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Abstract: The future development of the energy sector is influenced by Renewable Energy Sources
(RES) and their integration. The main hindrance with RES is that their output is highly volatile and
less predictable. However, the utility of the RES can be further enhanced by prediction, optimization,
and control algorithms. The scope of this paper is to disseminate a smart Adaptive Optimization
and Control (AOC) software for prosumers, namely PV-OPTIM, that is developed to maximize
the consumption from local Photovoltaic (PV) systems and, if the solar energy is not available, to
minimize the cost by finding the best operational time slots. Furthermore, PV-OPTIM aims to increase
the Self-Sustainable Ratio (SSR). If storage is available, PV-OPTIM is designed to protect the battery
lifetime. AOC software consists of three algorithms: (i) PV Forecast algorithm (PVFA), (ii) Day Ahead
Optimization Algorithm (DAOA), and (iii) Real Time Control Algorithm (RTCA). Both software
architecture and functionalities, including interactions, are depicted to promote and replicate its
usage. The economic impact is related to cost reduction and energy independence reflected by the
SSR. The electricity costs are reduced after optimization and further significantly decrease in case of
real-time control, the percentage depending on the flexibility of the appliances and the configuration
parameters of the RTCA. By optimizing and controlling the load, prosumers increase their SSR to at
least 70% in the case of small PV systems with less than 4 kW and to more than 85% in the case of PV
systems over 5 kW. By promoting free software applications to enhance RES integration, we estimate
that pro-environmental attitude will increase. Moreover, the PV-OPTIM provides support for trading
activities on the Local Electricity Markets (LEM) by providing the deficit and surplus quantities for
the next day, allowing prosumers to set-up their bids.

Keywords: software development; load optimization and control; prosumers; renewables; self-
sustainable ratio (SSR); Photovoltaic (PV) systems optimization

1. Introduction

As electricity prices have recently risen [1,2], solar energy has become increasingly
attractive. Additionally, the availability of numerous grants and non-repayable funding
options has encouraged the installation of Photovoltaic (PV) systems at consumer sites [3].
The solar energy gained has increased as the technology becomes more affordable and its
integration is improved. Previous research focused on track systems and floating solar
panels to facilitate a better integration into the power systems [4]. Another important
supporter for PV systems integration are the storage devices [5,6] that can be properly
designed to ensure a higher local usage [7]. Monitoring PV systems and coupling their
operation with programmable appliances [8] have become essential to provide descriptive
and predictive analytics [9–11] and integrate off-grid PV systems [12].

In this context, the primary goal of PV-OPTIM is to optimize the use of energy from
local PV systems, aligning the PV generation curve with the residential load curve. PV
systems typically produce the most energy at midday, coinciding with peak solar irradiation.
However, residential energy demand peaks in two main phases: a smaller peak in the
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morning as people prepare for the day, and a larger peak in the evening when they return
home and use heating and boilers. During the morning peak, PV generation is often
insufficient due to lower solar irradiation, particularly in winter. Conversely, in the evening,
PV generation is minimal or nonexistent as solar irradiation fades. This mismatch results
in energy being generated at times when it is not needed, leading to losses. Therefore,
the big hump of the PV generation curve does not overlap with the two humps of the
residential load curve. This gap causes energy losses as the energy is generated and
either consumed at the same time or lost. PV-OPTIM aims to address this by optimizing
operational times, especially during periods of low solar availability like cloudy days,
snowy conditions, or at night in order to minimize energy costs and maximize efficiency.
PV-OPTIM facilitates the optimization of controllable appliances and schedules them to
operate during the PV operation times. When storage is available, PV-OPTIM takes into
account the charging/discharging cycles and protects the battery lifetime.

Furthermore, PV-OPTIM supports researchers to simulate the implementation of
various Demand Side Management (DSM) and Demand Response (DR) programs and
evaluate the behavior of the prosumers after optimizing their schedule based on differ-
ent tariff schemes. Furthermore, PV-OPTIM enables implementation of flexibility and
Direct Load Control (DLC) mechanisms. It is a system used by electric utilities to man-
age energy demand and ensure grid stability. DLC allows a utility company to remotely
control certain appliances or equipment in consumers’ homes or businesses during peak
demand times [13,14]. This is typically undertaken with prior agreement from the con-
sumers/prosumers. Commonly controlled appliances include air conditioners, heating
systems, water heaters, and pool pumps, as these can consume significant amounts of
power. During periods of high electricity demand or when the grid is under stress, the
utility can temporarily turn off or cycle these appliances. This helps in reducing the overall
demand on the grid [15,16]. In exchange for participating in a DLC program, consumers
often receive incentives like bill credits or reduced electricity rates. By managing demand,
DLC helps in maintaining the stability of the electric grid, preventing outages, and re-
ducing the need for additional power plants. DLC is increasingly integrated with smart
grid technology, allowing for more efficient and responsive control of energy use [17]. By
reducing peak demand, DLC can decrease the need for utilities to rely on less efficient
and more polluting power plants, thus contributing to environmental conservation. Cus-
tomers/prosumers usually have the option to opt-out of DLC events, although this might
affect the incentives they receive [16,18,19]. Overall, DLC is a critical instrument for DSM,
balancing energy supply and demand and promoting efficient energy use. PV-OPTIM
can be integrated in simulators for EV charging stations [20,21] and electricity markets,
especially for Peer-to-Peer (P2P) markets on the energy communities’ level.

PV-OPTIM has a major economic and environmental impact. The economic impact
is related to cost reduction and energy independence reflected by the SSR. The electricity
costs are reduced after optimization and further decrease significantly in case of real-time
control, the percentage depending on the flexibility of the appliances and the configuration
parameters of the Real Time Control Algorithm (RTCA). By optimizing and controlling
the load, prosumers increase their SSR to at least 70% in the case of small PV systems with
less than 4 kW and to more than 85% in the case of PV systems over 5 kW. Moreover, the
PV-OPTIM provides support for trading activities on the Local Electricity Markets (LEM)
by providing the deficit and surplus quantities for the next-day, allowing prosumers to
set-up their bids. Another perspective over the economic impact is obtained in the case
of the battery systems. By setting a high level of State-of-Charge (SOC), RTCA avoids
multiple discharging cycles during the day, thereby prolonging the life of the batteries and
maintaining them as charged to cover the load during the night.

