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Abstract: Toponymic entity recognition is currently a critical research hotspot in knowledge graphs.
Under the guidance of the national ancient book protection policy and the promotion of the wave
of digital humanities research, this paper proposes a toponymic entity recognition model (ALBERT‑
Conv1D‑BiLSTM‑CRF) based on the fusion of a pre‑trained language model and local features to ad‑
dress the problems of toponymic ambiguity and the differences in ancient and modern grammatical
structures in the field of the Genglubu. This model extracts global features with the ALBERT mod‑
ule, fuses global and local features with the Conv1D module, performs sequence modeling with the
BiLSTM module to capture deep semantics and long‑distance dependency information, and finally,
completes sequence annotation with the CRF module. The experiments show that while taking into
account the computational resources and cost, this improved model is significantly improved com‑
pared with the benchmark model (ALBERT‑BiLSTM‑CRF), and the precision, recall, and F1 are in‑
creased by 0.74%, 1.28%, and 1.01% to 98.08%, 96.67%, and 97.37%, respectively. Themodel achieved
good results in the field of Genglubu.

Keywords: toponymic entity recognition; Genglubu corpus; pre‑trained language model; local
feature; digital humanities

1. Introduction
Genglubu is a kind of ancient navigation guidebook formed through fishermen’s long‑

termpractical activities and accumulated experience in fishery production on the islands of
the SouthChina Sea and itswaters [1]. As a national intangible cultural heritage, Genglubu
has constructed a perfect navigation system for the South China Sea, recording numerous
geographical entities, including features such as shape and orientation, as well as a large
amount of information such as the distance between islands and reefs, the direction of sea
currents, and navigational relationships, amongwhich the toponymic entities are themost
valuable type of geographic information resources [2]. A toponym is an exclusive name
that refers to a specific spatial location [3]. Its naming is usually influenced by a variety
of factors, such as history, culture, geology, climate, and folklore, and reflects the compre‑
hensive characteristics of a region in terms of natural conditions, human history, and social
culture, and plays an essential role in various fields such as territorial management, map‑
ping, navigation, tourism, and cultural heritage [4]. Toponymic entity recognition (TER),
which refers to determining the location boundaries of toponymic entities fromnatural lan‑
guage texts and making type judgments about them [5], is a subset of the Named Entity
Recognition (NER) task, which is of great significance as an upstream task for constructing
a knowledge graph in the geography field. Most of the existing research in Genglubu has
been conducted from a traditional humanities and social sciences perspective and technol‑
ogy. It has several problems, including a lack of clear knowledge organization and weak
correlation between geographic entities. The Opinions on Promoting the Work of Ancient
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Books in a New Era states that new technologies should be used to realize the digitization
and intelligence of ancient books [6]. Knowledge graphs can not only help the implicit
relationships and enhance the correlation between data but can also reduce the difficulty
of knowledge dissemination in related fields.

For low‑resource domains such as Genglubu, under the guidance of national policy
and the promotion of artificial intelligence technology, this paper designs and constructs a
toponymic entity recognition dataset (Genglubu ToponymData, GTData) for the TER task
in Genglubu. Meanwhile, we propose a toponymic entity recognition model (ALBERT‑
Conv1D‑BiLSTM‑CRF) and analyze and compare it with other models to obtain superior
results. It aims to provide a database for the construction of geographic knowledge graphs
of the South China Sea and to promote cross‑disciplinary development.

The remainder of this paper is organized as follows. In Section 2, we introduce the
literature review. Section 3 describes the model structure in detail. Section 4 describes the
experimental setup and the analysis of the results. Section 5 summarizes the results.

