
Citation: Ji, Y.; Xiao, Y.; Gao, B.;

Zhang, R. Threshold/Multi

Adaptor Signature and Their

Applications in Blockchains.

Electronics 2024, 13, 76. https://

doi.org/10.3390/electronics13010076

Academic Editor: Mehdi Sookhak

Received: 13 November 2023

Revised: 4 December 2023

Accepted: 7 December 2023

Published: 23 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Threshold/Multi Adaptor Signature and Their Applications
in Blockchains
Yunfeng Ji 1,2, Yuting Xiao 1,*, Birou Gao 1,2 and Rui Zhang 1,2,*

1 Institutite of Information Engineering, Chinese Academy of Sciences, Beijing 100085, China;
jiyunfeng@iie.ac.cn (Y.J.); gaobirou@iie.ac.cn (B.G.)

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: xiaoyuting@iie.ac.cn (Y.X.); r-zhang@iie.ac.cn (R.Z.)

Abstract: Adaptor signature is a variant of digital signatures and useful for fair excheng in financial
applications such as cryptocurrencies, to name a few, off-chain transaction protocols, atomic swaps
and other privacy-enhancing mechanisms. However, similar to normal digital signatures, an adaptor
signature also suffers from the loss of the secret key and single-point failure, which is insufficient in
practice. In this paper, we address this constraint by introducing two new concepts as enhancements:
multi-adaptor signatures and threshold adaptor signatures. First, we propose the formal security
models for multi-adaptor signature and threshold adaptor signature. Then, we present specific
schemes for these two primitives based on the commonly used blockchain signature scheme Schnorr
and the post-quantum signature scheme Dilithium, respectively. Furthermore, we provide security
proofs for these four schemes. Finally, we demonstrate interesting applications for blockchains, such
as oracle-based conditional payment and n to n atomic swap.

Keywords: adaptor signature; multi-signature; threshold signature; blockchain; Schnorr; Dilithium

1. Introduction

Due to its decentralized, anonymous, traceable, and transparent nature, blockchain has
extensive applications. However, existing blockchain applications, such as cryptocurrencies,
face challenges like poor scalability and low throughput. Addressing these issues, payment
channel networks (PCNs) [1,2] establish channels on-chain, enabling numerous off-chain
transactions between users. This reduces on-chain transaction volume, increases transaction
throughput, and lowers on-chain costs. As a crucial technology for building PCNs in
blockchains, adapter signatures [3] serve as important building block in addressing issues
such as poor scalability and low throughput.

An adaptor signature is a cryptographic primitive that enables a signer to create a
pre-signature under its secret key, adaptable into a valid signature by a publisher possessing
a specific secret value. If the finalized signature becomes public, the signer can extract the
secret value employed by the publisher. In blockchain applications, adapter signatures can
be utilized in atomic swap [4], enabling two parties to proceed cross-chain fair exchange.

Adaptor signatures can be viewed as an extension of digital signatures to address
the lack of mutual trust. Aside from key generation, signing and verification algorithms,
there is a stage called pre-signing, where a pre-signing algorithm produces a pre-signature,
which can be verified by a pre-signature verification algorithm. To convert a pre-signature
into a normal signature, an adaptation algorithm and evidence extraction algorithm come
into place. Adaptor signatures possess two distinct capabilities, i.e., authorization and
evidence extraction, achieved by the integration of hard relations. Currently, motivated
by blockchains, many works proposed adaptor signature schemes based on Schnorr signa-
tures [3,5] and ECDSA signatures [3,6]. Additionally, for long-term security, there is also
work [7] that provided adaptor signatures based on lattice signatures.

Electronics 2024, 13, 76. https://doi.org/10.3390/electronics13010076 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13010076
https://doi.org/10.3390/electronics13010076
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13010076
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13010076?type=check_update&version=1

Electronics 2024, 13, 76 2 of 14

In an adaptor signature system, only a single signer is considered, which is often
insufficient in many scenarios. We consider the following two instances:

• In cryptocurrency transactions, the loss of the secrete key of the signer can lead to
significant financial losses. If we extend the adaptor signatures to a threshold setting,
called the threshold adaptor signature scheme, the loss of a single secret key share
does not compromise the security of the system.