Additionally, PV-OPTIM increases the motivation and involvement of prosumers in
DSM or Demand Response (DR) programs by providing support for generation and load
management based on advanced tariff systems and DLC mechanisms. The energy poverty
may be mitigated by this software as it enables optimal bids and interoperability with a
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local market where low-income consumers can trade at better prices than those offered
by suppliers.

Furthermore, PV-OPTIM has an impact on distribution system operators. By optimiz-
ing and locally controlling consumption, the exchanges between the prosumers and the
main grid are reduced. The load peaks are avoided, enabling a more stable integration and
management of the PV systems.

For the aggregators and electricity suppliers, PV-OPTIM is a reliable software for
implementing DR programs, setting up LEM, and flexibility markets. In addition to the
economic impact, PV-OPTIM also has a significant environmental impact by reducing
consumption from the grid and maximizing the consumption from the local PV systems.
Thus, CO2 emissions are reduced by 1000 kg and coal consumption by 400 kg per MWh
generated by the residential PV systems.

The contribution of this paper consists of providing software architecture and func-
tionalities for prosumers, including interactions, in order to promote and replicate its usage.
The authors of the current version of PV-OPTIM would like to mention that it was used
for simulations and results in [22,23], which is referred to as “Mind the Gap between PV
Generation and Residential Load Curves”. Therefore, in “Mind the Gap between PV Gen-
eration and Residential Load Curves”, we described the methods and algorithms, whereas
in the current work, we provide the software architecture that implement the methods
and algorithms [23] and functionalities for the proposed prototype for prosumers. By
promoting free software applications to prosumers, we believe that pro-environmental
attitudes will increase. Moreover, the PV-OPTIM provides support for trading activities on
LEM, allowing prosumers to create bids.

2. Literature Review

Several recent studies focused on smart Home Energy Management (HEM) [24–28].
Several machine learning algorithms to assist a smart HEM process were proposed [27].
In order to minimize energy costs, it receives the following as input data: prediction of
load, wind and PV generation forecast, and real-time prices. The objective function is to
minimize the costs, which makes this HEM different from our proposal. Furthermore, the
control of appliances was not envisioned in this study.

Concepts, configurations, and enabling technologies for a HEM were underlined [28].
A multi-objective HEM system based on optimization algorithms and IoT was also pro-
posed in [29]. The optimization method, which is based on a new improved version of the
Butterfly Optimization Algorithm (BOA), consisted of two main goals, energy consumption
cost and user satisfaction, whereas ZigBee is proposed as communication protocol due to
its lowest consumption among various wireless technologies. The results are compared
with the Particle Swarm Optimization (PSO) algorithm and BOA. However, this study did
not propose a real-time control algorithm and technologies to achieve it.

Another study strengthened HEM systems, including IoT, to support smart cities,
DSM, and new business models [30]. It aimed to find out trends, opportunities, future
research, and challenges revealing cybersecurity, privacy, scalability, and interoperability
issues. The authors found out that some of them may even expose residents to health risks.
They also mentioned several ready-to-use HEM products: Smart Nest thermostat, Norm
Smart Thermostat, Ambi Climate, Keen Home, etc.

An optimization strategy consisting of deep reinforcement learning for HEM was
proposed [31]. The strategy consisted of a deep Q-learning (DQN) and double DQN
(DDQN) to schedule the operation of appliances. The DDQN proved to be better for
minimizing the cost. The results are compared with a PSO algorithm and validated using a
PV-battery system.

Two comprehensive reviews on smart HEM were provided in [24,25]. A power
management of PV system output is proposed in [6] to integrate flexible appliances and
harvest benefits from RES and load flexibility. An intelligent controller based on an adaptive
neuro fuzzy inference system was conceived to use two PV systems and provide energy
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supply for buildings according to their load profiles. The results provided the maximum
usage of PV system output.

Furthermore, a Smart Adaptive Switching Module (SASM) architecture using fuzzy
logic for an efficient integration of RES was proposed [32], showing a case study of a PV
system located in Hulubeşti, Romania. The SASM works by considering the appliances size,
their operational priority, and the PV output forecast. It connects the load using several
fuzzy logic rules. Moreover, intelligent systems can be integrated with LEM to use the
surplus and increase the revenue of the households [33–35].

Additionally, proposals for practical implementation of HEM to minimize the energy
cost have been provided on GitHub (https://github.com/alabatie/optim-pv-battery#
readme, accessed on 1 November 2023). Competitions on “Power Laws: Optimizing
Demand-side Strategies hosted by DrivenData” (https://drivendata.co/blog/power-laws-
optimization-winners/, accessed on 1 November 2023) provided interesting solutions to
optimize the usage of a PV system and storage (battery), but the control is not included.
They consisted of dynamic programming Q-Network and deterministic policy network.
Grey systems and reinforcing learning are also promising in developing innovative HEM
systems [36].

PV systems are becoming increasingly prominent due to their enhanced efficiency,
just as global power demand continues to rise. A primary focus for both researchers
and the industrial sector remains the optimization of power extraction from PV panels.
Several enhancements have been introduced to enhance the performance of PV systems
and maximize their utilization. These include techniques such as MPPT controllers, cooling
and cleaning systems, tracking systems, floating PV systems, and the integration of PV-
storage. In reference [4], an extensive review was conducted, particularly emphasizing
solar tracking and floating PV systems. This review covers the concepts, advantages, and
limitations of floating PV systems in the context of PV power optimization.