2. Literature Review
In recent years, deep learning models have been effective in areas such as CV and

NLP [7,8], especially in TER [9,10]. Compared with traditional entity recognition methods,
deep learning can automatically learn critical features and higher‑order abstract features
from the original dataset, avoiding the need for domain experts to define rules or carry out
complex feature engineering manually. Because it can use many parameters, it has appar‑
ent advantages in applying deep semantic knowledge and alleviating data sparsity [11]. It
maps raw textual data into a vector or matrix space. It maps words to their correspond‑
ing entity classes using different neural networks [12]. The toponymic entity recognition
model based on deep learning mainly comprises an embedding layer, a feature encod‑
ing layer, and a label decoding layer. Among them, the feature encoding layer mainly
includes Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs),
Long Short‑TermMemory (LSTM), Gated Recurrent Units (GRUs), as well as Hybrid Neu‑
ral Networks and Attention Mechanisms. CNNs can increase computation speed by par‑
allelizing data processing and, therefore, have a faster computational efficiency. Gritta
M et al. proposed a new approach to systematically encoding geographic metadata in
conjunction with CNNs [13]. This approach involves converting place names in natu‑
ral language text into corresponding latitude and longitude coordinates and combining
them with map information to improve the robustness of the model with a joint training
approach. Kumar A et al. faced the problems of unreliable fields, grammatical errors,
and non‑standard abbreviations of place name information on Twitter. They proposed a
CNN‑based model that extracts geolocation information from Twitter and achieves an F1
of 96.0% [14]. CNNs have the problem of missing contextual information when processing
long text or sequence data. RNNs are superior to CNNs in terms of performance in pro‑
cessing sequence data and can better capture the dependencies between sequence data. By
analytically comparing ARIMA, LSTM, and BiLSTM models, Siami‑Namini et al. verified
that training data in the opposite direction helps sequence modeling and can significantly
improve the accuracy of time series [15]. Chen T et al. proposed a divide‑and‑conquer ap‑
proach by first classifying sentences into three different types using Bilstm‑CRF and then
utilizing 1d‑CNNs to perform sentiment analysis on each type of sentence, which effec‑
tively improves the performance of sentence‑level sentiment analysis [16]. Shen Si et al.
proposed an RNN‑based Chinese character‑level annotation model by combining RNNs
and Chinese word features, which significantly improved the F1 value of toponymic enti‑
ties [17]. Rhanoui M et al. addressed the problems of large data size and conflicting view‑
points in the task of document‑level sentiment analysis by constructing a CNN‑BiLSTM
model for extended text viewpoint analysis using word embedding in Doc2vec. They ob‑
tained excellent results on a French newspaper article [18]. PengN et al. attempted to train
NER and disambiguation as a joint task using an LSTM‑CRF model, which improved the
F1 value by almost 5% on the results of previous studies [19]. Lu W et al. constructed a
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model for prediction by combining CNNs, BiLSTM, and Attention Mechanisms for non‑
linear time series such as stock price and obtained better results [20]. Dong C et al. con‑
structed a BiLSTM‑CRF model based on character‑level and part‑level feature represen‑
tations for Chinese‑named entity recognition. They achieved the best F1 value of 90.95%
on the MSRA dataset [21]. With the development of pre‑trained language models (PTLM)
such as BERT, PTLM can capture most of the semantic information of Chinese characters
in a better way compared with previous studies. Ning X et al. introduced bi‑directional
attention routing and sausage measure to project data onto complex surfaces with nonlin‑
ear mapping, which enables the approximation of any nonlinear function with arbitrary
accuracy and maintains the local responsiveness of the capsule entities. The experimental
results are excellent [22]. Ma K et al. proposed a neural network model based on BERT‑
BiLSTM‑CRF for Chinese place name entity recognition, which performs well on MSRA,
GeoTR‑20, and other datasets [23]. ZiniuW et al. proposed a hybrid neural networkmodel
based on BERT to address the problems of not fully considering the context and ignoring
the local features in the NER task by combining the BiLSTM and IDCNNmodels to extract
the features, which resulted in a 4.79% improvement in the F1 value compared with the
baseline model on the CLUENER dataset [24].

Deep learning has made superior progress in TER tasks. However, problems that
need to be addressed, such as data scarcity, difficulty in contextualizing contextual under‑
standing, and place name ambiguity. These problems mentioned above are also reflected
in the field of Genglubu. First, Genglubu has high scarcity as it is a kind of literature con‑
taining unique geographical features. Its data samples are small, and the data available for
training are limited. These problems cause difficulties for the model in discovering hidden
features in the data. Second, the way of documentation in Genglubu differs from modern
times, especially the rich contextualized information in Chinese. Finally, the phenomenon
that the same name can be used as both a place name and an orientation exists in Genglubu,
increasing the ambiguity in the corpus. Based on the above research results, this paper uti‑
lizes deep learning models to research toponymic entity recognition in Genglubu.