• In blockchain-based crowdfunding scenarios, transactions require the consent of
every stakeholder. This needs the extension of adaptor signatures into multi-setting,
ensuring that a valid signature can only be generated when all stakeholders agree on
the transaction.

As we can see, adaptor signatures are not suitable for the above scenarios that require
multi-signers, and basic multi-party signatures lack the features of adaptor signatures.
Therefore, this paper focuses on multi/threshold adaptor signatures. In the case of (t, n)
-threshold adaptor signatures, t + 1 out of n secret key share holders need to participate to
generate a valid signature. Moreover, multi-adaptor signatures require the participation of
all secret key share holders in the signing protocol.

1.1. Our Results and Technical Overview

In this paper, we formally study multi-adaptor signatures and threshold adaptor
signatures. Our contributions are three-fold:

Formal Models. We proposed a formal model for the multi-adaptor signature and
threshold adaptor signature with one witness holder, n signers Pi|i∈[n], and public verifiers.

A multi-adaptor signature scheme MASIGR = (MKGen,MSign,KAgg, pMVerify,MAdapt,
MVerify,MExt) consists of one interactive protocol MSign and six non-interactive algorithms.
The system works as follows:

• To start, the witness holder provides a statement Y, and each signer Pi will invoke the
MKGen algorithm to generate its public-secret key pair (pki, ski).

• Next, given Y and a message m to be signed, the n signers jointly run the MSign
protocol to generate a pre-signature σ̃ for m, then employ the KAgg algorithm to
generate an aggregated key apk using {pki}i∈[n].

• Then, using apk and Y, the witness holder can verify the validity of σ̃ by invoking the
pMVerify algorithm. If σ̃ is valid, the witness holder can further utilize the witness y
(of the statement Y such that (Y, y) ∈ R, where R denotes a binary relation provided
as a public parameter) to transform σ̃ into a signature σ.

• Any verifier can use MVerify to verify the validity of σ.
• From σ and σ̃, all signers can obtain the witness y through the MExt algorithm.

For a threshold adaptor signature scheme TASIGR = (TKGen,TSign, pTVerify,TAdapt,
TVerify,TExt), which differs from MASIGR in terms of the key generation algorithm (TKGen),
the signing protocol (TSign) and the public key aggregation algorithm (KAgg). At the end
of each execution instance of the protocol TKGen, each signer Pi obtains a secret key share
ski along with the corresponding public key pk. Given the statement Y and a message m,
any t + 1 (out of n) signers can jointly generate a valid pre-signature using their secret key
shares and the public key by running the protocol TSign. Since all signers use a common
pk, the KAgg algorithm for aggregating public keys in MASIGR is not required in TASIGR.

Our security definitions continue the security requirements of adaptor signature pre-
signature adaptability and witness extractability. Pre-signature adaptability ensures that
any valid pre-signature specific to Y can be completed into a valid signature using. Witness
extractability guarantees that a valid tuple (σ, σ̃) for a tuple (m, Y) can be used to extract a
corresponding witness y. In addition, we provide definitions of unforgeability for MASIGR

and TASIGR, respectively. For MASIGR, we require that in a signing protocol involving n
signers, even if the adversary corrupts n− 1 of them, it should still be unable to forge a
valid pre-signature. Unlike MASIGR, for the unforgeability of (t, n)-TASIGR, it needs that
fewer than t + 1 signers should not be able to generate a valid pre-signature. The adversary,

Electronics 2024, 13, 76 3 of 14

who can corrupt at most t signers, is allowed to participate in the key generation protocol,
but still, it should be unable to forge a pre-signature that can be verified.

Schemes. We construct MASIGR and (t, n)-TASIGR schemes based on Schnorr, which
is the commonly used signature scheme in blockchain to meet the diverse application
requirements. Additionally, considering the long-term security and the post-quantum
signature standards established by NIST, we also construct MASIGR and (n− 1, n)-TASIGR

based on Dilithium. We also provide security proofs for our schemes, demonstrating that
the schemes satisfy pre-signature adaptability, witness extractability, and unforgeability.