Efficiently integrating EVs into the future energy system is an important step in
reducing carbon emissions within the energy sector. The utilization of EVs not only
provides system flexibility but also offers various revenue-generating opportunities for
users across multiple scenarios. In a recent study, researchers employed linear and mixed-
integer linear programming algorithms to model the optimization of PV systems and
the integration of PV with trading, specifically focusing on households equipped with
bidirectional charging EVs [37]. The study focused on charging and discharging efficiencies
of bidirectional EVs using linear the mixed-integer linear programming MILP. As a result,
the revenues derived from this approach were found to be 30% lower when compared
to the linear programming approach, which assumed fixed efficiencies. For an average
German household using a bidirectional EV to optimize PV, the annual revenues amount
to approximately EUR 310, with the majority of earnings occurring during the summer
months. However, when incorporating local energy trading and leveraging the EV, an
additional EUR 530 per year could be added to the overall revenue.

Paper [38] outlines an optimization approach for a hybrid PV/wind energy system,
with a primary focus on minimizing both the loss of load probability and the overall system
cost. The study is structured into several key components, including the optimization of the
PV array, wind turbine, battery system, determining the optimal tilt angle for the PV array,
and sizing the inverter optimally. The overarching objective of this optimization effort is
to identify the ideal capacities for the PV array and wind turbine, ultimately leading to
the most cost-effective system configuration. To accomplish this, a hybrid algorithm was
employed, combining various methods to determine the optimal system configuration.

In [39], a comprehensive literature review was undertaken to gain insights into various
approaches and goals related to the optimization of PV and thermal systems. The research
specifically compared two multi-objective evolutionary algorithms: one based on decom-
position and the other utilizing multi-objective particle swarm optimization. The analysis
focused on assessing the energy and exergy efficiencies within the proposed system. The
findings of this investigation revealed that both energy and exergy efficiencies experienced
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a significant increase as the ambient temperature rose. Ultimately, the study concluded that
the first method, based on decomposition, outperformed the second method in terms of
optimizing the proposed PV/thermal system.

The widespread adoption of solar PV systems, complemented by the careful selection
of an appropriately sized battery, stands as a highly favored approach for minimizing
energy costs and facilitating a seamless transition towards sustainable energy practices.
The primary objective is to attain self-sufficiency and sustainability while reducing reliance
on the traditional electrical grid. To achieve this, another study [40] introduced two
pivotal elements: an efficient energy management model and the optimal sizing of battery
systems. The development of the energy management system relies on linear programming
techniques, with solutions sought through the application of both simplex and interior-
point methods. By leveraging these approaches, the study aimed to effectively curtail the
overall energy consumption costs and, in parallel, reduce dependence on the electrical grid,
thereby promoting more sustainable and self-reliant energy usage.

The widespread deployment of photovoltaic (PV) systems presents new challenges,
particularly concerning the management of power fluctuations resulting from the increasing
penetration of PV energy into the economy, grid stability, and energy exchanges. In this
context, the concept of self-consumption, involving the local utilization of a portion of
generated PV energy, emerges as a solution to mitigate variations in solar power production,
thereby alleviating stress on the grid. Another study focused on optimizing the integration
of PV systems on the rooftops and facades of buildings with a particular emphasis on
enhancing self-consumption objectives [41]. These objectives encompassed various aspects
such as reducing energy exchanges with the grid, bolstering grid stability, and maximizing
economic profitability. The research explores how different parameters, including building
consumption patterns, load profiles, and building height, influence the optimal integration
of PV systems in France. The results emphasize that the most effective placement of PV
systems is notably impacted by the variables examined and the precise objectives of the
optimization process. This underscores the intricate interdependencies of various factors
when striving to achieve an efficient integration of PV systems.

The challenge of load matching poses a significant hurdle to the widespread adoption
of PV systems in building applications. For instance, ref. [42] aimed to address this issue by
undertaking a load matching assessment and optimization of PV systems across various
climate zones in China. The study investigated the impact of factors such as the tilt
angle, orientation, PV plot ratio, and building height on the attainment of zero energy
buildings. The outcomes of the load matching assessment reveal that in all climate zones
of China, rooftop PV systems in low-rise buildings can generate sufficient electricity to
fulfill a substantial portion of the energy requirements, amounting to at least 70% of the
total demand. This underscores the feasibility of PV systems in helping meet the energy
needs of these buildings, contributing to the advancement of sustainable and energy-
efficient structures.

3. Methods

PV-OPTIM is developed based on the methodology proposed in the authors’ previous
work, “Mind the Gap between PV Generation and Residential Load Curves” [23], that
describes an Adaptive Optimization and Control (AOC) module that forecasts the PV
output, optimizes the load, monitors and controls appliances following four steps: (i) data
processing and PV forecast; (ii) day-ahead optimization; (iii) real-time control; (iv) eval-
uation (as in Figure 1). In Step 1, data are extracted and processed from the following
sources: weather APIs (current weather and predictions), IoT appliances, or smart plugs
and inverter (including battery system if connected). The records are pre-processed and
loaded into a local database. Then, the PV Forecast Algorithm (PVFA) is applied on the
weather predictions extracted from the APIs to forecast the PV output for the next days
on an hourly basis. In Step 2, the Day Ahead Optimization Algorithm (DAOA) is applied
to optimally schedule the appliances based on the available PV power and operating con-
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straints set by the user. As a result, the optimal schedule is obtained and saved in the
local database. In Step 3, Real Time Control Algorithm (RTCA) continuously monitors
the operation of the PV systems (including the batteries if connected) and the operation
of the appliances. It also checks for the start/end time of the scheduled appliances and
switches on/off the corresponding devices. The objective of RTCA is to closely follow
the generation curve and to fit the load to the available PV power. Therefore, RTCA im-
plements several operating rules that interrupt or reschedule some appliances if the load
exceeds the available generation power or if the battery is discharging below the thresholds
provided by the user. The evaluation of the results is performed in Step 4 using several
well-known metrics for prediction, including Root Mean Squared Error (RMSE), coefficient
of determination (R2), and Mean Absolute Percentage Error (MAPE), and six measures
to quantify the benefits of the AOC, including total daily Cost, total daily Income, and
Self-Sustainable Ratio (SSR) calculated after Optimization (CostOd, IncomeOd, SSROd) as
well as after Real-time control (CostRd, IncomeRd, SSRRd).
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Figure 1. Overview of the AOC module implemented in the PV-OPTIM software.