3. Methods
3.1. Architecture of the Model

TheALBERT‑Conv1D‑BiLSTM‑CRF toponymic entity recognitionmodel proposed in
this paper consists of four main components. From top to bottom are the global feature
extraction module, local feature extraction module, sequence modeling module, and de‑
coding module, as shown in Figure 1. First, the global feature extraction module consists
of the ALBERT layer. It is mainly responsible for mapping text sequences into vectors in
a high‑dimensional vector space and learning high‑quality features and global semantic
information of the input text. Second, the local feature extraction module consists of the
Conv1D layer. It performs a convolution operation on the output of the ALBERT layer to
extract local features that may involve individual characters or phrases by sliding a learn‑
able convolution kernel over the sequence. Again, the sequencemodelingmodule consists
of BiLSTM layers. It mainly performs bi‑directional modeling of the outputs of the upper
layer to better capture the deep semantics and long‑distance dependency information of
the sequences and further improve the model’s ability to characterize the sequences. Fi‑
nally, the decoding module consists of the CRF layer. It accepts the output sequences
from the BiLSTM layer. It improves the accuracy and robustness of the sequence labeling
task by calculating the label scores and transfer probabilities to obtain the optimal labeled
sequences. Each layer takes on a different function and has a clear order to work together
to accomplish the sequence labeling task.
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3.2. ALBERT
ALite BERT (ALBERT)model is a pre‑trained languagemodel thatwas improved and

optimized based on the BERT model, which allows ALBERT to perform better in some
natural language processing tasks [25,26]. The ALBERT model uses techniques such as
parametric factorization of embedding vectors and cross‑layer parameter interactions to
reduce the number of parameters significantly, thus improving the model’s training speed
and generalization performance. It also introduces the Sentence Order Prediction (SOP)
task instead of the Nest Sentence Prediction (NSP) task to improve the performance of
the downstream tasks [27]. It has the same basic structure as the BERT model: a deep
bi‑directional coded representation model based on the Transformer encoder. The multi‑
head attention mechanism in Transformer can make the same word in different sentences
form different vector representations, which is effective for solving the multiple meanings
of a word.

This paper uses the ALBERT layer to preprocess the input text. It is responsible for
extracting the contextual semantic information of the sequence data as a global feature
extraction module. Take data “自无乜线至深圈使壬丙三更” as an example, as shown in
Figure 2. Suppose the input sequence is X = (Xo, X1, . . . , Xn), where Xi denotes the ith to‑
ken. For each Xi, token embedding, segment embedding, and position embedding are
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used to obtain Ei
token, Ei

segment, Ei
position, respectively. The three embedding vectors are

weighted and summed according to a specific ratio, and the computation process is as
follows:

E = α1Ei
token + α2Ei

segment + α3Ei
position (1)

where α1, α2, and α3 denote the scaling factor of the three embedding vectors, generally
being a real number between [0, 1] and satisfying ∑3

j=1 αj = 1.
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Then, the ALBERT layer learns the semantic information of each token in the con‑
text and is able to capture the long‑range dependencies in the sequence. After the en‑
coding process of the multi‑layer Transformer, a high‑dimensional vector representation
T = (T0, T1, . . . , Tn) is obtained, and the specific learning process is shown in Figure 3.
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Among them, the i‑layer Transformer encoder calculation process is shown in
Equations (2) to (6):

t′i = Layer Norm(ti−1) (2)

t′′i = Multi Head Attention
(
t′i, t′i, t′i

)
(3)

t′′′i = Layer Norm
(
t′i + t′′i

)
(4)

t
′′′′
i = Feed Forward

(
t′′′i
)

(5)

ti = Layer Norm
(

t′′′i + t
′′′′
i

)
(6)

where Layer Norm is the normalization operation that reduces the effect of internal vari‑
able displacements, thus making the model more stable. Multi Head Attention is used to
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capture deep information in the input sequence better. Feed Forward is the feed‑forward
fully connected network that improves the Transformer’s nonlinear modeling capabilities
and increases the model’s degrees of freedom and its representational capabilities [28].

Since Genglubu belongs to the low‑resource domain and small‑scale dataset, to re‑
duce the risk of overfitting and improve the generalization performance and the training ef‑
ficiency, the parameters of the ALBERT layer are frozen during the training process. Freez‑
ing the ALBERT module makes the training focus on the task‑specific layer you added,
helping the model better adapt to name entity recognition.

3.3. Conv1D
Conv1D (1D Convolution) is a one‑dimensional convolutional layer used in this pa‑

per as a local feature extraction module to extract local features from the input sequence
with convolution operation [29]. The ALBERT model has excellent results in extracting
global features of the input sequence but falls short in extracting local features. When an‑
alyzing the corpus features, the local features are crucial in the field of Genglubu, and an
enhancement in the local features helps to classify the toponymic entities more accurately.
In addition, the spatial structure of the input sequences can be learned, thus helping to
improve the model’s generalization and reduce the overfitting problem.