Our MASIGR and (t, n)-TASIGR schemes with Schnorr are based on the multi-signature
in [8] and the threshold signature in [9], respectively. Our MASIGR and (n− 1, n)-TASIGR

schemes with Dilithium are based on the multi-signature and (n− 1, n) signature from [10].
Our schemes maintain the key generation processes of the original schemes with slight mod-
ifications to their signing protocols, introducing a statement in the commitment generation.
Correspondingly, the pre-verify algorithm pVerify also involves the statement.

Applications. We present an application of multi-adaptor signature, an n to n atomic
swap. In contrast to the atomic swap implemented with basic adaptor signatures, this
approach effectively prevents economic losses resulting from the loss of a single secret key.
For threshold adaptor signatures, we present an application in oracle-based conditional
payment. The security of threshold adaptor signature ensures that a single malicious oracle
cannot disrupt the payments. In addition, the payer retains the right to know that oracles
are transferring funds to the payee. Furthermore, threshold and multi-adaptor signatures
can also be applied to electronic voting and cross-chain crowdfunding, respectively.

1.2. Related Work

Due to the application advantages of adaptor signatures, Malavolta et al. [2] con-
structed an anonymous multi-hop lock protocol based on adaptor signatures and then
build a secure payment channel network. Thyagarajan et al. [11] provided an efficient in-
stantiation of a two-party general atomic swap protocol based on ECDSA/Schnorr adaptor
signatures. Aumayr et al. [3] utilized adaptor signatures to build a generalized channels
structure on a script-limited blockchain, enabling secure off-chain execution and enhancing
blockchain scalability.

Threshold signature was first proposed by Desmedt and Frankel [12], and they gave
a threshold signature scheme based on the RSA assumption. Motivated by blockchains,
efficient threshold Schnorr/ECDSA signature [9,13–16] received much attention lately.
For post-quantum threshold signature, Bendlin et al. [17] proposed a lattice-based (t, n)-
threshold signature based on Peikert hash-and-sign signature. Damgård et al. [10] pre-
sented a lattice-based (n− 1, n)-threshold signature by implementing Dilithium-G in a
multiparty setting. Multi-signature schemes enable a group of signers possessed an own
secret/public key pair to produce a single signature σ on a message m. A number of
modern and practical multi-signature schemes [18–22] are proposed based on Schnorr.

Organization of the Rest of the Paper. In Section 2, we give the preliminary. We give
a model for multi-adaptor signature and thresho1d adaptor signature in Sections 3 and 4,
respectively. We also give specific schemes for the new primitives. In Section 5, we discuss
two applications of multi and thresho1d adaptor signature.

2. Preliminary

We now revisit adaptor signatures as presented in [23]. An adaptor signature scheme
(w.r.t a hard relation R) ASIGR = (KGen, pSign, pVerify,Adapt,Verify,Ext) can be described
as follows:

• KGen(1λ): on input a security parameter λ, the randomized algorithm outputs the
secret key sk and public key pk. In short, (pk, sk)← KGen(1λ).

• pSign(sk, m, Y): on input sk, a message m ∈ {0, 1}∗ and a statement Y ∈ LR, the
randomized algorithm outputs a pre-signature σ̃. In short, σ̃← pSign(sk, m, Y).

Electronics 2024, 13, 76 4 of 14

• pVerify(pk, m, Y, σ̃): on input pk, m ∈ {0, 1}∗, Y ∈ LR and σ̃, the deterministic algo-
rithm outputs a bit b1. In short, b1 ← pVerify(pk, m, Y, σ̃).

• Adapt(σ̃, y): on input σ̃ and a witness y, this deterministic algorithm outputs a signature
σ. In short, σ← Adapt(σ̃, y).

• Verify(pk, m, σ): on input m, pk and σ, this deterministic algorithm outputs a bit
b2 which equals 1 if and only if σ is a valid signature on m under pk. In short,
b2 ← Verify(pk, m, σ).

• Ext(σ, σ̃, Y): on input σ, σ̃ and Y ∈ LR, this deterministic algorithm outputs y such
that (Y, y) ∈ R, or ⊥. In short, y/⊥ ← Ext(σ, σ̃, Y).