As depicted in Figure 1, PV-OPTIM software consists of two components: the PV-
OPTIM app, which is a web application that enables user interface, and the AOC module with
three algorithms implemented in Python and running on a Raspberry Pi. The orchestration
pipeline between the algorithms, request/response flows, and the database is implemented
in Node-RED. To communicate with the inverter and the weather APIs, http requests are
used. For smart plugs or IoT appliances, Message Queuing Telemetry Transport (MQTT)
messages are used to read the consumption data and send switch on/off commands. The
algorithms implemented in the AOC module are briefly described in the following section.

PVFA provides the PV forecast for the next 24 h using five Machine Learning (ML)
ensemble models trained on the previous 30 days records of the weather and PV generation
data: Random Forest, Gradient Boosting, eXtreme Gradient Boosting, Histogram-based
Gradient Boosting, and Voting. The data preparation, modeling, training, and tuning
of the ML models are described in the AOC methodology in “Mind the Gap between
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PV Generation and Residential Load Curves” [23], including the detailed flowchart and
pseudocode. The output of the PVFA represents the hourly values of the PV forecast.

The main objective of DAOA is to efficiently use the PV availability determined by
the PVFA and maximize the consumption during the PV generation hours. In case PV
generation is not sufficient to cover the load (in case of cloudy days or if the appliances
must operate during night hours), the objective function is to minimize the electricity cost
using the tariff rates provided by the grid supplier. DAOA is a heuristic algorithm that
iterates through the list of the programable appliances, and, at each step, it schedules the
optimal time slot for each appliance by following its objective function.

For the optimization, the prosumer inputs the following data through the PV-OPTIM
interface: characteristics of the appliances (capacity, required operation time, type) and the
constraints regarding the operation of the appliances during the day (duration, number of
operations or cycles, preferences regarding the operating time slots). The appliances are
divided into three categories (types) based on their operating cycle: (1) interruptible—their
operation can be interrupted any time, and their schedule can be split into multiple time
slots; (2) shiftable—their operation cannot be interrupted, and the schedule should cover
the entire operating cycle expressed by the required operation time; and (3) storage (battery
type)—their charging can be interrupted. For example, if the Air Conditioner (AC) is set as
interruptible and the user intends to use it 120 min between 9:00 AM and 1:00 PM, then
DAOA may split the operation into four time slots of 30 min. In case of an electric oven,
the cycle cannot be interrupted, so if the user set its operating hours between 11:30 AM and
2:00 PM with a duration of 60 min, then DAOA schedules the entire cycle at a convenient
time depending on the availability of the PV generation. As a result, DAOA determines
the optimal start and end time for each programmable appliance and saves the optimal
schedule into the database.

In real-time, RTCA reads the optimal schedule and decides whether to start or delay the
appliances depending on the availability of the PV generation. The appliances are divided
into two categories: controllable—their operation can be delayed or interrupted by RTCA;
non-controllable—their optimal schedule is not altered by RTCA. For example, if the user
set the washing machine as non-controllable and DAOA schedules its operation between
9:00 AM–11:00 AM, then RTCA will start the appliance at 9:00 AM and will not interrupt
the operation even if the PV generation is not sufficient to cover the load. For a controllable
appliance (e.g., a heating device or AC), RTCA may delay its start time or interrupt it if the
PV generation is not available. Therefore, RTCA adjusts the load to the generation curve
to minimize the deficit and to reduce the electricity costs. Its efficiency depends on the
user option regarding the number of appliances that are set as controllable. If in case all
appliances are non-controllable, then RTCA will act only as an automation system that
implements the optimal schedule without reducing the real-time deficit. Benefits can be
obtained if more appliances are set as controllable and RTCA reduces the load as much as
possible to fit the PV generation curve. A full description of the algorithms including the
mathematical models, flowcharts, and pseudocodes are provided in the authors’ previous
work “Mind the Gap between PV Generation and Residential Load Curves” [23].

4. Software
4.1. Software Architecture

PV-OPTIM is developed on two functional layers or modules that can be integrated
with a third layer that provides a friendly Graphical User Interface (GUI), allowing users
to configure their appliances, set up control options, analyze the optimal schedule, the
PV generation, and the surplus or deficit for trading (as in Figure 2). Layer 1 contains the
implementation of the PVFA and DAOA algorithms PV-OPTIM software is licensed to use
under the Apache 2.0 license and is uploaded on the GitHub repository (https://github.com/
AdelaBara/PV-OPTIM, accessed on 1 November 2023).

https://github.com/AdelaBara/PV-OPTIM
https://github.com/AdelaBara/PV-OPTIM
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Layer 1—PV-OPTIM Forecast & Optimization aims to optimally schedule the electricity
consumption for the day ahead by considering the PV generation forecast, tariff rates,
and the user constraints regarding the operation of the appliances. Layer 1 is developed
based on the following algorithms, already described in [23]: the PV Forecast algorithm
(PVFA), which uses ML models to forecast the day-ahead PV generation based on the
previous 30 days records, and the Day Ahead Optimization Algorithm (DAOA), which uses
PVFA output, tariff rates, and the operation constraints of the appliances to optimally
schedules the day-ahead consumption. Layer 1, located in the GitHub repository, can be
used independently of Layer 2 and 3. The current configuration consists of four input files
(.csv) and two monolithic Python files, PVForecast.py and PVOptim.py that implement PVFA
and DAOA algorithms. The input data of the PVForecast.py can be provided as .csv files
containing the following data:

- Time series data of the weather records in proximity of the PV system: temperature
(◦C), humidity, cloud cover (%), UV index (file weather_readings.csv).

