility of
the model. In addition, we conducted extensive experiments to investigate the influence of
critical hyperparameters, providing valuable insights for effective model training.

This study contributes to the following:

• First, we propose a lightweight model that attains an outstanding accuracy of 94.6%
on the CIFAR-10 dataset, leveraging a mere 0.52 million parameters. Notably, in
equivalent parameter setups, the model surpasses existing SOTA models, showcasing
a remarkable balance between performance and parameter efficiency.

• Second, we conducted an extensive array of experiments to carefully adjust various
common hyperparameters, including training epochs, optimizer selection, data aug-
mentation strategies, and learning rates. By comparing the performance of different
hyperparameter settings, we provide valuable experimental results to help practition-
ers better understand and apply these critical parameters, facilitating more effective
model training.

2. Method

In the section, we deconstruct the fundamental CNN components that constitute the
model’s underlying architecture. Building upon these core components, we now delve
deeper into the intricate architecture of our proposed model, dissecting its components in
detail. Figure 1 visually represents the model, showcasing its six stages, each playing a
crucial role in progressively extracting pertinent features from the input image, ultimately
yielding the desired classification output.



Electronics 2024, 13, 129 3 of 16

Batch 

Normalization

ReLU

Conv, 3×3

Global Average 

Pooling

FC layer

MF Block

MF Block

MF Block

Avg Pooling

Conv, 1×1

…

Stage 1

Stage 5

Stage 6

Output

Stage 2

Stage 3

Stage 4

Filter concatenation

Conv, 3×3

Conv, 3×3

Conv, 3×3

Conv, 1×1

Previous Layer

(a) (b) (c) (d)

(3,32,32)

(32,32,32)

(104,16,16)

(200,8,8)

(392,4,4)

(464,4,4)

(10)

𝑌1

𝑌2

𝑌3

𝑋

𝑋

𝑌1

𝑌2

𝑌

Figure 1. (a) The architectural overview of the proposed model. (b) The structure of Stage 1 and
Stage 6. (c) The overall structure of Stages 2 through 5. (d) The structure of MF block.

2.1. Basic CNN Components

Convolutional layers are the most important elements of CNNs [9,10]. They are
responsible for extracting features from the input data. Convolutional layers work by
applying a convolution operation to the input data. The convolution operation [22] is
defined as follows:

y(i, j) = ∑
m

∑
n

x(i + m, j + n)w(m, n).

In this equation, y(i, j) represents the element in the output feature map at position (i, j),
x(i+m, j+ n) represents the element in the input data at position (i+m, j+ n), and w(m, n)
signifies the weight of the convolutional kernel at position (m, n). The indices m and n
iteratively cover all possible positions within the convolutional kernel, performing the
crucial convolution operation across the input data. This fundamental operation plays a
pivotal role in extracting meaningful features from the input, which is instrumental for
CNNs in various tasks.

Pooling layers are used to reduce the spatial dimensions of the feature maps [9,12]. The
purpose of this is to reduce the computational cost of the network and to make the network
more robust to noise. Max pooling operates by selecting the maximum value within each
region of the feature map, while average pooling computes the average value within these
regions. Additionally, global average pooling (GAP) represents a unique pooling operation
aimed at condensing the spatial dimensions of a feature map into a single vector [11,12].
This is achieved by computing the average value across each channel in the feature map.

Batch normalization [23] is a technique that is used to improve the stability and
generalization ability of CNNs. It is defined as follows:

BN(x) = γ
x − µ√
σ2 + ϵ

+ β.

Here, x represents input data, µ is the mean of the input data, σ2 is the variance of the
input data, γ and β are learnable scaling and shifting parameters, and ϵ is a small constant
introduced to prevent division by zero. Batch normalization works by normalizing the
activations in the hidden layers. This helps to prevent the activations from becoming too
large or too small, which can lead to instability and overfitting.



Electronics 2024, 13, 129 4 of 16

The ReLU activation function, commonly employed in CNNs [12,24,25], is defined as

y(x) = max(0, x),

where x is the input to the activation function, and y is the output. The ReLU function
introduces non-linearity into the network, which is essential for capturing complex patterns
in the data.

Filter concatenation is a technique that is used to combine the outputs of multiple
convolutional layers into a single feature map [13]. This technique is often used in CNNs to
increase the model’s ability to capture diverse feature representations, as each convolutional
kernel tends to specialize in different input features and patterns.

Fully connected (FC) layers are used to perform the final classification or regression
task [9,12,13]. Fully connected layers work by connecting all of the neurons in one layer to
all of the neurons in the next layer. This allows the network to learn complex relationships
between the input data and the output labels.

