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Abstract: The wind profiler radar (WPR) system requires a dual-polarized antenna with multiple
low-sidelobe and high-gain beams to facilitate the detection of weak signals reflected by atmospheric
turbulence. This paper proposes a dual-polarized continuous transverse stub (CTS) K-band antenna
with four reconfigurable beams, which comprises a series-fed CTS array and four 1-to-14 power
dividers as line source generators (LSGs) to generate a high-quality quasi-TEM wave. The CTS
element incorporates a stepped transition radiation stub design and employs a short cutoff stub on
the upper surface of the series-fed parallel plate waveguide (PPW) to achieve optimal impedance
matching. The entire antenna is an all-metal structure with remarkably low loss, and low-cost
standard fabrication processes are employed for the prototype, which achieves fast reconfigurable
four-beam scanning to 15◦, with a gain of 31.09 dBi and sidelobe levels below −17.6 dB. Measurement
results in an anechoic chamber agree well with simulations, demonstrating the antenna’s ease of
manufacture, stability, and suitability for wind profile radar applications.

Keywords: continuous transverse stub (CTS); millimeter-wave (MMW) antenna; reconfigurable;
high-gain antenna; low sidelobe; wind profile radar

1. Introduction

The growing urgency surrounding global warming and low-carbon living has recently
spurred demand for green technologies to reduce carbon emissions [1]. Wind power,
heralded as the foremost cost-effective and environmentally benign form of renewable
energy, has emerged as a pivotal focal point for energy transition in major economies
around the world [2]. In the year 2023, China achieved a record-setting installed capacity
for wind power, experiencing a cumulative augmentation exceeding 30 gigawatts. The
escalating prominence of wind power is anticipated to assume a progressively significant
role within China’s energy sector. While wind power generation offers a nonpolluting and
readily accessible energy source, its inherent attributes of stochasticity, uncertainty, and
intermittency present notable challenges to the stability and safety of energy systems [3].
Therefore, accurately and stably predicting the response of wind turbines in this constantly
changing environment is an urgent issue for the operation planning, scheduling, and
real-time balancing of large-scale wind power integration [4]. On the other hand, one of
the most critical factors affecting power generation efficiency is the directional control of
wind turbines, and the parasitic loads generated by yaw misalignment can adversely affect
the lifespan of components, potentially leading to consequential losses [5]. Adjusting the
status of wind turbines based on real-time and accurate wind farm information is cru-
cial for improving economic efficiency and solving operation and maintenance issues [6].
Wind profile radar offers an effective solution for optimizing the utilization of wind re-
sources, which employs multibeam antennas with varied orientations for acquiring 3D
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wind field information [7–10]. As shown in Figure 1, The WPR is situated in the vicinity
of the wind turbine, and the computation of wind field speed and direction at varying
distances above the radar is derived from the turbulent velocity vectors detected along four
distinct directions.
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Spaced antennas (SA) and Doppler beam steering (DBS) are commonly employed tech-
niques in WPR [11–16]. In the case of SA, a hexagonal array consisting of three 18-element
linearly polarized circular patch antennas is employed to introduce a time delay among the
three receivers for wind speed estimation [17]. DBS is favored in WPR for its higher SNR.
Large phased-array radars with electronic beam scanning are preferred over mechanical
beam scanning due to size and accuracy advantages [18]. Previous works [19–21] have
proposed phased-array radars using electronic beam scanning at 205 MHz, 449 MHz, and
1280 MHz, respectively. They aim to detect air turbulence beyond 2 km, necessitating
longer wavelengths. However, the bulky Yagi or patch WPR antennas pose challenges
for applications below 300 m altitude, such as wind turbine efficiency, wind farm prof-
itability, and low-level airport wind field information. Millimeter wave technology offers a
promising compact alternative with its smaller wavelength and high resolution [22]. In [23],
a miniaturized millimeter-wave phased-array radar was proposed for wide-angle fast
scanning radar at 77–81 GHz. However, the complexity of the design and high costs were
attributed to the many phase-shifting chips required. In [24], a 15–16 GHz CTS antenna
for satellite communication terminals utilized a rotating ridge waveguide slot array for
±30◦ beam scanning, emphasizing large-angle beam scanning for short-range detection of
echo signals with an aperture efficiency exceeding 60%. However, antennas for turbulence
detection prioritize characteristics such as high gain and low sidelobe [25].