- Time series data of the PV generation corresponding to the generated power (kW)
and, if available, the status or operation code of the inverter to validate the output (file
inverter_readings.csv). The data sets contained by these two csv files should contain
records for at least 30 days before the forecasting period with the same time resolution.
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- Estimation of the weather parameters (temperature, humidity, cloud cover, UV index) for
at least 24 h ahead using the same parameters and metrics as in file weather_readings.csv.
The forecasting data should be included in the file weather_forecast.csv.

The output of the PVForecast.py is the prediction of the PV output for the next pe-
riod that corresponds to the period of the weather forecast or maximum 10 days in case
weather_forecast.csv contains a larger set. The values are stored in inverter_forecast.csv. PVOp-
tim.py uses, as input, the PV forecast and two more .csv files containing the following data:

- Tariff rates applied by the electricity supplier for the next 24 h (tariffs.csv).
- The list of the appliances that will be scheduled, their characteristics (capacity, required

operation time), and the operation constraints for the next 24 h (app_list.csv and
app_constraints.csv).

The output of the PVOptim.py is the optimal load schedule for the next 24 h stored in
optimal_schedule.csv. The file contains rows for each scheduled appliance with the following
attributes: ID appliance, optimal start time, optimal end time, and capacity. As a result
of the optimization process, the deficit or surplus for each interval is also calculated as
the difference between the predicted PV generation and the total optimal load (including
non-programmable consumption). These values are saved in the deficit_surplus.csv file.

Samples of the input and output files are uploaded on the GitHub repository.
Layer 2—PV-OPTIM Monitor & Control enables real-time monitoring of the consump-

tion and PV generation, including SOC of the battery system in case it is connected to the
inverter. For Layer 2, a more complex architecture is involved, including components to
access the inverter’s data, to control appliances (via smart plugs or other actuators), and to
store data into a local database (MySQL or MariaDB). In the current version, PV-OPTIM
Control is connected to Growatt inverters and TP-Link smart plugs, and the connectivity
flows are modelled in Node-Red using Python functions and Kasa nodes. The flows can
be easily updated or extended for other inverters and smart plugs. The database schema,
the script, and the details regarding the connection are provided in the full documentation
of the software (https://github.com/AdelaBara/PV-OPTIM, accessed on 1 November
2023). Layer 2 contains several Python scripts that collect weather data (open_weather.py
and storm_weather.py), inverter’s records (inverter.py), and appliances’ data (app_monitor.py),
as well as two Python scripts (app_scheduler.py and PVControl.py) that control the operation
of the appliances and implement the Real Time Control algorithm (RTCA) described in the
authors’ previous work, “Mind the Gap between PV Generation and Residential Load
Curves” [23]. To automatically collect the weather data (current and forecast), the user
needs to provide the API keys and location (latitude and longitude) to weather.py for two
weather data providers: OpenWeather (https://openweathermap.org/api, accessed on
15 October 2023) and StormGlass (https://stormglass.io/, accessed on 15 October 2023).
The accounts can be easily created using free access plans. The weather data are requested
every 60 min using urllib.request Python package and then the received .json file is saved
into two database tables (T_WEATHER_READINGS and T_STORM_WEATHER).

For access to the inverter’s data, in the current version, PV-OPTIM is connected di-
rectly to the Growatt server using growattServer Python package (https://github.com/
indykoning/PyPi_GrowattServer, accessed on 15 October 2023; https://github.com/Sjord/
growatt_api_client, accessed on 15 October 2023). The user needs to supply the user-
name and password to connect to the Growatt server and inverter.py automatically re-
trieves the PV generated power, total load power, SOC, power imported from grid, battery
power, and the status of the inverter at 5-min intervals. The records are stored into table
T_METER_READINGS.

The load control is enabled by integrating, into the PV-OPTIM, several smart plugs that
measure the consumption power and allow switching on/off operations. The smart plugs
can act as meters and actuators for several appliances, including boilers, AC, heating devices
(radiators, convectors), water pumps, lights, and charging devices. To configure the smart
plugs, users should install Node-Red, open the orchestration flow (PVOptimFlow.json), and
set up the nodes corresponding to the smart plugs. The current version of the flow uses Kasa

https://github.com/AdelaBara/PV-OPTIM
https://openweathermap.org/api
https://stormglass.io/
https://github.com/indykoning/PyPi_GrowattServer
https://github.com/indykoning/PyPi_GrowattServer
https://github.com/Sjord/growatt_api_client
https://github.com/Sjord/growatt_api_client
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nodes that enables the connection to the TP-Link smart plugs (models HS100, HS110, and
KP115), but the flow can be easily modified to add/remove nodes for other providers such
as D-Link, Orvibo, Xiaomi, or other plugs that have npm nodes for connectivity. A complete
configuration guide for modifying the orchestration flow in Node-Red is provided in the
software documentation available on the GitHub repository. The readings from the smart
plugs nodes are collected every 30 s, joined, and sent to the Python script app_monitor.py
that validates and saves the records into the database table T_APPLIANCE_READINGS.
The time intervals for collecting data can be easily changed in the orchestration flow by
modifying the intervals of the input nodes.

The appliances are controlled in real time by the RTCA algorithm implemented as two
Python scripts: (i) app_schedule.py—runs every 30 s and checks if there is any appliance sched-
uled for operation or interruption. It queries the table T_APPLIANCE_OPTIMAL_SCHEDULE
to retrieve the list of appliances that are scheduled by DAOA algorithm. In case the list con-
tains actionable appliances, it switches off the appliances that need to end their operation
and calls PVControl.py to switch on or delay the schedule of the appliances that need to
start their operation; (ii) PVControl.py implements the operation rules of RTCA regarding
the load control depending on the availability of the PV generation, SOC and battery power.
Thus, it runs every 5 min after reading the inverter data by inverter.py and decides whether
to switch-on the scheduled appliances or delay their operation at convenient hours. In
case the load already exceeds the PV generation, RTCA interrupts the current operation of
one or more appliances, depending on the control rules set up by the user. By default, the
parameters of the control rules are set as follows:

- loadRate = 1000 W representing the maximum allowed difference between generation
and consumption. If the load exceeds the PV generation with more than 1000 W then
the interruptible appliances are switched off or delayed.