2.2. The Proposed Model

The model comprises six stages designed to progressively extract features from the
input color image and ultimately produce the corresponding categorical output. The
tensor representation of this color image is (3, 32, 32), where 3 represents the number
of color channels (red, green, and blue), and 32 and 32 denote the spatial dimensions
of the image, representing the height and width, respectively. This tensor goes through
six successive stages, ultimately producing the classification result. Figure 1 provides a
detailed illustration of the proposed model. The six stages can be composed of different
types of layers.

Stage 1 (see the top part of Figure 1b) employs a two-dimensional convolutional
operation aimed at extracting spatial features from the input image. The convolutional
kernels are of size 3 × 3, with a stride of 1 and a padding of 1, similar to EfficientNet [21].
The computational cost of a 3 × 3 convolutional kernel is relatively low, leading to an
overall reduced computational burden. Based on this reference [23] and the experience
of some classical models [9,10], after the convolution operation, batch normalization and
ReLU activation operations are performed subsequently. The batch normalization layer
is used to normalize input tensors, speeding up model convergence, enhancing training
stability, and preventing gradient vanishing and exploding issues. The ReLU activation
function converts the input tensor into non-linear values, boosting the model’s learning
capability. The output of the initial stage is directly propagated to the subsequent stage.

Stages 2 through 5 constitute the pivotal phases responsible for fundamental feature
extraction of the model. The structure of the stages has a similar structure (see Figure 1c).
The difference lies in the number of multi-feature (MF) blocks contained within these stages.
The number of MF blocks in Stages 2 through 5 are set to 3, 4, 8, and 3, respectively. Then,
the obtained feature maps are successively passed through a 1 × 1 convolution and an
average pooling layer, similar to DenseNet [13]. The combined use of a 1 × 1 convolution
followed by an average pooling layer can help in further reducing the dimensionality of
the feature space while preserving important features, aiding in computational efficiency
and potentially improving model generalization.

MF blocks’ design is inspired by these models [11,13,26–29]. Inception series [11,26,27]
inspired us to concatenate different convolutions from multiple branches to derive a new
feature map. The idea of feature reuse in DenseNet [13], also influenced the design process
of MF block. In DenseNet, feature maps from all preceding layers are utilized and fed
directly into subsequent layers. It alleviates the difficulty of model training, enhances the
utilization of highly informative features, and consequently improves performance. The
structural design of FR-ResNet [29] and PeleeNet [28] also inspired the construction of the
MF block.

The MF block employs a sequence of convolutional operations, including a 1 × 1
convolution followed by three consecutive 3 × 3 convolutions. Subsequently, the output



Electronics 2024, 13, 129 5 of 16

of each 3 × 3 convolution is concatenated with the input of this block, resulting in a novel
feature map. Using 1 × 1 convolutions can reduce the number of channels, achieving
dimensionality reduction and decreasing the model’s parameters and computational load.
Meanwhile, employing three consecutive 3× 3 convolutions can extract features at different
scales, enhancing the model’s robustness and generalization capability. Connecting these
three convolutions helps improve parameter utilization and reduces the number of model
parameters. Moreover, the MF block does not utilize any residual structure, exploring
scenarios independent of reliance on residual structures. Specifically, the structure of the
MF block is illustrated in Figure 1d. It can be expressed as follows:

Y1 = Conv3×3(Conv1×1(X))

Y2 = Conv3×3(Y1)

Y3 = Conv3×3(Y2)

Then, these three features combined with the input are directly concatenated, resulting
in a novel feature:

Y = Concat(X, Y1, Y2, Y3).

The final sixth stage of the network consists of GAP and a FC layer to generate the final
classification result (see the bottom part of Figure 1b). This design, drawing inspiration
from ResNet [12], leverages GAP to aggregate spatial information across the feature maps
and condense them into a fixed-dimensional vector. Subsequently, the FC layer projects
this vector onto the desired number of output classes, enabling the network to make its
final classification decision. The detailed architecture of the proposed model is presented
in Table 1.

Table 1. The detailed architecture of the proposed model.

Stages Layers Patch Size Stride Output Size

Stage 1 Convolution layer 3 × 3 1 32 × 32 × 32

Stage 2 MF Block ×3 - - 104 × 32 × 32

Convolution layer 1 × 1 1 104 × 32 × 32

Average pooling layer 2 × 2 2 104 × 16 × 16

Stage 3 MF Block ×4 - - 200 × 16 × 16

Convolution layer 1 × 1 1 200 × 16 × 16

Average pooling layer 2 × 2 2 200 × 8 × 8

Stage 4 MF Block ×8 - - 392 × 8 × 8

Convolution layer 1 × 1 1 392 × 8 × 8

Average pooling layer 2 × 2 2 392 × 4 × 4

Stage 5 MF Block ×3 - - 464 × 4 × 4

Convolution layer 1 × 1 1 464 × 4 × 4

Stage 6 Global average pooling - - 464

Fully connected layer - - 10

3. Dataset

This section delineates the dataset employed for model evaluation, encompassing its
provenance, scale, and dataset partitioning.