An adaptor signature scheme should satisfy pre-signature correctness, and a secure
adaptor signature scheme ASIGR should satisfy pre-signature adaptability, unforgeablity
and witness extractability.

3. Multi Adaptor Signature

Here, we propose a formal model for multi-adaptor signature and the corresponding
security requirements. We construct two secure multi-adaptor signature schemes based on
Schnorr and Dilithium, respectively.

3.1. Syntax

Definition 1. A multi-adaptor signature scheme (w.r.t a hard relation R) MASIGR = (MKGen,
MSign, KAgg, pMVerify, MAdapt, MVerify, MExt) consists of the following polynomial time
protocol and algorithms, we also give a flowchart of multi-adaptor signature scheme in Figure 1.

• MKGen(1λ): on input a security parameter λ as input, this randomized algorithm returns the
private signing key ski and public verification key pki. In short, (pki, ski)← MKGen(1λ).

• MSign
〈
{Pi(ski, pki, m, Y)}i∈[n]

〉
: This probabilistic protocol is jointly ran by n signing

players {Pi}i∈[n] which generates a pre-signature σ̃. Pi’s input is a statement Y ∈ LR, a
message m ∈ {0, 1}∗, his private signing key ski and public key pki generated in MKGen. The
protocol is allowed to abort. In short, ⟨σ̃/⊥⟩ ← MSign

〈
{Pi(ski, pki, m, Y)}i∈[n]

〉
.

• KAgg({pki}i∈[n]): on input {pki}i∈[n], this deterministic algorithm outputs an aggregated
public key apk. In short, apk← KAgg({pki}i∈[n]).

• pMVerify(apk, m, Y, σ̃): on input a message m ∈ {0, 1}∗, an aggregated public key apk, a
statement Y ∈ LR and a pre-signature σ̃, this deterministic algorithm outputs a bit b1. In
short, b1 ← pMVerify(apk, m, Y, σ̃).

• MAdapt(σ̃, y): on input a pre-signature σ̃ and a witness y, this deterministic algorithm
outputs a signature σ. In short, σ← MAdapt(σ̃, y).

• MVerify(apk, m, σ): on input an aggregated public key apk, a message m and a signature σ,
this deterministic algorithm outputs a bit b2 which equals 1 if and only if σ is a valid signature
on m under pk. In short, b2 ← MVerify(apk, m, σ).

• MExt(σ, σ̃, Y): on input a signature σ, a pre-signature σ̃ and a statement Y ∈ LR, this
deterministic algorithm outputs a witness y such that (Y, y) ∈ R, or ⊥. In short, y/⊥←
MExt(σ, σ̃, Y).

Correctness. A multi-adaptor signature scheme should also satisfy pre-signature
correctness.

Definition 2. A multi-adaptor signature MASIGR satisfies pre-signature correctness, if for all
m ∈ {0, 1}∗, {(pki, ski)}i∈[n] generated by MKGen, (Y, y) ∈ R, σ̃ generated by MSign, apk ←
KAgg({pki}i∈[n]), σ← MAdapt(apk, σ̃, y), and y′ ← MExt(apk, σ, σ̃, Y), the following holds:

Pr[pMVerify(apk, m, Y, σ̃) = 1∧MVerify(apk, m, σ) = 1∧ (Y, y′) ∈ R] ≥ 1− negl(λ).

Electronics 2024, 13, 76 5 of 14

Alice 𝑃!

• 𝑦 ← 𝑀𝐸𝑥𝑡 σ, *σ, 𝑌

• 𝑏! ← 𝑝𝑀𝑉𝑒𝑟𝑖𝑓𝑦 𝑎𝑝𝑘,𝑚, 𝑌, *σ

• σ ← 𝑀𝐴𝑑𝑎𝑝𝑡 *σ, 𝑦

• 𝑀𝑉𝑒𝑟𝑖𝑓𝑦 𝑎𝑝𝑘,𝑚, σ = 1

*σ, 𝑎𝑝𝑘

• { 𝑝𝑘" , 𝑠𝑘" ← 𝑀𝐾𝐺𝑒𝑛 1# }"∈[&](𝑌, 𝑦) ∈ 𝑅

σ

(𝑌,𝑚)
• *σ ← 𝑀𝑆𝑖𝑔𝑛 {𝑃"(𝑠𝑘" , 𝑝𝑘" , 𝑚, 𝑌)}"∈[&]
• 𝑎𝑝𝑘 ← 𝐾𝐴𝑔𝑔(𝑝𝑘" "∈[&])

𝑃(𝑃&
…

Figure 1. The flowchart of the multi adaptor signature.