- SOCcharged = 60% representing the minimum battery charge level (%). If the battery is
below this level, the scheduled appliances are delayed until the SOC is 60%.

- SOCdischarged = 80% representing the maximum battery discharge level (%). If the
battery is discharging and is below 80% then the interruptible appliances are switched
off to protect the battery state and to allow its use during the night.

- PBATdischarge = 400 W represents the maximum allowed discharging power. If the
battery discharges more than 400 W, it may indicate that there is a high consumption
that will lead to the rapid discharge of the battery. Thus, RTCA can stop some
interruptible appliances in order to reduce the discharging power.

The parameters of the battery power and SOC are considered only if the battery system
is connected to the inverter. The parameters are stored in table T_SASM_PARAMS and can
be updated using the GUI detailed in the following section.

Layer 3—PV-OPTIM Dashboard enables user interaction with Layer 1 and Layer 2, and
it is developed using Flask development framework, Jinja template engine, and Bootstrap
4.5. The GUI is developed as a web interface with Bootstrap responsive components for the
front-end. The main components of Layer 3 are presented in Figure 3. The user interacts
with the web application and accesses the data regarding the PV generation, status of the
battery, total load, and monitors and configures appliances (capacity, required operation
time, type), plans their operation and sets up constraints, runs the optimizer to optimally
schedule the consumption, views the PV forecast, and configures the RTCA parameters.
The routing process between the http requests (GET, POST), URLs, and Python functions is
implemented in routes.py using [@app.route](‘/’) decorator. The controls of the user interface
(input, drop-down lists, calendar, submit buttons) are defined in forms.py and are used
by Jinja template engine to render them into the html pages. The database connection
and the classes of the data model are defined in the models.py using SQL Alchemy, an
Object Relational Mapper for Python. It maps each database table to a corresponding class,
defining data types, constraints, primary keys, and relationships between the data objects.
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4.2. Software Functionalities

PV-OPTIM aims to maximize the consumption from the available PV generation,
reduces the exchanges with the main grid, diminishes the electricity costs, and increases
prosumers’ independence regarding grid supply. These goals are transposed into the
functionalities of the software providing methods and tools for the prosumers to properly
configure the appliances, run the optimizer to schedule their operation, monitor the PV
generation and the battery system, and control the load. PV-OPTIM automates the data
collection and processing flow from weather APIs, smart plugs, and inverters, therefore
the users only need to initially configure the connection to these sources and the time
interval for the requests. The PV forecast and the load control in real time are automatically
performed by the PV-OPTIM using the control rules provided by the prosumer.

By automating these tasks, the user intervention is reduced and the interaction with
the application becomes facile. After configuring the orchestration flow in Node-Red,
the prosumer runs the web application and accesses it through a web browser. Then he
adds and configures the appliances that will be used for monitoring and control provid-
ing the following data in the web form (as in Figure 4): name and description, device
type (Interruptible, Shiftable, Battery), required operation time, maximum operation time,
time between operation, actionable (Yes/No), capacity, and maximum and minimum
consumption power.

The prosumer plans the operation of the appliances by specifying the constraints
regarding their start time, end time, number of cycles, and duration in the web form (as in
Figure 5a), then runs the optimizer to receive the optimal schedule of the load, using the
PV forecast for the selected day (as in Figure 5b).

The optimal schedule can be updated by modifying the start and end time of the
appliances or by deleting or adding new appliances that the user will use. The optimizer
can be run again to re-schedule, or the user’s plan can be saved without running the
optimization, but it will be controlled by the RTCA algorithm in real time to minimize the
deficit between the PV availability and total load. In real time, the prosumer can monitor
the appliances or the total load, PV generation, and SOC of the battery (Figure 6) and
compare the PV forecast with the actual output (Figure 7).
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For the control rules regarding the loadRate, SOCcharged, SOCdischarged, and PBATdis-
charge parameters, the user can adjust them in the Parameters Configuration page. In case a
controllable appliance is scheduled to start, the RTCA checks if the total load including the
consumption of the appliance will not exceed the PV generation plus the loadRate parameter.
If there is a deficit, then the appliance is re-scheduled to start after 10 min, but without
exceeding its maximum start time provided by the user. Furthermore, in case the total
load exceeds the generated power plus loadRate, then RTCA switches off some appliances
that are currently operating and re-schedules them. The batteries connected to the inverter
are protected by the RTCA, which does not start an appliance if the SOC is below SOC-
charged parameter. It also interrupts some appliances if the battery is discharging below
SOCdischarged or if the power discharged from the battery is greater than PBATdischarge.
Therefore, the battery system is protected and kept within certain charging limits set by the
user. The daily operation schedule is automatically updated by RTCA in case an appliance
is rescheduled or interrupted.

4.3. Deployment and Dependencies

PV-OPTIM is developed in Python and uses the following dependencies for the imple-
mentation of the algorithms: (i) pandas and numpy for data manipulation; (ii) mysql-connector-
python for data storage; (iii) scikit-learn and xgboost for ML algorithms; and (iv) plotly for
data visualization.

Layer 2 requires a database management system installation. MySQL or MariaDB
should be configured locally by setting the user account and creating the database schema
and tables. The database script is provided in the GitHub repository. In Layer 2, to
request weather data from the APIs, the urllib.request library is used. To retrieve data from
Growatt inverters, growattServer library can be used to allow easy access based on the API
provided by the Growatt server (https://server-api.growatt.com/, accessed on 15 October
2023). The orchestration flow that automates the data collection and connectivity between
inverter/smart plugs requires Node-RED installation and configuration. Furthermore, for
the connection to TP-Link smart plugs, Kasa node should be downloaded and installed
using Manage Pallete in Node-RED.