The CIFAR-10 dataset [30] holds significant importance within computer vision, en-
compassing a repository of 60,000 images. It serves as a rigorous evaluation platform
for computer vision algorithms, with a primary focus on tasks. Figure 2 presents visual
examples drawn from each of the ten object classes in the CIFAR-10 dataset. Additionally,



Electronics 2024, 13, 129 6 of 16

Table 2 provides a detailed breakdown of the dataset’s category distribution, offering a
comprehensive overview of the dataset’s composition. Apart from evaluating the model’s
performance on the CIFAR-10 dataset, we conducted evaluations across the CIFAR-100 [30],
MNIST [31], and Fashion-MNIST [32] datasets. This broader assessment enabled us to
gauge the model’s generalizability across diverse image domains.

Figure 2. Visual samples of CIFAR-10.

Table 2. Distribution of categories in CIFAR-10 dataset.

Category Training Set Test Set Total

Airplanes 5000 1000 6000

Automobiles 5000 1000 6000

Birds 5000 1000 6000

Cats 5000 1000 6000

Deer 5000 1000 6000

Dogs 5000 1000 6000

Frogs 5000 1000 6000

Horses 5000 1000 6000

Ships 5000 1000 6000

Trucks 5000 1000 6000

4. Experiments

This section encompasses an in-depth exploration of the experimental setup, the
environment details, hyperparameter influences, comparative analysis of proposed and
plain blocks, and a comprehensive performance evaluation against SOTA models.

4.1. Experimental Environment

The experiments were conducted on a Linux operating system (version 5.4.0-132-
generic) with an x86_64 CPU architecture. The setup comprises an Intel Xeon Platinum
8255C with 12 virtual CPUs and an NVIDIA GeForce RTX 3080 GPU. The CPU, manu-
factured by Intel, boasts significant computational capacity. The Python programming
language (version 3.8.10) and the PyTorch deep learning framework (version 2.0.0+cu118)
were used in this study, along with the TorchVision library (version 0.15.1+cu118).



Electronics 2024, 13, 129 7 of 16

4.2. Experimental Results

We conducted extensive experiments to investigate the influence of critical hyper-
parameters, including training epochs, learning rate, choice of optimizer, and data aug-
mentation strategies. Through this rigorous experimentation, we aim to provide valuable
empirical insights that can empower practitioners to make informed decisions regarding
these crucial parameters, fostering more effective model training practices.

4.2.1. The Influence of Epochs

The model’s training outcomes are influenced by various hyperparameters, among
which determining the appropriate number of “epochs” or training iterations is pivotal.
Each epoch signifies one full pass of the model through the entire training dataset. During
training, the model continuously adjusts its weights and biases to minimize the loss function.
Therefore, the number of epochs directly affects how well the model learns from the data.

Based on the trends presented in Figure 3, the following observations can be made:
• In the first approximately 25 rounds of training, the loss rapidly decreases, and the

accuracy significantly improves.
• From the 25th round to roughly the 175th round, the loss continues to decrease, and

the accuracy steadily increases.
• From the 175th round to approximately the 200th round, both the loss and accuracy

gradually converge.

0 25 50 75 100 125 150 175 200
0

0.2

0.4

0.6

0.8

1

Epoch

A
cc

ur
ac

y

Accuracy

Loss

0

0.2

0.4

0.6

0.8

1

Lo
ss

Figure 3. The relationship between accuracy and training epochs.

Setting the epoch size too small can lead to insufficient training, as the model may not
have enough time to learn all of the patterns in the training data. This can result in poor
performance on the test data. Setting the epoch size too large can lead to overfitting, as the
model may learn the training data too well, including noise and irrelevant features. This
can also result in poor performance on the test data.

Therefore, it is important to carefully consider the factors that affect epoch size se-
lection, such as the size of the training dataset, the complexity of the model, and the risk
of overfitting. In general, for smaller datasets, a smaller epoch size is recommended to
avoid overfitting. For larger datasets, a larger epoch size may be necessary to fully learn
the training data.

4.2.2. The Influence of Learning Rate

The learning rate directly influences the speed at which model parameters are updated,
thereby having a profound impact on the model’s performance and convergence. To
accurately assess the role of the learning rate, we employed the method of controlling
variables. We ensured that all other hyperparameters, such as the training epoch, data
transformation, optimizer, and batch size, were kept constant throughout our experiments.
This allowed us to isolate the impact of the learning rate on model performance.