3.2. Security Definitions

A multi-adaptor signature scheme MASIGR is secure if it satisfies pre-signature adapt-
ability, unforgeablity and witness extractability. We denote Q as the transcript of the
interactions between adversary A and OMs,OMps. OMs is a signing oracle that for an input
message mj, j ∈ [qs], returns a valid public- verifiable signature σj, andOMps is a pre-signing

oracle that returns a corresponding pre-signature
〈
σ̃j
〉
← MSign

〈
{Pi(ski, pki, mj, Y)}i∈[n]

〉
.

The formal definition of these properties are as follows.

Definition 3. A multi-adaptor signature MASIGR satisfies pre-signature adaptability, if for all
n ∈ N and m ∈ {0, 1}∗, aggregated public key apk, (Y, y) ∈ R and pre-signatures σ̃← {0, 1}∗;
once we have that pMVerify(apk, m, Y, σ̃) = 1, then the following holds:

Pr[MVerify(pk, m,MAdapt(pk, σ̃, y)) = 1] ≥ 1− negl(λ).

Without loss of generality, we assume there is a single honest player P1. The unforgeablity
and witness extractability can be described as follows.

Definition 4. A multi-adaptor signature MASIGR satisfies unforgeable, if for any PPT adversary
A, its advantage in the following experiment

Au f
MASIGR

= Pr[Q = ∅; (pk1, sk1)← MKGen(1λ); (Y, y) ∈ R; m∗ ← AOMs ,OMps(pk1, Y);

⟨σ̃⟩ ← MSign
〈
{Pi(ski, pki, m, Y)}i∈[n]

〉
; apk← KAgg({pki}i∈[n]);

σ∗ ← AOMs ,OMps(σ̃, Y) : m∗ /∈ Q ∧MVerify(apk, m∗, σ∗) = 1]

is negligible in λ.

Definition 5. A multi-adaptor signature MASIGR is witness extractable, if for any PPT adversary
A, its advantage in the following experiment

Awe
MASIGR

=Pr[Q = ∅; (pk1, sk1)← MKGen(1λ); (m∗, Y∗)← AOMs ,OMps (pk1);

⟨σ̃⟩ ← MSign
〈
{Pi(ski, pki, m∗, Y∗)}i∈[n]

〉
; σ∗ ← AOMs ,OMps (σ̃, Y∗); apk← KAgg({pki}i∈[n]);

y← MExt(apk, σ∗, σ̃, Y∗) : m∗ /∈ Q ∧ (Y∗, y) /∈ R∧MVerify(apk, m∗, σ∗) = 1]

is negligible in λ.

3.3. Multi Adaptor Signature Based on Schnorr

Considering a p order cyclic group denoted as G with generator g, the discrete loga-
rithm problem in G is hard. We consider the hard relation Rs = {(Y, y)|Y = gy} and denote
the hash functions Ha, Hn and Hs from {0, 1}∗ to Zp. The scheme S.MASIGRs

=(S.MKGen,
S.MSign, S.KAgg, S.pMVerify, S.MAdapt, S.MVerify, S.MExt) can be described as follows:

Electronics 2024, 13, 76 6 of 14

– (pki, ski)← S.MKGen(1λ).
Each signer Pi samples a random xi ← Zp and computes Xi = gx

i , then generates the
secret key ski = xi and public key pki = Xi.

– ⟨σ̃/⊥⟩ ← S.MSign
〈
{Pi(ski, pki, m, Y)}i∈[n]

〉
.