After accepting the output vector T = (T0, T1, . . . , Tn) as the input of this module, a se‑
ries of convolution operations were performed to extract the local features of the sequence
and obtain a new feature sequence with more expressive capability C = (C0, C1, . . . , Cn).
The computation process is shown in Equations (7) and (8). Assuming that the convolu‑
tion kernel size is k and the number of output channels is c, the convolution output can be
expressed as Equation (7):

h = Conv1D(T, W) + b (7)

where W ∈ Rk×d×C is the convolution kernel tensor and b ∈ Rc is the bias vector. For the
ith output channel, the convolution operation can be expressed as Equation (8):

hi,j = relu

(
k

∑
s=1

d

∑
t=1

Ws,t,i × Tj+s−1,t

)
(8)

where j = 1, 2, . . . , n− k+ 1 denotes the starting position of the convolution operation, and
each position j will be given a feature vector hj ∈ Rc of c dimension. Based on the above
calculation, the new feature sequence is C = (C0, C1, . . . , Cn).

3.4. BiLSTM
Long Short‑TermMemory (LSTM) is a recurrent neural networkmodel that processes

sequential data. It consists of a recurrent unit, an input gate, a forgetting gate, and an out‑
put gate. It effectively solves the problem of gradient vanishing and gradient explosion
that occurs when training on long sequences by introducing a gating mechanism that can
memorize the information of the input sequence for a long time [30]. BiLSTM consists
of a forward LSTM and a backward LSTM, where the forward LSTM processes the input
sequence in chronological order, and the backward LSTM processes the input sequence
in reverse chronological order. Combining the outputs of the two directions gives the
bidirectional hidden state at each moment [31]. It can capture long‑term dependencies
in sequences better than unidirectional LSTM and improves the expressive power. Here,
the transformer is not used instead of BiLSTM. This is because the transformer is based
on attention, which weakens the position information in the computation process (relying
only on position embedding). Yan H et al. experimentally verified that BiLSTM outper‑
forms Transformer in the NER task, where relative positional information and orientation
information are essential, so the BiLSTM model was chosen [32,33]. The structure of the
BiLSTMmodel is shown in Figure 4. The output C = (C0, C1, . . . , Cn) of the Conv1D layer
is used as the input to this module. The long‑term dependencies of the input sequences
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are captured with the BiLSTM layer, and the output B = (B0, Bi, . . . , Bn) is input to the
next module.
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For the input sequence C = (C0, C1, . . . , Cn), the BiLSTM module deals with the for‑
ward and backward parts of the sequence data, using an LSTM model in different direc‑
tions with independent parameters. The LSTM module uses Ci to denote the cell state.
To avoid confusion and make the formulae clear, the input sequence C = (C0, C1, . . . , Cn)
is temporarily expressed as x = (x0, x1, . . . , xn). In the forward part, for the input xt, the
LSTMunit computes its hidden state and outputs it. Combiningwith Figure 5, the internal
computation process can be expressed as Equations (9) to (14):

ft = σ
(

W f xt + U f ht−1 + b f

)
(9)

it = σ(Wixt + Uiht−1 + bi) (10)

ot = σ(Woxt + Uoht−1 + bo) (11)

∼
ct = tanh(Wcxt + Ucht−1 + bc) (12)

Ct = ft ⊙ Ct−1 + it ⊙
∼
ct (13)

ht = ot ⊙ tanh(Ct) (14)

where σ is the sigmoid function and tanh is the hyperbolic tangent function, both are non‑
linear activation functions; ft, it, ot are the activation values of the forget gate, input gate,
and output gate, respectively; Ct is the cell state, and

∼
ct is an important parameter used to

update Ct, which can be understood as the candidate hidden state; W f , Wi, Wo, and Wc are
the weight matrices of the oblivion gate, the input gate, the output gate, and the cell state,
respectively; U f , Ui, Uo, and Uc are the weight matrices of the previous moment, respec‑
tively; and b f , bi, bo, and bc are the corresponding bias terms, respectively.