Electronics 2024, 13, 129 8 of 16

We conducted experiments using various learning rate values, specifically including
0.1, 0.01, 0.001, and 0.0001. By comparing how model performance varied with epoch under
these different learning rates, we gained a more intuitive understanding of the pivotal role
played by the learning rate during training.

As illustrated in Figure 4, the learning rate has a significant impact on the model’s
training process. Several observations can be made:
• When the learning rate is set to a higher value (e.g., 0.1 in Figure 4), the model’s

learning speed noticeably accelerates, leading to a rapid increase in accuracy. However,
if the learning rate is set excessively high, it may lead to training oscillations and non-
convergence and cause the model to miss the global optimum.

• Conversely, when the learning rate is set to a lower value(e.g., 0.0001 in Figure 4),
the model’s learning speed slows down, resulting in a more stable training process.
However, this can significantly slow down the convergence speed. Additionally, a
smaller learning rate may cause the model to become stuck in a local optimum.
Therefore, the choice of learning rate necessitates a delicate balance between achieving

rapid convergence and maintaining stability, allowing for comprehensive model training
while avoiding the pitfalls of local optima.

0 50 100 150 200
0.2

0.4

0.6

0.8

1

(200, 0.82)

(200, 0.8)

(200, 0.66)

Epoch

A
cc

ur
ac

y

LR = 0.1

LR = 0.01

LR = 0.001

LR = 0.0001

Figure 4. The correlation between accuracy and epochs under varied learning rates.

4.2.3. The Influence of Optimizer

The choice of optimizer is a critical factor that influences the performance of model
training. In this study, we evaluated the performance of two popular optimizers: stochastic
gradient descent (SGD) and Adam. We compared the relationship between the number of
training epochs and accuracy under different learning rates for SGD [33] and Adam [34].

As shown in Figure 5, the training curve of Adam is smoother than that of SGD, mainly
due to the momentum mechanism it uses. Momentum can help the model overcome
oscillations during training, making the training curve more stable. In addition, Adam is
relatively simple to use and less sensitive to hyperparameters, making it easier to achieve
good results. However, for large or noisy training datasets, SGD is more likely to converge.
Overall, Adam is more suitable for most tasks and datasets.



Electronics 2024, 13, 129 9 of 16

0 50 100 150 200
0.2

0.4

0.6

0.8

1

(200, 0.82)

(200, 0.84)

Epoch

A
cc

ur
ac

y

SGD

Adam

(a)

0 50 100 150 200
0.2

0.4

0.6

0.8

1

(200, 0.8)

(200, 0.87)

Epoch

A
cc

ur
ac

y

SGD

Adam

(b)

0 50 100 150 200
0.2

0.4

0.6

0.8

1

(200, 0.66)

(200, 0.81)

Epoch

A
cc

ur
ac

y

SGD

Adam

(c)

0 50 100 150 200
0.2

0.4

0.6

0.8

1

(200, 0.62)

Epoch

A
cc

ur
ac

y

SGD

Adam

(d)

Figure 5. The correlation between the number of epochs and accuracy under different optimizers:
(a) The learning rate is set at 0.1; (b) The learning rate is set at 0.01; (c) The learning rate is set at 0.001.
(d) The learning rate is set at 0.0001.

4.2.4. The Influence of Data Augmentation

Data augmentation strategies and transformations are pivotal during model train-
ing [35,36]. We examined the impact of various data augmentation methods, including
random cropping, rotation, flipping, and more, on model performance. Our objective was
to determine which data augmentation strategies contribute to enhanced model generaliza-
tion and robustness.

This study investigated the following six data augmentation strategies:
1. Baseline: Original data without any augmentation.
2. Norm: Pixel values in training images are normalized to a standard distribution.
3. HFlip: Randomly flip images horizontally.
4. Crop: Randomly crop and pad images.
5. Cutout: Randomly mask out a rectangular region in input images.
6. All: Combines all of the above strategies.

The experimental results indicate that data augmentation significantly enhances the
model’s generalization ability and robustness.

Data normalization contributes to the stability of training, as evidenced by the blue
curve (Norm) in Figure 6a. This curve is slightly smoother and exhibits less fluctuation
than the black curve (Baseline), which corresponds to using the original data without
any processing.