Given a message m and a statement Y ∈ LRs
, for each j ∈ {1, · · · , v}, each signer Pi

generates random ri,j ← Zp and computes Ri,j = gri,j . It then outputs and broadcasts
the v nonces (Ri,1, · · · , Ri,v). After receiving the nonces from others, each player
computes Rj = ∏n

i=1 Ri,j for each j ∈ [v] and outputs (R1, · · · , Rv). Each player
computes ai ← Ha(L, Xi), where L = {Xi}i∈[n], and X̃ ← ∏n

i=1 Xai
i . Then, each signer

Pi computes o ← Hn(X̃, (R1, · · · , Rv), m), R ← Y ·∏v
j=1 Roj−1

j , c ← Hs(X̃, R, m) and

si ← caixi + ∑v
j=1 ri,jbj−1 mod p. Broadcast si. After receiving all sj form all players,

Pi computes s̃← ∑n
i=1 si. The signature of m is σ̃ = (R, s̃).

– apk← S.KAgg({pki}i∈[n]).
Given {pki}i∈[n], the algorithm computes ai ← Ha(L, Xi), where L = {Xi}i∈[n], and
X̃ ← ∏n

i=1 Xai
i . The aggregated public key is X̃.

– b1 ← S.pMVerify(apk, m, Y, σ̃).
Given an aggregated public key X̃, a message m, a statement Y ∈ LRs

and an adaptor
signature σ̃ = (R, s̃), the algorithm computes c = Hs(X̃, R, m) and accepts the adaptor
signature if gs̃Y = RX̃c.

– σ← S.MAdapt(σ̃, y).
Given an adaptor signature σ̃ = (R, s̃) and a witness y, the algorithm outputs the
signature σ = (R, s), where s = s̃ + y.

– b2 ← S.MVerify(apk, m, σ).
Given a message m, an aggregated public key X̃, and a signature σ = (R, s), the
verifier computes c = Hs(X̃, R, m) and accepts the signature if gs = RX̃c.

– y/⊥← S.MExt(σ, σ̃, Y).
Given an adaptor signature σ̃ = (R, s̃), a signature σ = (R, s) and a statement Y ∈ LRs

,
the algorithm can return the witness y← s− s̃.

Theorem 1. S.MASIGR = (S.MKGen, S.MSign, S.KAgg, S.pMVerify, S.MAdapt, S.MVerify,
S.MExt) is a secure multi-adaptor signature.

Proof. As we can see, the scheme satisfies pre-signature correctness. We now show that
S.MASIGR satisfies pre-signature adaptable, unforgeablity and witness extractable.

Pre-signature adaptability. Assume pMVerify(apk, m, Y, σ̃) = 1 holds, such that gs̃Y =

RX̃Hsig(X̃,R,m). For (Y, y) ∈ Rs, gs̃+y = RX̃Hsig(X̃,R,m). It direct implies with MVerify(apk, m,
(s, R)) = 1, with s = s̃ + y and (s, R) = S.MAdapt(σ̃, y). Therefore, the vaild pre-signature
can be adapted in a vaild signature.

Unforgeability. If ∃ adversary AU f corrupts at most n− 1 signing players can forge a
valid confirmer signature, an efficient adversary AMS can be constructed that can break
the security of multi-signature scheme in [8]. For setup, AMS generates (pki, ski) ←
MASIGR(1λ), (Y, y) ∈ R and sends {pki}i∈[n] to AU f . When AU f queries OMs on message
mj, AMS interacts with its own challenger to obtain a transcript (Rj, cj, sj) and gives (Rj, sj)
to AU f . When AU f queries OMps on message mk, AMS obtains a transcript (Rk, ck, sk) and
gives (Rk · Y, sk) to AU f . When AU f outputs a forged signature (m∗, σ∗) on a message
m∗ /∈ L1, AMS can provide a valid signature of scheme in [8].

Witness extractability. If ∃ adversary AWE corrupts at most n− 1 signing players can
forge a valid confirmer signature, an efficient adversary AMS can be constructed that can
break the unforgeability of scheme in [8] or break the hardness of the relation R. When
AWE makes signing queries AMS works as described in unforgeability. If AWE’s forgery
σ∗ = S.MAdapt(σ̃, y),AMS can useAWE to extract the witness and break the hardness of the
relation R. Otherwise,AWE forge a valid signature σ∗ that satisfies S.MVerify(apk, m∗, σ∗) =
1, which also a valid signature of multi-signature scheme in [8].