This paper proposes a millimeter-wave CTS antenna for weak signal detection in wind
profile radar. It exhibits a reconfigurable four-beam capability, high gain (>31.09 dBi), and
low sidelobe (<−17.6 dB). This antenna offers an effective solution for detecting weak
signals from wind turbulence within a 300 m range. The organizational structure of this
paper is as follows: Section 2 discusses the design of each part of the antenna, Section 3
discusses the antenna performance and radar test results, and Section 4 concludes.

2. Antenna Design and Analysis

The illustrated CTS antenna, depicted in Figure 2a, consists of three distinct layered
blocks. Block B1 is allocated for the CTS elements, whereas blocks B2 and B3 are designated
for the waveguide series feed and feed transition. Figure 2b,c explicate the feed structure,
outlining the WR42 to series-fed waveguide transition and a 1-to-14 series-fed waveguide
power divider functioning as the LSG. The antenna’s radiation section is a 21 × 21 array of
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CTS elements, generating directional beams in four orthogonal orientations with 15◦. The
specifics are elaborated in the subsequent sections.
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2.1. CTS Radiation Stub

The original prototype of this CTS element is a transverse slot on the upper surface
of the PPW wall in the XOY plane. As shown in Figure 3a, the waveguide wall extends
along the Z-axis to form a transverse stub with width S2. As the current on the PPW wall is
cut off, a displacement current is generated at the connection between the PPW and the
transverse stub, so the electromagnetic wave propagating perpendicular to the PPW wall is
excited. The electromagnetic wave reaches the end of the transverse stub along the Z-axis
and radiates to the free space.
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The radiation slot width S1 determines the radiation performance of the CTS element
at the end of the transverse stub, and the selection of the radiation slot width depends
on many factors. To ensure monomodal transmission and suppress higher-order modes
supported by PPW, the cutoff frequency of higher-order modes corresponding to the width
of S1 should be set at the boundary of the operating frequency band. Here, the cutoff
frequency is set to 34 GHz, so the maximum value of S1 is 4.4 mm. On the other hand,
the radiation slot generates a voltage difference on the upper surface of PPW that can be
equivalent to a series impedance on the transmission line. If the width of the radiation slot
S1 is adjusted, the load impedance Zload of the radiation slot at the end of the transverse
stub is also changed [26]. Therefore, a narrow slot size may lead to a mismatch between
the load impedance and the fed PPW transmission line and result in significant energy
loss [27]. Hence, a stepped transition is incorporated between the PPW transverse stub
and the radiation slot to enhance impedance matching between the load and transmission
line. Based on the length of the transverse stub and the impedance of both the transmission
line and the radiation slot, the equivalent impedance Zse of the slot at the transverse stub’s
junction with the PPW can be determined. By adjusting the width S2 of the transverse
stub, the characteristic impedance of the transmission line of the transverse stub can be
adjusted to change the energy entering the transverse stub. The coupling coefficient is
controlled using the characteristic impedance ratio of the transverse stub to the PPW. The
CTS radiation elements are excited in series using quasi-TEM waves from four LSGs on each
side. Figure 3b provides 3D details of the radiating part, which consists of a short cut off
stub for impedance matching and a step width radiating stub. Series feeding in the antenna
design gradually decreases feeding amplitude, which can cause main beam deflection
and sidelobe rise. To mitigate this, the excitation amplitude of each radiation element is
precisely controlled through the meticulous design of the height and width of the stepped
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radiation stub [28]. Taylor weighted shaping further reduces sidelobe levels. To optimize
radiation characteristics and reflection loss, a short cutoff stub is etched on the upper
surface of the PPW at the middle of the two radiation stubs. The cut off stub’s resonant
frequency can be precisely controlled by adjusting the cut off stub’s height and width,
thereby enhancing the antenna array’s impedance matching and radiation efficiency [29].
With a cut off stub height of 1.6 mm and a width of 1.74 mm, the reflection coefficient at the
PPW port, which feeds the radiation element array, attains an optimal value below −15 dB.
Figure 4 shows the reflection coefficient of the PPW feeding port, and it indicates that a
good match has been achieved between the radiation element array and the feeding port.
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The size of the short circuit cut off stub is determined via the impedance requiring
compensation for achieving matching between the transverse stub and the PPW. The
short cut off stub, which is equivalent to a shunt capacitor, induces a phase shift on
the transmission line. Once the size of the short circuit cut off stub is determined, the
corresponding phase shift is subsequently fixed. As a result, the main beam direction
of the antenna is dictated by the transverse stub spacing, which determines the phase
difference between adjacent radiation slots [30]. Figure 5 illustrates the variation in the
beam deflection angle and main beam pointing with different p values.
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In this design, the deflection angle is fixed at 15 degrees. Additionally, to prevent
grating lobes, the radiation element is set with a period of 9.5 mm. The optimized pa-
rameters for the radiating elements, shown in Figure 3, are S1 = 4.7 mm, S2 = 1.3 mm,
S3 = 1.74 mm, h1 = 1.8 mm, h2 = 3.75 mm, h3 = 3.08 mm, w1 = 4.14 mm, and w2 = 3.44 mm.
By rotating the radiation stub 90◦ along the center, two CTS radiation nodes with identical
structures and orthogonal positions are formed. There are four PPW series feed ports on
four sides of the CTS array, and each feed port corresponds to one beam direction. For
example, when electromagnetic energy is fed from port 1, due to the fixed phase difference
between array elements, the radiated electromagnetic waves superimpose in free space to
generate a beam inclined 15◦, and the remaining electromagnetic energy is absorbed by the
matching load connected to port 2. In addition, the PPW transmits TEM mode, resulting in
the cross-polarization of the antenna being very low, and the two ports (port 3 and port 4)
adjacent to the feed port are highly isolated. This configuration enables the antenna to
perform dual-polarization and excellent broadband polarization isolation.