Electronics 2024, 13, 129 10 of 16

0 50 100 150 200
0.2

0.4

0.6

0.8

1

(200, 0.8)
(200, 0.79)

(200, 0.84)
(200, 0.85)

(200, 0.83)

(200, 0.9)

Epoch

A
cc

ur
ac

y
Baseline

Norm

HFlip

Crop

Cutout

All

(a)

0 50 100 150 200
0.2

0.4

0.6

0.8

1

(200, 0.87)
(200, 0.87)
(200, 0.88)

(200, 0.9)
(200, 0.88)

(200, 0.92)

Epoch

A
cc

ur
ac

y

Baseline

Norm

HFlip

Crop

Cutout

All

(b)
Figure 6. The correlation between the number of epochs and accuracy under different data augmen-
tation strategies: (a) The optimizer is set to SGD; (b) The optimizer is set to Adam.

Additionally, Figure 6a clearly shows that the data augmentation techniques (HFlip,
Crop, and Cutout) have a positive impact on the model’s accuracy. Specifically, the accu-
racy reaches 0.84 after HFlip is applied, 0.85 after Crop is applied, and 0.83 after Cutout
is applied. The most significant improvement in performance is observed when these
data augmentation techniques are combined, resulting in an accuracy of 0.90. Analo-
gously, Figure 6b demonstrates that data augmentation is also effective when using the
Adam optimizer.

Data augmentation is a crucial technique for improving the performance of deep
learning models. In practical applications, appropriate data augmentation strategies should
be selected based on the characteristics of the data and the objectives of the task. By
judiciously augmenting the data, we can effectively enhance the model’s generalization
ability and robustness, thereby improving its performance in real-world applications.

4.3. Comparison between the MF Block and the Plain Block

In MF block (see Figure 7a), we set the 1 × 1 convolutional channel to 12, the first
3 × 3 convolutional channel is also 12, the second 3 × 3 convolutional channel is 6, and
the third 3 × 3 convolutional channel is 6. In the MF block, these three convolutions are
concatenated with the input, so with each passage through an MF block, the number of
feature channels increases by 24 (12 + 6 + 6).

To elucidate the differences between the MF block and the plain block, we replaced
the MF block in the model with the plain block (see Figure 7). Subsequently, we con-
ducted a comparison between the two models and found that the model using the plain
block was significantly more difficult to train (see Figure 8). The excessive number of
convolutional layers primarily causes this difficulty, leading to issues such as gradient
vanishing and exploding. These challenges exacerbate the problems during model training.
In contrast, the MF block facilitated a smoother training process for the model and achieved
superior results.

Furthermore, we observed that the model employing the plain block had a parameter
count of 0.78 M, despite having the same number of layers as our original model, which
had a parameter count of 0.52 M. This indicates that the model, which utilizes the MF block,
is more parameter-efficient, resulting in a higher parameter utilization rate.



Electronics 2024, 13, 129 11 of 16

Filter concatenation

Conv, 3×3, 6

Conv, 3×3, 6

Conv, 3×3, 12

Conv, 1×1, 12

Previous Layer

Conv, 3×3, 6

Conv, 3×3, 24+𝐶𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠

Conv, 3×3, 12

Conv, 1×1, 12

(a) (b)

Figure 7. (a) The MF block and (b) the plain block. The MF block and the plain block. To ensure that
the network’s depth remains the same, we also set the number of convolutions in the compared plain
block to four. In order to maintain consistent output features for each stage of the model, we set the
number of channels in the last convolutional layer of the plain block to the number of channels in the
previous feature map plus 24.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1 (200,0.946)

(200,0.663)

Epoch

A
cc

ur
ac

y

MF block

Plain block

Figure 8. Comparison of training: MF block vs. plain block.

4.4. Comparative Analysis with Other Models

We extensively validated the model across four distinct datasets: CIFAR-10, CIFAR-
100, MNIST, and Fashion-MNIST. By validating the model on these four datasets, we were
able to comprehensively assess its performance. The experimental results indicate that the
model performed well across these datasets, showcasing its strong image classification
capability, generalization, and robustness.

4.4.1. Performance on the CIFAR-10 Dataset

We conducted a comparative analysis between our proposed model and some classical
models. As presented in Table 3, we observed a range of accuracy performances among
the models, which varied from 92.31% to 95.04%. This variability is further explored in
Figure 9. Notably, GoogLeNet and DenseNet121 demonstrated slightly higher levels of
accuracy compared to the other models.



Electronics 2024, 13, 129 12 of 16

In contrast, our model surpassed these accuracy ranges by achieving an impressive
accuracy of 94.60% while utilizing a significantly smaller parameter count of only 0.52 M.
Remarkably, when compared to DenseNet121, our model required less than one-thirteenth
of its parameters while experiencing only a marginal decrease in accuracy of 0.44%. This
remarkable achievement is a result of our approach, which places equal emphasis on both
high performance and parameter frugality. By prioritizing efficiency and resource opti-
mization, our model proves to be an excellent choice for tasks with limited computational
resources. The results unequivocally demonstrate the model’s effectiveness in striking a
favorable balance between accuracy and efficiency.