The above output is the output result of the forward part, so ht can be understood
as h f orward

t . The calculation process of the reverse part is similar to that of the forward
part, and finally, the outputs of the forward and reverse parts are spliced together. The
output result of the reverse part ht is understood as hbackward

t , and the final representation
is formed, as shown in Equation (15), which serves as the input of the downstream task:

Bt =
[

h f orward
t ; hbackward

t

]
(15)
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3.5. CRF
Conditional Random Field (CRF) is a discriminative model for predicting the output

sequence from the input sequence in a sequence labeling task. It uses conditional proba‑
bility distributions to model the dependencies between neighboring tags, normalizes the
upstream output by learning the transfer probabilities between tags, makes a global opti‑
mization of the predicted sequence, and finally, solves for the optimal labeled sequence.
In this paper, the CRF layer, as the last part of the model, receives B = (B0, Bi, . . . , Bn) as
input and gives the optimal labeling sequence by internal computation.

Suppose B = (B0, Bi, . . . , Bn) is represented by x = (x0, x1, . . . , xn) and the label se‑
quence is denoted as y = (y0, y1, . . . , yn), where yi is the label corresponding to xi. This
conditional probability calculation process is as follows:

P(y|x) = exp(S(y, x))
Z(X)

(16)

where Z(X) is the normalization factor, which is the sum of the scores computed for all
possible labeled sequences and is used to convert the numerator part into a probability
distribution. S = (y, x) denotes the scores at a given labeled sequence y and input se‑
quence x, which can be computed from the firing matrix E and the transfer matrix T, as in
Equation (17):

S(y, x) =
n

∑
i=0

(
Ei,yi +

n

∑
j=0

Tyi ,yj

)
(17)

where the transfer matrix T represents the transfer probability from the previous label to
the next label, and the firing matrix E is obtained by mapping the hidden state of each
position of the input sequence into the label space. After obtaining the conditional proba‑
bilities, optimization algorithms such as stochastic gradient descent are used to maximize
the log‑likelihood function and update the model parameters. During the prediction pro‑
cess, the predictions are decoded using the Viterbi algorithm to find the labeled sequence
predicted with maximum probability.

3.6. Loss Function
The loss function used in this paper is divided into two parts: the cross‑entropy loss

function and the CRF loss function. The cross‑entropy loss function focuses on themodel’s
accurate prediction of entity boundaries and categories. The parameters of the sequence
annotation layer are updated by calculating the difference between the predicted sequence
labels and the actual sequence labels:

Loss1 = −∑N
j=1 ∑C

i=1 yj,i ln
(
Sj,i
)

(18)

where N is the number of samples, C is the number of categories, yj,i is the true value of
the i‑th category in the j‑th sample, and Sj,i is the predicted value of the i‑th category in the
j‑th sample.
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The CRF loss considers the dependencies between label sequences to ensure the over‑
all soundness of the generated label sequences. It ismodeledusing a negative log‑likelihood
function. For a given input sequence x and actual label sequence y, the Loss2 can be ex‑
pressed as:

Loss2 = −ln(P(y|x)) (19)

The overall loss function consists of a weighted sum of the two components.

Loss = α1Loss1 + α2Loss2 (20)

where α1 and α2 are generally between [0, 1] and satisfy ∑2
i=1 ai = 1.

4. Experiment
4.1. Datasets and Data Labeling

The initial data of theGTData dataset comes frommore than twenty books ofGenglubu,
including Su Deliu, Su Chengfen,Wang Shitao, Zheng Qingneng, et al. We invited domain ex‑
perts to annotate and check this dataset to ensure the quality of the dataset, and finally,
check it manually as well as by code to ensure the uniqueness of the statements in the
dataset. The GTData dataset is shown in Table 1.

Table 1. Genglubu Toponym Data dataset.

Classifications Training Data Test Data Total Data

Number of sentences 2489 620 3109
Number of characters 42,797 10,776 53,573

Number of toponymic entities 5059 1262 6321

The GTData dataset has distinctive features compared with the publicly available
datasets MSRA and People’s Daily. In terms of average expected length (characters/
sentence), GTData (17.23) is much lower than MSRA (48.39) and People’s Daily (51.69).
In terms of toponymic entity density (toponymic entities/sentence), GTData (2.03) is much
higher than MSRA (0.82) and People’s Daily (0.87). In addition, there are apparent prefix
and suffix phenomena around place‑name entities in GTData. Combined with the analy‑
sis of the characteristics of the era, these are because the ancient language is shorter and
is more conducive to preservation and circulation, so the local characteristics in GTData
are critical. The labeling method is the BIO labeling method, which is widely used in NER
tasks. For example, for “自鸟仔峙去乙辛，用乙辛，二更收。”, the specific annotation for‑
mat is (O, B‑Toponym, I‑Toponym, I‑Toponym, O, B‑Toponym, I‑Toponym, O, O, O, O,
O, O, O, O, O, O, O, O, O, O, O), in which O denotes a non‑toponym, B‑Toponym denotes
the beginning of the toponym, and I‑Toponym denotes the interior of the toponym.