Electronics 2024, 13, 76 7 of 14

3.4. Multi Adaptor Signature Based on Dilithium

For a random matrix Ā← Rk×(l+k)
q , we consider the hard relation Rd = {(X, x)|X =

Āx}. We denote H0: {0, 1}∗ → {c ∈ R : ||c||∞ = 1∧ ||c||1 = κ} and COM=(CKGen, Commit,
Open) a homomorphic commitment. The scheme D.MASIGR=(D.MKGen, D.MSign, D.KAgg,
D.pMVerify, D.MAdapt, D.MVerify, D.MExt) can be described as follows:

– (pki, ski)← D.MKGen(1λ).
Given a random matrix A ← Rk×l

q , each signer Pi samples si ← Sl+k
η and computes

ti ← Āsi, where Ā = [A|I]. The secret key ski = si and the public key pki = (Ā, ti).
– ⟨σ̃/⊥⟩ ← D.MSign

〈
{Pi(ski, pki, m, X)}i∈[n]

〉
.

Given a message m, a list of public keys {pki}i∈[n] and a statement X ∈ LRd
, each

player Pi samples yi ← Dl+k
µ , computes wi ← Āyi, com ← Commitck(wi, ri) with

ri ← D(Sr), and broadcasts comi. After receiving comj for all j ̸= i and a ran-
dom r′ ← D(Sr), Pi sets com ← ∑j∈[n] comk, derives a challenge ci ← H0(ti, com +

Commitck(X, r′), m, {pki}i∈[n]) and computes a signature share zi ← cisi + yi. Then,
Pi runs the rejection sampling on input (cisi, zi), broadcasts (zi, ri) with probability
min{1, Dl+k

µ (zi)/(M ·Dl+k
cisi ,µ(zi))}; otherwise broadcasts Restart. If some player broad-

cast Restart, Pi restart from sampling yi; otherwise Pi derives a per-user challenge
cj ← H0(tj, com + Commitck(X, r′), m, {pki}i∈[n]), reconstructs wj ← Āzj − cjtj then
checks ||zj||2 ≤ B and Openck(comj, rj, wj) = 1. If the check fails for some j, Pi broad-
casts Abort; otherwise, Pi computes z̃← ∑j∈[n] zj and r ← ∑j∈[n] rj. The signature of
m is σ̃ = (com, z̃, r, r′).

– apk← D.KAgg({pki}i∈[n]).
The aggregated public key is {pki}i∈[n].

– b1 ← D.pMVerify(apk, m, X, σ̃).
Given an aggregated public key apk = {pki}i∈[n], a message m, an adaptor signature
σ̃ = (com, z̃, r, r′), and statement X ∈ LRd

, the algorithm derives a per-user challenge
cj ← H0(tj, com + Commitck(X, r′), m, {pki}i∈[n]) and reconstruct w = Āz̃−∑j∈[n] cjtj.
Then, outputs b1 = 1 if ||z||2 ≤ Bn and Openck(com, r, w) = 1.

– σ← D.MAdapt(σ̃, x).
Given an adaptor signature σ̃ = (com, z̃, r, r′), and a witness x, the algorithm outputs
the signature σ = (com′, z, r, r′), where z = z̃ + x and com′ = com + Comck(Āx, r′).

– b2 ← D.MVerify(apk, m, σ).
Given a message m, a signature σ = (com′, z, r, r′), aggregated public key apk =
{pki}i∈[n], the algorithm derives a per-user challenge cj ← H0(tj, com′, m, {pki}i∈[n])
and reconstruct w = Āz − ∑j∈[n] cjtj. Then, outputs b1 = 1 if ||z||2 ≤ Bn and
Openck(com′, r, w) = 1.

– x/⊥← D.MExt(σ, σ̃, X).
Given an adaptor signature σ̃ = (com, z̃, r, r′), a signature σ = (com′, z, r, r′), the
algorithm can return z̃− z as the witness x.