Note that our model’s superior performance does not rely on additional datasets. This
further reinforces the significance of our approach, as it showcases the model’s ability to
excel without the need for extra data, making it even more valuable in practical applications.

Table 3. Model comparison of the CIFAR-10 dataset.

No. Model Accuracy (Top-1) Parameters

1 Ours 94.60% 0.52 M

2 SqueezeNet [18] 92.83% 0.73 M

3 ShuffleNet [37] 92.31% 0.93 M

4 ShuffleNetV2 [19] 92.86% 1.26 M

5 MobileNetV2 [20] 94.19% 2.30 M

6 MobileNet [38] 92.76% 3.22 M

7 GoogLeNet [11] 95.02% 6.17 M

8 DenseNet121 [13] 95.04% 6.96 M

9 ResNet50 [12] 93.62% 23.52 M

10 VGG13 [10] 94.06% 28.33 M

0 5 10 15 20 25 30

90

95

100

ShuffleNetV2

ResNet50

VGG13

ShuffleNet

SqueezeNet

GoogLeNet

MobileNetV2

MobileNet

DenseNet121Ours

Parameter counts(M)

A
cc

ur
ac

y(
%

)

Figure 9. Model comparison in terms of parameter count and accuracy on the CIFAR-10 dataset.
Detailed comparisons are represented as shown in Table 3.

4.4.2. Performance on the CIFAR-100 Dataset

To further evaluate the model’s performance, we conducted experiments on the CIFAR-
100 dataset. The model achieved an accuracy of 75.82%, as depicted in Table 4. To accommo-
date the expanded range of 100 categories in CIFAR-100, the final fully connected layer of
the model was correspondingly adjusted to 100 output neurons. This modification resulted



Electronics 2024, 13, 129 13 of 16

in a total parameter count of 0.56 M for the model. CIFAR-100 comprises more categories,
necessitating models to possess stronger discriminative and generalization capabilities. The
experimental results indicate that the model maintains outstanding performance despite
having significantly fewer parameters. Through experiments on these datasets, we further
validated the effectiveness and broad applicability of the proposed model.

Table 4. Model comparison on CIFAR-100 dataset.

No. Model Accuracy (Top-1) Parameters

1 Ours 75.82% 0.56 M

2 SqueezeNet [18] 69.41% 0.78 M

3 ShuffleNet [37] 70.06% 1.00 M

4 ShuffleNetV2 [19] 69.51% 1.30 M

5 MobileNetV2 [20] 68.08% 2.36 M

6 MobileNet [38] 65.98% 3.30 M

7 GoogLeNet [11] 78.03% 6.20 M

8 DenseNet121 [13] 77.01% 7.00 M

9 ResNet50 [12] 77.39% 23.70 M

10 VGG13 [10] 72.00% 28.70 M

4.4.3. Performance on the MNIST Dataset

The MNIST dataset is commonly used to evaluate models in relatively simple image
classification tasks. Despite its simplicity, MNIST provides a benchmark for measuring
a model’s ability to solve basic image classification problems. The model achieved an
accuracy of 99.71% on MNIST with just 30 training rounds, demonstrating its capability in
handling relatively straightforward image classification tasks. Note that most models can
easily achieve over 99% accuracy on the MNIST dataset.

4.4.4. Performance on the Fashion-MNIST Dataset

Fashion-MNIST, characterized by more intricate image content compared to MNIST,
closely simulates real-world applications. the model achieved an accuracy of 94.11% on
the Fashion-MNIST dataset, and a comparison with SOTA models is presented in Table 5.
These experiments enabled a deeper insight into the model’s proficiency in processing
diverse and complex real-world images.

Table 5. Model comparison on Fashion-MNIST dataset.

No. Model Accuracy (Top-1) Parameters

1 ViT [39] 90.98% 0.212 M

2 Ours 94.11% 0.520 M

3 MCNN15 [40] 94.04% 2.596 M

4 MobileNet [38] 93.96% 2.236 M

5 EfficientNet [21] 93.64% 4.019 M

6 ResNet18 [12] 93.20% 11.175 M

7 AlexNet [9] 92.74% 58.302 M

5. Conclusions

Lightweight models are significant for tasks such as image analysis, real-time image
analysis, and defect detection on resource-constrained devices. In this paper, we propose
a lightweight model with only 0.52 million parameters that achieves a 94.6% accuracy
on the CIFAR-10 dataset. Our lightweight model was compared to SOTA models on the



Electronics 2024, 13, 129 14 of 16

CIFAR-10 dataset. The model achieved superior accuracy under equivalent parameter
conditions. Additionally, we conducted experiments on CIFAR-100, MNIST, and Fashion-
MNIST datasets to validate the performance of the model. The MF block in LMFRNet
effectively realizes feature reuse, thereby reducing the computational complexity of the
model and improving its accuracy. Moreover, the model does not use residual blocks, which
also provides an idea for exploring scenarios without residual blocks. Furthermore, to assist
practitioners in understanding the hyperparameters used in our experiments, we conducted
a comprehensive series of experiments to elucidate the roles of these hyperparameters and
how to correctly configure them in practical applications.