Layer 3 requires the following libraries of the Flask web framework: flask, flask_
sqlalchemy, flask_wtf, wtforms, WTForms-Alchemy, pymysql, flask_login, flask-bcrypt.

The deployment of the PV-OPTIM can be achieved on a Raspberry Pi device with a
minimum of 1 Gb RAM, 1.2 GHz CPU, and Wi-Fi connectivity. Raspberry Pi devices are
suitable for the deployment since they are powerful computers and are low-cost (35$) with

https://server-api.growatt.com/
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low-energy consumption (only 15 W). Any computer can be used for the deployment, but
the electricity consumption will be much higher than that of Raspberry Pi.

5. Results

To test the prototype and to extend the simulations detailed in the authors’ previous
work, “Mind the Gap between PV Generation and Residential Load Curves” [23], PV-
OPTIM has been deployed on real environments provided by two prosumers located in
Romania in different locations in the South-Est of the country: P1 of 5.4 kW installed power
with an on-grid inverter; P2 of 5.9 kW installed power with a battery system of 8.3 kW
capacity connected to a hybrid inverter without grid injection. Both prosumers use the
same hardware configuration (including TP-Link smart plugs for control) as described
in Section 4.3. The prototype was tested for almost 18 months between 1st of July 2022
and 20th of December 2023 and the results were evaluated using the following metrics:
RMSE, MAPE, R2, electricity cost, income, SSR, PV generation, and total load. The first
three metrics are used to evaluate the forecast accuracy. To calculate the cost and income,
the following rates are used: (i) a Time of Use (ToU) tariff: 0.6 EUR/kW during the night
(11 PM–7 AM), 0.8 EUR/kW during the day (7 AM–5 PM) and 1 EUR/kW during the peak
hours (5 PM–11 PM); (ii) a feed-in tariff with a constant rate of 0.5 EUR/kW.

To assess the results, two illustrative examples are provided for each prosumer to
cover the seasonal influence of weather on PV generation. Thus, for P1 one summer day
and one autumn day in 2022 are considered, while for P2 one summer day and one winter
day in 2023 are considered.

Results obtained in the case of prosumer P1.
For exemplification, one typical day of summer (29 July 2022) and another typical

day of autumn (09 November 2022) are depicted in this case. For the summer day, the
PV forecast indicates a good yield with 70% power generation availability during the day,
reaching its maximum of 3.8 kW at noon (as in Figure 7a). Since the weather predictions
are extracted from the web APIs, their predicted values influence the PV forecast, as can be
noticed from Figure 7b. In this case, the two weather APIs provide predictions (represented
by PV Min and PV Max Forecast) with relatively small differences that are easily mediated
by the PVFA algorithm. In Appendix A, in Figure A1, greater differences can be observed
especially between the values of the cloud cover. These values are used to calculate the
solar irradiance and then to forecast the PV output (Figure A2).

For the summer day, prosumer P1 plans to use the following appliances: water heater
(WH) between 10:00 AM–7:00 PM, AC between 11:00 AM–4:00 PM, washing machine (WM)
between 11:00 AM–2:30 PM, electric oven (EO) between 12:00–1:00 PM, and water pump
(WP1) between 9:30–11:30 AM. Then the optimizer is run to obtain the optimal schedule
(as in Figure 8).
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The generation exceeds the load during the day (as in Figure 8) and prosumer P1 can
sell the remaining quantities to the grid and obtains an income of 7.5 EUR. Since P1 does
not have a battery system, during the night for the load consumption (lights, refrigerator,
surveillance systems, TV, and other non-programable appliances), the electricity cost is
0.48 EUR. Considering the surplus of the generation during the summer day, the RTCA
acts only as an automation system that starts and stops the programable appliances at the
scheduled hours, without interrupting or rescheduling them.

In case of the autumn day, the PV generation availability decreases to 43% of the
installed power, but still, on a sunny day, P1 plans to operate the following appliances:
water heater between 10:00 AM–6:30 PM, washing machine between 10:00 AM–3:00 PM,
and two heating devices: one between 11:00 AM–7:00 PM for 2 h and the other between
11:00 AM–7:00 PM for 90 min. The optimizer schedules the appliances during the hours
with maximum PV availability (as in Figure 9).
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Evaluation Metrics Day 1 (29.07.2022) Day 2 (06.11.2022) 01.07.2022–31.12.2022 
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In real-time, the RTCA implements the optimal schedule and follows the PV generation
curve. For the control rules, if P1 sets the loadRate = 600 W then the RTCA does not interrupt
the appliances after 3:30 PM, but the cost is 1.1 EUR. If the loadRate = 200 W, then the RTCA
interrupts the heater and the cost decreases to 0.91 EUR. The income of the day is 1.95 EUR
since only 3.89 kW is injected into the grid.

The results for the summer and autumn days and the aggregated values for the entire
evaluation interval are centralized in Table 1 for prosumer P1.

Table 1. Evaluation metrics for P1.

Evaluation Metrics Day 1 (29.07.2022) Day 2 (06.11.2022) 01.07.2022–31.12.2022

RMSE 0.26 0.34 0.31
MAPE 0.15 0.21 0.18
R2 0.96 0.92 0.94
Electricity Cost (EUR) 0.48 0.91 Daily average: 0.79 Total: 118
Income (EUR) 7.5 1.91 Daily average: 4.8 Total: 866
Self-sustainable ratio (%) 98% 94% 87%
PV generation (kW) 23.2 13.6 Daily average: 13.8 Total: 2372
Load (kW) 8.8 10.4 Daily average: 9.2 Total: 1639