4.2. Experimental Setting and Assessment Indicators
The experimental environment of this paper is shown in Table 2.

Table 2. Experiment environment.

Experimental Environment Configure

Operating system Ubuntu Server 18.04 LTS 64 bit
CPU Intel(R)Xeon(R)Platinum 8255C CPU @ 2.50 GHZ
GPU NVIDIA T4
RAM 32 GB
Python 3.8.0
Pytorch 1.7.1
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Precision (P), recall (R), and the F1‑score (F1) were used as the evaluation indexes of
the experimental results. Their calculation processes are as follows:

P =
TP

(TP + FP)
(21)

R =
TP

(TP + FN)
(22)

F1 =
2 × P × R
(P + R)

(23)

where True Positive (TP) is the number of positive samples correctly predicted; True Neg‑
ative (TN) is the number of negative samples correctly predicted; False Positive (FP) is the
number of negative samples incorrectly predicted as positive samples; and False Negative
(FN) is the number of positive samples incorrectly predicted as negative samples.

4.3. Parameter Setting
In order to compare the performance of each model, the parameter configurations

were uniformly set as in Table 3, and the overfittingproblemwas avoidedusing the dropout
mechanism [34].

Table 3. Important parameter configurations.

Parameter Name Value

Hidden dim 768
Max_sequence_length 128
Transformer_layer_num 12
BiLSTM_layer_num 1

Learning rate 10−4

Dropout 0.5
Batch size 32

4.4. Analysis of Experimental Results
According to the above experimental setup, the trend in each evaluation index with

Epoch was obtained, as shown in Figure 6. It is clear from Figure 6a that BERT‑BiLSTM‑
CRF, RoBERTa‑BiLSTM‑CRF, ALBERT‑AM‑LSTM‑CRF, and the model in this paper have
a faster decrease in the loss and can achieve lower loss values. In contrast, the benchmark
model (ALBERT‑BiLSTM‑CRF) performs relatively poorly, worse than the previous four,
regarding both the rate of loss decline and the value of loss. A faster loss decline indi‑
cates that the model can converge faster during the learning process, indicating that the
model can learn the patterns and features in the data faster. A low loss value indicates that
the model performs better on the test set, which can measure the generalization ability of
a model.

Figure 6b represents the trend in precision with epoch, and it can be seen that the
ALBERT‑BiLSTM‑CRF, RoBERTa‑BiLSTM‑‑CRF, and ALBERT‑AM‑LSTM‑CRF models
have lower accuracy and almost the same effect. In contrast, BERT‑BiLSTM‑CRF and this
paper’s model are more effective, especially at epoch = 18; the effect of these two models
tends to stabilize, of which the effect of this paper’s model reaches 98%, which is slightly
better than the BERT‑BiLSTM‑CRF model. Compared with the benchmark model, the im‑
provement is nearly 0.74%.
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Figure 6c represents the trend in recall with epoch, and it can be seen that the recall of
ALBERT‑BiLSTM‑CRF and ALBERT‑AM‑LSTM‑CRF is significantly lower than the other
three models. The BERT‑BiLSTM‑CRF and RoBERTa‑BiLSTM‑CRF models have almost
the same effect. The model in this paper shows a significant increase in recall compared
with the benchmark model due to the introduction of the Conv1D model into the model
structure, which can better capture the local features and thus enhance the recognition
ability of the model and thus increases the recall from 1.28% to 96.67%. Although it is
slightly insufficient compared with BERT‑BiLSTM‑CRF, it should be considered that in
terms of parameters, the model in this paper is much smaller than the previous two mod‑
els, which significantly saves computational consumption and has higher computational
efficiency and lower cost. Therefore, the model in this paper is a superior choice under
resource constraints.