2.2. 1-to-14 Linear Source Generator Feed Structure

The 1-to-14 series feed structure is designed to generate high-quality quasi-TEM waves,
as shown in Figure 6, which excite the intermediate CTS radiating stubs with a height
matching the international standard waveguide WR42.
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The parallel-fed line source employs Huygens’ principle to generate an approximate
plane wave effect through the superimposition of waves, where metallic posts are employed
at the terminals of the metal plates in each window to minimize interference between
adjacent windows and improve the amplitude balance of the quasi-TEM waves.

Moreover, Figure 7 illustrates that the metallic posts within the windows are employed
to adjust the phase of electromagnetic waves, achieving equal amplitude and phase char-
acteristics. A metal pillar in front of the window inhibits tilted-wave transmission in the
PPW and minimizes reflections caused by window coupling. The middle metal column
reflects the electromagnetic waves from the transition structure output port. At the end of
the series-fed feed structure, λ/4 metal sheets terminate propagation and suppress reflec-
tions [31]. The radius R3 and position d4 of the metal pillar within the window is adjusted
to maintain consistent phase characteristics and ensure uniform power distribution among
the windows, and the simulation can be focused on the specific configuration illustrated in
Figure 8a,b. This configuration maintains the power divided ratio between Port n1 and Port
n2 as 1:7-n. After evaluating various combinations, the optimal radius R3 is determined
to be 0.7 mm, and position d4 = 7 mm, considering the larger part spacing for ease of
manufacturing and minimizing amplitude fluctuations.

Other optimized parameters include d1 = 3 mm, d2 = 5 mm, d3 = 0.2 mm, d5 = 10 mm,
d6 = 9 mm, w1 = 12 mm, w2 = 5 mm, w3 = 4 mm, w4 = 16 mm, R1 = 1 mm, R2 = 0.8 mm,
R4 = 1 mm, and R5 = 1 mm. The T-junction was designed to a stepped structure, leading to
increased bandwidth and reduced electromagnetic wave reflections.
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Figure 9a depicts the electric field pattern of the completed feed structure, demon-
strating a uniform and in-phase plane wave. Thus, it can be seen that the metallic posts
positioned ahead of the power divider window effectively inhibit wave propagation in the
inclined direction within the PPW. This arrangement minimizes reflections resulting from
window coupling. The electromagnetic wave emitted from the power divider’s output port
exhibits favorable phase consistency. Consequently, the pure TEM mode wave is formed
via superimposition in the PPW, which is instrumental in achieving excellent polarization
purity and suppressing sidelobes. Figure 9b shows the S11 performance, with values below
−20 dB in the frequency range of 22 GHz to 25 GHz and reaching −33.4 dB at 24 GHz. The
good return loss characteristics facilitate maximal energy radiation through the antenna’s
radiation stubs, thereby enhancing the overall radiation efficiency of the antenna. The
feed structure is connected to the PPW series feed port and applied to all four sides of the
radiating stub to create a four-beam arrangement.
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2.3. Waveguide Transition Structure

In order to connect the WR42 input port of the 1-to-14 line source generator to the
single-pole four-throw switch of the transmitter module in the RF link, a coaxial line to
waveguide transition feed structure is designed between the 1-to-14 feed structure and the
coaxial cable. These four transition structures are rotationally symmetric along the center,
surrounded by the radiation element array, and directly connected with the 1-to-14 feed
structure through the WR42 rectangular waveguide. The inner core of the coaxial line is
inserted into the rectangular waveguide along the direction of the electric field, and TE10
mode electromagnetic waves are excited. The size of the waveguide only allows for the
transmission of the main mode. As a result, the excited high-order mode decays rapidly
with the probe position away and does not propagate in the waveguide. Despite some
introduced losses, the structure’s central bend reduces volume for easy integration with
the quarter RF switch below.