In summary, the model maintains performance while having a very small parameter
count, making it particularly amenable to resource-constrained domains or scenarios
requiring real-time analysis. Future research directions based on our approach include:
1. Extending our versatile classification model to a wider range of resource-constrained

scenarios, such as Internet of Things (IoT) applications and embedded systems with
limited computational resources.

2. Investigating the use of the model as a backbone network for real-time object detection
and other vision tasks, such as in autonomous vehicles, real-time crowd counting, and
augmented reality environments.
To facilitate widespread utilization and advancement of the proposed model, we

have made it open source (https://github.com/wgqhandsome/LMFRNet, accessed on 24
December 2023).

Author Contributions: Conceptualization, G.W.; Formal analysis, G.W.; Investigation, G.W.; Method-
ology, G.W.; Project administration, L.Y.; Resources, L.Y.; Software, G.W.; Supervision, L.Y.; Validation,
G.W.; Visualization, G.W. and L.Y.; Writing—original draft preparation, G.W.; Writing—review and
editing, L.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are openly available in [30].

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Rawat, W.; Wang, Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Comput.

2017, 29, 2352–2449. [CrossRef]
2. Dhillon, A.; Verma, G.K. Convolutional Neural Network: A Review of Models, Methodologies and Applications to Object

Detection. Prog. Artif. Intell. 2020, 9, 85–112. [CrossRef]
3. Wang, Y.; Tian, Y. Exploring Zero-Shot Semantic Segmentation with No Supervision Leakage. Electronics 2023, 12, 3452. [CrossRef]
4. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects.

IEEE Trans. Neural Netw. Learn. Syst. 2021 33, 6999–7019. [CrossRef]
5. Savelli, B.; Bria, A.; Molinara, M.; Marrocco, C.; Tortorella, F. A Multi-Context CNN Ensemble for Small Lesion Detection. Artif.

Intell. Med. 2020, 103, 101749. [CrossRef]
6. Frid-Adar, M.; Diamant, I.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. Modeling the Intra-class Variability for Liver

Lesion Detection Using a Multi-class Patch-Based CNN. In Patch-Based Techniques in Medical Imaging; Wu, G., Munsell, B.C.,
Zhan, Y., Bai, W., Sanroma, G., Coupé, P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 10530,
pp. 129–137. [CrossRef]

7. Bojarski, M.; Choromanska, A.; Choromanski, K.; Firner, B.; Ackel, L.J.; Muller, U.; Yeres, P.; Zieba, K. Visualbackprop: Efficient
Visualization of Cnns for Autonomous Driving. In Proceedings of the 2018 IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 4701–4708.

8. Coşkun, M.; Uçar, A.; Yildirim, Ö.; Demir, Y. Face Recognition Based on Convolutional Neural Network. In Proceedings of the
2017 International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk, Ukraine, 15–17 November 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 376–379.

9. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of
the Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 3–6 December 2012; Volume 2, pp. 1097–1105.

10. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.

https://github.com/wgqhandsome/LMFRNet
http://doi.org/10.1162/neco_a_00990
http://dx.doi.org/10.1007/s13748-019-00203-0
http://dx.doi.org/10.3390/electronics12163452
http://dx.doi.org/10.1109/TNNLS.2021.3084827
http://dx.doi.org/10.1016/j.artmed.2019.101749
http://dx.doi.org/10.1007/978-3-319-67434-6_15


Electronics 2024, 13, 129 15 of 16

11. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9. [CrossRef]

12. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

13. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
[CrossRef]

14. Bhuiyan, M.A.B.; Abdullah, H.M.; Arman, S.E.; Rahman, S.S.; Al Mahmud, K. BananaSqueezeNet: A Very Fast, Lightweight
Convolutional Neural Network for the Diagnosis of Three Prominent Banana Leaf Diseases. Smart Agric. Technol. 2023, 4, 100214.
[CrossRef]

15. Gu, M.; Zhang, Y.; Wen, Y.; Ai, G.; Zhang, H.; Wang, P.; Wang, G. A Lightweight Convolutional Neural Network Hardware
Implementation for Wearable Heart Rate Anomaly Detection. Comput. Biol. Med. 2023, 155, 106623. [CrossRef] [PubMed]