Figure 6d represents the trend in F1 with epoch, and the F1‑score is an essential in‑
dicator for evaluating the model to measure the overall comprehensive performance of
the model. It can be seen that the F1 of ALBERT‑BiLSTM‑CRF and ALBERT‑AM‑LSTM‑
CRF have a large gap compared with the other three models. The BERT‑BiLSTM‑CRF and
RoBERTa‑BiLSTM‑CRF models, as well as the model in this paper, have a more negligible
difference in F1, and all perform better. By summarizing the data in the above figure, the
performance can be obtained, as shown in Table 4.
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Table 4. Effects of different models on toponym entity recognition.

Model P (%) R (%) F1 (%) Duration of Training (s/Epoch)

BERT‑BiLSTM‑CRF 97.86 97.70 97.78 66.26
ALBERT‑BiLSTM‑CRF 97.34 95.39 96.36 60.56
RoBERTa‑BiLSTM‑CRF 97.31 97.86 97.58 /
ALBERT‑AM‑LSTM‑CRF 97.40 95.82 96.60 59.20
The model in this paper 98.08 96.67 97.37 61.59

We analyzed the four models regarding the loss function, precision, recall, and F1.
In summary, in the task of toponymic entity recognition, this paper’s model improves
by 0.74%, 1.28%, and 1.01% in P, R, and F1 compared with the baseline model ALBERT‑
BiLSTM‑CRF, respectively. As the model in this paper adds a local feature extraction layer
based on the baseline model, which enhances the local features of the text data, there is
an increase in computational resources, and the training time changes from 60.56 s/epoch
to 61.59 s/epoch, which reduces the computational efficiency by 1.7%. Compared with
the BERT‑BiLSTM‑CRF model, F1 is only 0.4% lower. Considering the computational re‑
sources and other aspects, the model in this paper is much smaller than the BERT‑BiLSTM‑
CRF model in terms of the number of parameters, so the training efficiency is improved
by nearly 7.05%. Therefore, the model in this paper has high performance while signif‑
icantly saving computational resources and is more suitable for running on equipment
with limited computational resources, thus improving the training speed and reducing the
training cost.

4.5. Ablation Experiment
In order to further evaluate the impact of each module on model performance, abla‑

tion was designed to validate the results by removing the ALBERT, Conv1D, and BiLSTM
modules, respectively. The experimental results are shown in Table 5.

Table 5. Results of the ablation experiments.

Model P (%) R (%) F1 (%)

The model in this paper 98.08 96.67 97.37
* ALBERT 93.21 94.47 93.84
* Conv1D 97.34 95.39 96.36
* BiLSTM 95.22 95.31 95.26

* ALBERT‑Conv1D 93.37 93.14 93.25
* Conv1D‑BiLSTM 94.52 93.86 94.19

Note: * represents the removal of the module.

By ablating theALBERT, Conv1D, and BiLSTMmodules separately, it can be seen that
each component contributes to model performance. Among them, the ALBERT module
has themost significant impact onmodel performance, and its extracted contextual seman‑
tic information plays a vital role in recognizing place‑name entities. Comparing the model
with the removal of the BiLSTM module and the full model, we observe a decrease in the
performance, which shows that the BiLSTMmodule plays a vital role in the long‑distance
dependencies in the whole sequence. In comparison, the Conv1D module had relatively
little impact. With Conv1D as the control variable, the performance of the ALBERT‑CRF,
BiLSTM‑CRF, and ALBERT‑BiLSTM‑CRF models all improved after adding the Conv1D
module, which shows that the Conv1D module has a certain positive impact on dealing
with the task of toponymic entity recognition in Genglubu.

4.6. Analysis of the Feature Vector
In the TER task, if the labels corresponding to two characters are of the same class,

the final higher‑order feature vectors of these two characters obtained after deep learning
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model training will usually have some similarity. The model will make the samples of
the same class closer in the vector representation space during the training process. T‑
SNE (t‑distributed stochastic neighbor embedding) is a nonlinear dimensionality reduction
technique thatmaps high‑dimensional data into a low‑dimensional spacewhile preserving
the relative distance between data points. It tends to map similar samples to neighboring
locations in the reduced dimensional space, thus preserving the similarity relationship of
the data [35].