Figure 10a illustrates the optimized transitions with parameters L1 = 80 mm and
L2 = 16.7 mm. Excess waveguide lengths are incorporated to mitigate higher-order modes
arising from structural discontinuities. Figure 10b depicts transmission and reflection
coefficient characteristics to different step heights D, with D = 1.00 mm being the chosen
optimum. In the whole working frequency band, the transmission attenuation coefficient is
higher than −0.2 dB, and the reflection coefficient is lower than −28 dB, realizing shallow
loss. These configurations accommodate the demands for volume reduction and seamless
integration with the radar system.
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3. Experimental Results and Discussion

The reconfigurable four-beam dual-polarized CTS system is partitioned into three
components for machining purposes. Each part is fabricated using aluminum and brass
materials, assembled meticulously using milling techniques, and fastened with screws.
In Figure 11a, side-view images depict the assembled CTS array antenna. B1 represents
the CTS radiation stub array, B2 denotes the 1-to-14 feed structure, and B3 signifies the
coaxial to waveguide transition structure. These three integral components are secured
sequentially from top to bottom, constituting the CTS array antenna. Figure 11b shows the
antenna tested in the microwave anechoic chamber. The overall dimensions of the CTS
array are 288 mm × 288 mm × 21 mm. All measurements are performed in a microwave
anechoic chamber.
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3.1. Reflection Coefficient and Isolation

Due to the commendable consistency in amplitude and phase of TEM mode waves
propagating within PPWs, the two ports with orthogonal feeding directions exhibit high
isolation, and the cross-polarization is minimal. Co-polarization isolation between port 1
and port 2 is below −21 dB, while cross-polarization isolation between port 1 (port 2) and
port 3 (port 4) is below −55 dB, as depicted in Figure 12. The bandwidth encompasses the
entire range of 23 GHz to 25 GHz.
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3.2. Antenna Gain

All simulations were performed in the CST microwave studio. Figure 13 exhibits the
agreement between simulated and measured antenna gains across various frequencies
for beam 1, beam 2, beam 3, and beam 4. The simulated antenna gain at 24 GHz is
32.19–32.6 dBi with a radiation efficiency of 78.9%, while the measured antenna gains
range from 31.09–31.89 dBi. The slight differences can be attributed to measurement errors
and manufacturing tolerances. The CTS array demonstrates the capability for frequency
scanning attributed to the broadband characteristics of the CTS element and the feed
structure. As the CTS array is fed in series, variations in frequency induce changes in the
phase difference among its elements, consequently altering the beam direction of the array
antenna. At 24 GHz, the beams deflect ±15◦ ± 0.2◦ as intended, and the measured gain
remains stable around 31 dB from 23 GHz to 25 GHz, with sidelobe levels below −17.6 dB.
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3.3. Comparison with Other Works

Table 1 compares the proposed CTS antenna with other works, highlighting its advan-
tages of high gain (>31 dBi), low sidelobe (<−17.6 dB), dual-polarization, and four beams.
In contrast to the LSG represented as a horn combined with a reflector as outlined in [32–35],
the LSG configured as a power divider offers the convenience of feeding the radiation
element array responsible for generating four tilted beams, while concurrently exhibiting
a lower reflection coefficient. The solutions proposed in [33] are fabricated employing
substrate-integrated waveguide technology, characterized by its small volume, yet con-
comitantly incurring notable losses. The LSG, configured as a multi-horn-fed reflector,
enables a parallel-fed radiation element array to generate multiple beams within a singular
plane. However, it lacks the capability to generate tilted beams positioned in two orthogo-
nal planes, rendering it unsuitable for deployment in WPR applications. Although authors
of [36] used a series feeding network, the scanning beam was limited to one plane and
could not generate four rotationally symmetric beams. Unlike the mentioned works [34,37]
focusing on large-angle beam scanning, our antenna maintains a compact profile while
offering dual-polarization and excellent performance. This millimeter-wave CTS antenna
presents a promising alternative to wind profile radar for detecting wind turbulence signals
at heights below 300 m.