16. Ma, X.; Li, Y.; Wan, L.; Xu, Z.; Song, J.; Huang, J. Classification of Seed Corn Ears Based on Custom Lightweight Convolutional
Neural Network and Improved Training Strategies. Eng. Appl. Artif. Intell. 2023, 120, 105936. [CrossRef]

17. Zhang, D.; Hao, X.; Wang, D.; Qin, C.; Zhao, B.; Liang, L.; Liu, W. An Efficient Lightweight Convolutional Neural Network for
Industrial Surface Defect Detection. Artif. Intell. Rev. 2023, 56, 10651–10677. [CrossRef]

18. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level Accuracy with 50x Fewer
Parameters and <0.5 MB Model Size. arXiv 2016, arXiv:1602.07360. [CrossRef]

19. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. arXiv 2018,
arXiv:1807.11164. [CrossRef]

20. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv
2019, arXiv:1801.04381. [CrossRef]

21. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2020, arXiv:1905.11946.
[CrossRef]

22. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
23. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015,

arXiv:1502.03167. [CrossRef]
24. Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical Evaluation of Rectified Activations in Convolutional Network. arXiv 2015,

arXiv:1505.00853.
25. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

arXiv 2015, arXiv:1502.01852.
26. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 2818–2826.

27. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on
Learning. arXiv 2016, arXiv:1602.07261. [CrossRef]

28. Wang, R.J.; Li, X.; Ling, C.X. Pelee: A Real-Time Object Detection System on Mobile Devices. arXiv 2019, arXiv:1804.06882.
29. Ren, F.; Liu, W.; Wu, G. Feature Reuse Residual Networks for Insect Pest Recognition. IEEE Access 2019, 7, 122758–122768.

[CrossRef]
30. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images, Tech Report, 2009. Available online:

https://www.cs.toronto.edu/~kriz/cifar.html (accessed on 24 December 2023).
31. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
32. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv

2017, arXiv:1708.07747.
33. Robbins, H.; Monro, S. A Stochastic Approximation Method. Ann. Math. Stat. 1951, 22, 400–407. [CrossRef]
34. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [CrossRef]
35. Choi, H.; Park, J.; Yang, Y.M. A Novel Quick-Response Eigenface Analysis Scheme for Brain–Computer Interfaces. Sensors 2022,

22, 5860. [CrossRef] [PubMed]
36. DeVries, T.; Taylor, G.W. Improved Regularization of Convolutional Neural Networks with Cutout. arXiv 2017, arXiv:1708.04552.

[CrossRef]
37. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In

Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 6848–6856. [CrossRef]

38. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [CrossRef]

http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1016/j.atech.2023.100214
http://dx.doi.org/10.1016/j.compbiomed.2023.106623
http://www.ncbi.nlm.nih.gov/pubmed/36809696
http://dx.doi.org/10.1016/j.engappai.2023.105936
http://dx.doi.org/10.1007/s10462-023-10438-y
https://doi.org/10.48550/arXiv.1602.07360
https://doi.org/10.48550/arXiv.1807.11164
https://doi.org/10.48550/arXiv.1801.04381
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.48550/arXiv.1502.03167
https://doi.org/10.48550/arXiv.1602.07261
http://dx.doi.org/10.1109/ACCESS.2019.2938194
https://www.cs.toronto.edu/~kriz/cifar.html
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1214/aoms/1177729586
https://doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.3390/s22155860
http://www.ncbi.nlm.nih.gov/pubmed/35957420
https://doi.org/10.48550/arXiv.1708.04552
http://dx.doi.org/10.1109/CVPR.2018.00716
https://doi.org/10.48550/arXiv.1704.04861


Electronics 2024, 13, 129 16 of 16

39. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929.
[CrossRef]

40. Nocentini, O.; Kim, J.; Bashir, M.Z.; Cavallo, F. Image Classification Using Multiple Convolutional Neural Networks on the
Fashion-MNIST Dataset. Sensors 2022, 22, 9544. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.2010.11929
http://dx.doi.org/10.3390/s22239544

	Introduction
	Method
	Basic CNN Components
	The Proposed Model

	Dataset
	Experiments
	Experimental Environment
	Experimental Results
	The Influence of Epochs
	The Influence of Learning Rate
	The Influence of Optimizer
	The Influence of Data Augmentation

	Comparison between the MF Block and the Plain Block
	Comparative Analysis with Other Models
	Performance on the CIFAR-10 Dataset
	Performance on the CIFAR-100 Dataset
	Performance on the MNIST Dataset
	Performance on the Fashion-MNIST Dataset


	Conclusions
	References