Therefore, we take one batch of data for the case study of the feature vector (32 data
points, a total of 616 characters, 65 characters of the B‑toponym category, 97 characters of
the I‑toponym category, and 454 characters of the O‑category). The corresponding feature
vectors of the already‑trained data are dimensionality‑reduced with the t‑SNE algorithm
to see if meaningful features can be extracted. As shown in Figure 7, the samples corre‑
sponding to the same labels form three types of clusters. It can be seen that the model has
extracted meaningful features to some extent.
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4.7. Sensitivity Analysis of Hyperparameters
We aimed to provide the performance of these models under different hyperparam‑

eter settings by varying the hyperparameters, including the learning rate, batch size, etc.,
to show the robustness of the proposed method. Due to the excessive permutations of
different hyperparameters, we selected several parameter settings with common usage to
demonstrate the method.

Based on the hyperparameter tuning experiments, it can be seen from the results in
Table 6 that this paper’s method exhibits a superior F1 performance than the ALBERT‑
BiLSTM‑CRF model under different parameter settings (the enhancement ranges from
1.40% to 0.66%), which indicates that the model has a certain degree of robustness.

Table 6. Model performance with different hyperparameter settings (F1).

Model Parameters 1 Parameters 2 Parameters 3 Parameters 4

BERT‑BiLSTM‑CRF 97.85 97.78 97.53 97.49
ALBERT‑BiLSTM‑CRF 96.33 96.36 95.62 96.52
RoBERTa‑BiLSTM‑CRF 97.35 97.58 97.62 97.42
ALBERT‑AM‑LSTM‑CRF 96.44 96.60 96.27 96.35
The model in this paper 97.40 97.37 97.02 97.18

Note: The parameters are set as follows: 1 The parameters are set to learning rate = 10−4, batch size = 16,
epoch = 25, dropout = 0.5. 2 The parameters are set to learning rate = 10−4, batch size = 32, epoch = 25, dropout = 0.5.
3 The parameters are set to learning rate = 10−4, batch size = 64, epoch = 30, dropout = 0.5. 4 The parameters are
set to learning rate = 10−3, batch size = 32, epoch = 25, dropout = 0.3.

4.8. Model Generalization Validation
In order to validate the applicability and generalization ability of the model in this

paper in the general domain, validation was carried out on the public datasets: the MSRA
dataset and the People’s Daily dataset, respectively. Since this paper focuses on the task of
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toponymic entity recognition, a label reset operation was performed on the public dataset,
where all non‑toponymic entity labels were corrected to the label ‘O’ in order to facilitate
high‑quality evaluation of the model performance.

Figure 8a, b, and c shows the validation results for the GTData, MSRA, and People’s
Daily datasets, respectively. According to Figure 8b, the model in this paper reduces the
precision by 1.01% compared with the ALBERT‑BiLSTM‑CRF model. However, the recall
is improved by 2.17%, the F1 value is improved by 0.77%, and the overall performance is
better than the latter. According to Figure 8c, including the pre‑trained language model in
the BiLSTM‑CRF model has degraded the task in terms of performance. This may be be‑
cause the ALBERT model does not match the features of the toponymic entity recognition
task in some respects. It is better at handling sentence‑level tasks, while the toponymic en‑
tity recognition task focuses more on entity‑level tasks. In this paper, the Conv1D model
is introduced after the ALBERT module, which makes the model focus on local features
better, leading to an improvement in recognition. The experiments show that after intro‑
ducing the Conv1D model, the precision is improved by 6.77%, the recall is improved by
8.21%, and the F1 is improved by 7.53% compared with the ALBERT‑BiLSTM‑CRF model.
The model in this paper performs better on different datasets, indicating its good general‑
ization and generalization ability.
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5. Conclusions
Most of the existing research in the field of Genglubu in the South China Sea uti‑

lizes traditional social science and humanities tools and methods. It lacks effectiveness
in the protection and dissemination of Genglubu data. Therefore, facing the problems of a
lack of corpus, irregular geographical entity representation, and ambiguity of place names
in Genglubu, this paper constructs the GTData dataset and proposes a toponymic entity
recognition model based on the fusion of a pre‑trained language model and local features
(ALBERT‑Conv1D‑BiLSTM‑CRF). Experiments show that comparedwith other deep learn‑
ing models, the model in this paper achieves excellent performance on the GTData dataset
and the public dataset while considering the computational resources and computational
cost. This paper provides a new perspective for the research of Genglubu, helps to reduce
the difficulty of its dissemination, and provides a new paradigm for the research of digital
humanities. The next step focuses on expanding the featured literature corpus, granulariz‑
ing the toponymic entities, and improving the model, aiming to improve the performance
and robustness of the model and conduct relationship recognition studies to construct a
geographic knowledge graph for the South China Sea.
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