Table 1. Performance comparison of CTS arrays.

Ref BW (GHz) Gain (dBi) SLLs (dB) Polarization Scanning Range

[32] 71~86 >29.3 <−13.3 Single N/A
[33] 19~31 >19.7 <−15 Dual ±22.5◦

[34] 71~86 >17.5 N/A Single −14~14◦

[35] 71~86 >23.9 <−18 Single N/A
[36] 33~37 >20.9 <−10.6 Single ±38◦

[37] 26~34 >22.5 <−13.5 Single −68~42◦

This
work 23~25 >31.0 <−17.6 Dual ±15◦

3.4. Experiments on the Radar System

The proposed CTS antenna was integrated into a single-antenna low-altitude wind
profile radar to validate its performance and advantages. This single-antenna radar offers
the benefits of lower cost and increased portability compared to multiantenna systems,
expanding its applicability. The principle of wind profile radar in measuring wind speed is
that strong backscattering occurs when the size of atmospheric turbulence is comparable to
half of the electromagnetic wavelength. The wind profile radar detects the electromagnetic
wave signal scattered by atmospheric turbulence, and according to the Doppler frequency
shift and echo time difference, the velocity and distance of turbulence relative to the radar
can be calculated. However, the turbulence echo signal is very weak and accompanied by
random fluctuations, so the wind profile radar antenna needs to have high gain. At the
same time, ground clutter produces strong interference to the radar, and the suppression of
antenna sidelobe is significant. As shown in Figure 14, the radar system mainly comprises
five parts: transmitter and receiver, CTS array antenna, radome, and baseband with
data interaction function. The four ports of the CTS array antenna are connected to the
transmitter and receiver channels through four circulators, enabling four-beam functionality
and improved isolation. Above the CTS array antenna is the radome. The radome protects
the antenna, and the significant slope of the conical structure surface makes it difficult for
rain and other sundries to attach to the radome to ensure that the radar can work normally
in adverse weather.

The wind profile radar was placed on the bank of the Yangtze River in Shanghai for
outdoor testing. The CTS array antenna was installed inside the wind profile radar. As
shown in Figure 15, metal baffles are installed around the radar to shield the interference
from surrounding ground clutter. The radar data were recorded using a computer, which
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was 15 m away, to avoid the interference of electronic equipment on the radar. The conical
radome was not installed in this outdoor test to avoid the impact of other factors on the
antenna. The weather was clear that day, and only a breeze blew along the river. The radar
could detect the noticeable Doppler frequency shift of the scattering signal generated by
the relative movement of atmospheric turbulence.
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Figure 15. The testing site environment.

The CTS array antenna, featuring four 15◦ inclined beams, captured scattering signals
at corresponding angles. Utilizing the Doppler frequency shift of these signals enabled
the calculation of four velocity vectors relative to the radar coordinate system, and the
horizontal wind speed and direction could be calculated by combining the vectors. Accord-
ing to this principle, the wind profile radar can monitor the wind speed in the horizontal
plane at multiple heights in real time. Figure 16 shows improved wind field measurement
(at 300 m) with this antenna in the radar architecture. It can be seen that although many
clutter signals are generated due to the surrounding complex electromagnetic environment
interference, the atmospheric turbulence echo signal is still clearly visible. The high-gain
and low-sidelobe characteristics of the CTS array antenna improve the quality of the echo
signal detected using the radar. This brings considerable convenience to the subsequent
radar signal processing to reduce clutter interference and improve the accuracy of wind
speed calculation.
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4. Conclusions

This paper presented a 24 GHz CTS array antenna with a high-gain, low-sidelobe,
reconfigurable, dual-polarized, and low-profile design. The CTS array configuration was
realized by integrating CTS radiation stubs, four 1-to-14 LSG series-fed feed structures, and
coaxial-to-waveguide transition structures. This design achieved a four-beam fast switching
scanning configuration with ±15◦ deflection, tailored for the specific requirements of
millimeter-wave wind profile radar applications. The antenna’s performance was validated
through simulation, fabrication, and measurement, showing sidelobe levels below −17.6 dB
and gains over 31.09 dBi at 23–25 GHz, which agreed well with the simulated results. With
its reconfigurable capability, dual-polarization, high gain, low sidelobe, and compact
profile, this antenna can be applied for detecting weak wind turbulence signals within a
300 m range.
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