Results obtained in the case of prosumer P2.
Similar scenarios are applied in the case of P2, but with more appliances. For

the control rules, P2 sets the configuration parameters as follows: loadRate = 1000 W,
SOCcharged = 85%, SOCdischarged = 85%, and PBATdischarge = 700 W. Two cases are ana-
lyzed for P2: a summer day and a winter day of 2023. In the summer day (Figure 10a),
P2 schedules multiple appliances: water pumps, electric oven, AC in several cycles, and
a water heater. Since the generation power exceeds 3 kW during 10:30 and 14:30, these
appliances are operating without interruption. After 15:00, the generation curve has mul-
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tiple spikes that causes the battery to supply the load. When SOC is below 85%, RTCA
interrupts the appliances and allows the battery to charge with the available PV power. It
charges up to 90% to cover the load during the night.
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During a winter day (Figure 10b), P2 schedules the electric oven between 12:00–14:00
and two heating devices. Since it is a winter day and the PV system starts to generate
later than in summer and the battery is discharged much more in the morning, the RTCA
delays the operation of the appliances until the battery is 85% charged (after 11:15). It also
interrupts the operation of the heating devices when loadRate is greater than 1000 W. It
reschedules the heaters during 2:30 and 4:00 PM, but interrupts them without re-scheduling
after 4:00 PM when the battery is less than 85% and the discharged power is greater than
700 W. Thus, at the end of the PV generation interval, the battery has a SOC of 90% that
supplies the non-programable load during the night.

As can be noticed from Figure 10, in both cases the power imported from grid is 0 kW,
so the RTCA maintains the battery charge to cover the load and to provide a SSR of 100%
for the prosumer. By setting high values for SOCcharged and SOCdischarged, the number of
discharging cycles is reduced, and the battery life is protected.

In the case of prosumer P2, the results regarding the forecast metrics (RMSE, R2, and
MAPE) are similar to the results provided in Table 1. Analyzing the SSR for P2, on average,
it is 99%. In only 15 days, in December 2022 and during the last week of November 2023, P2
switched to grid due to high degree of cloud cover, snow, or rain. For multiple consecutive
months in the analyzed interval (July–November 2022 and January–October 2023), the
SSR is 100% and the total electricity cost is zero although the electric cooling/heating
devices, water pumps, and water heater were energized without scarcity to assure the
prosumer’s comfort. Therefore, we can conclude that by integrating the PV forecast with
load optimization and adaptive real time control PV-OPTIM supports prosumers to increase
their independence from the main grid and to reduce the electricity costs.

The functionalities implemented in PV-OPTIM and its results indicate that the software
can be considered an advanced HEM system. Currently, there are multiple open-source
HEM systems implementations like Home Assistant (https://home-assistant.io/, accessed
on 15 October 2023), BEMOSS (http://www.bemoss.org, accessed on 15 October 2023),
Open Energy Monitor (https://openenergymonitor.org, accessed on 15 October 2023),
and GroHome (https://www.ginverter.com/solutions/grohome-system, accessed on 15
October 2023). These offer numerous benefits due to their open-source nature, allowing
widespread use at minimal cost. These solutions enable various providers to develop
compatible interfaces and offer the flexibility for enhancements by developers and re-
searchers. However, a potential downside is their complexity for non-technical users.
BEMOSS, specifically, is a Python-based energy management platform designed for small
and medium-sized commercial buildings, facilitating energy efficiency and optimal electric-
ity usage. It integrates with cloud services for enhanced functionality. Home Assistant and
Open Energy Monitor focus on home automation and energy consumption monitoring,
respectively, without integrating the forecast component. GroHome offers an advanced
system integrating solar, storage, and smart devices for efficient energy use, but with-
out optimization or forecast. Overall, these systems are designed to monitor and control
smart devices, offering user-friendly applications and automated features tailored to user
preferences, including energy usage monitoring and recommendations. In comparison,
the PV-OPTIM software offers several key benefits for users interested in solar energy
management and optimization:

(i) Ease of use: PV-OPTIM is designed to be user-friendly, allowing users to manage
and monitor their PV systems without needing extensive technical knowledge. This
accessibility makes it suitable for a wide range of users, from residential to commercial.

(ii) Integration with IoT appliances and smart plugs: through Node-RED, the software is
capable of seamlessly connecting with a variety of IoT devices and smart plugs. This
integration means that PV-OPTIM can control and monitor energy consumption from
multiple sources and devices, providing a comprehensive HEM solution.

(iii) Integration of the models for PV power forecast, load optimization, and adaptive,
automatic control of smart appliances in such a way as to closely follow the generation
curve to increase the SSR and reduce the electricity costs.

https://home-assistant.io/
http://www.bemoss.org
https://openenergymonitor.org
https://www.ginverter.com/solutions/grohome-system
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(iv) Protection of battery life: by intelligently managing charging and discharging cycles
based on the control rules, PV-OPTIM ensures that batteries are not overused or
underutilized, thus extending their usable life.

6. Conclusions

Bearing in mind that the practical integration of RES is essential for our sustainable
development, this paper presents the architecture, functionalities, and deployment of the
PV-OPTIM software—developed as an open-source modular application for prosumers.
Therefore, in this paper, we described how to implement and replicate PV-OPTIM software
that is based on methods and algorithms previously published by the authors in “Mind the
Gap between PV Generation and Residential Load Curves”. The three-layer architecture of
the PV-OPTIM allows users to customize the implementation and independently configure
the components. Thus, they may choose to use only Layer 1 to obtain the PV forecast and
optimally schedule their load for the next day. Moreover, after optimization, the surplus
and deficit are provided, allowing users to eventually set up bids for LEM. Layers 2 and 3
provide more advanced monitoring and controlling functionalities, but they require more
experience and skills regarding software configuration.

Furthermore, the PV-OPTIM layers can be easily integrated into more complex Energy
Management Systems or Smart Home applications, representing an advanced management
solution for prosumers with PV panels and storage systems. They can be extended to
integrate with the LEM where prosumers and consumers could sell surplus or cover deficit
at lower prices, mitigating energy poverty and extracting benefits from both RES and
IoT assets.

Thus, the use of PV-OPTIM will contribute significantly to the reduction of prosumers’
expenses by maximizing consumption from their PV systems in order to increase the degree
of independence and to support trading activities on the LEM.
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