Theorem 2. D.MASIGR = (D.MKGen, S.MSign, D.KAgg, D.pMVerify, D.MAdapt, D.MVerify,
D.MExt) is a secure multi-adaptor signature.

Proof. We now show D.MASIGR satisfies pre-signature adaptability, unforgeablity and
witness extractability.

Pre-signature adaptability. If pMVerify(apk, m, X, σ̃) = 1, which means Openck(com, r, Āz̃−
∑j∈[n] cjtj) = 1. For valid pair (X, x) ∈ Rd , we can obtain Openck(com + Comck(Āx, r′), r,
Ā(z̃ + x) − ∑ j∈[n] c jt j) = 1. It direct implies with MVerify(apk, m, (com′ , z, r, r′)) = 1,
with z = z̃ + x, com′ = com + Comck(Āx, r′) and (com′ , z, r, r′) = S.MAdapt(σ̃, x).
Therefore, the vaild pre-signature can be adapted into a vaild signature.

Unforgeability and witness extractability. The proof is subsumed by the unforgeability
and witness extractability proof of S.MASIGR. If adversary ADM breaks the unforgeability

Electronics 2024, 13, 76 8 of 14

or witness extractability of S.MASIGR, an efficient adversary AMD can be constructed that
can break the unforgeability of scheme in [10] or the hardness of the relation R.

4. Threshold Adaptor Signature

In this section, we present a formal model for threshold adaptor signatures and
construct two secure schemes based on Schnorr and Dilithium, respectively.

4.1. Syntax

Definition 6. A (t, n)-threshold adaptor signature scheme (w.r.t a hard relation R) TASIGR =
(TKGen,TSign, pTVerify,TAdapt,TVerify,TExt) can be described as follows, and we also give a
flowchart of multi-adaptor signature scheme in Figure 2.

• TKGen
〈
{Pi(1λ)}i∈[n]

〉
: this probabilistic protocol is jointly run by n signing players {Pi}i∈[n]

which takes a security parameter λ as public input. The private output of each signing
player Pi is a signing secret key share ski, and the public output is the corresponding sign-
ing public key pk. The protocol is allowed to abort. In short,

〈
{Pi(pk, ski)}i∈[n]/⊥

〉
←

TKGen
〈
{Pi(1λ)}i∈[n]

〉
.

• TSign⟨{Pi(ski, pk, m, Y)}i∈S⟩: this probabilistic protocol is jointly run by a subset S ⊂
{Pi}i∈[n] with |S| = t + 1 to generate a pre-signature σ̃. Each player Pi’s private input is his
secret key share ski, while the public input consists of pk, m and Y ∈ LR. The protocol is also
allowed to abort. In short, ⟨σ̃/⊥⟩ ← TSign⟨{Pi(ski, pk, m, Y)}i∈S⟩.

• pTVerify(pk, m, Y, σ̃): on input a public key pk, a statement Y ∈ LR, a message m ∈
{0, 1}∗ and a pre-signature σ̃, this deterministic algorithm outputs a bit b1. In short, b1 ←
pTVerify(pk, m, Y, σ̃).

• TAdapt(σ̃, y): on input a pre-signature σ̃ and a witness y, this deterministic algorithm outputs
a signature σ. In short, σ← TAdapt(σ̃, y).

• TVerify(pk, m, σ): on input a public key pk, a message m and a signature σ, this deter-
ministic algorithm outputs a bit b2 which equals 1 if σ is a valid signature. In short,
b2 ← TVerify(pk, m, σ).

• TExt(σ, σ̃, Y): on input a signature σ, a statement Y ∈ LR and a pre-signature σ̃, this
deterministic algorithm outputs a witness y such that (Y, y) ∈ R, or ⊥. In short, y/⊥←
TExt(σ, σ̃, Y).

Alice 𝑃!

• 𝑦 ← 𝑇𝐸𝑥𝑡 σ, *σ, 𝑌

• 𝑏! ← 𝑝𝑇𝑉𝑒𝑟𝑖𝑓𝑦 𝑎𝑝𝑘,𝑚, 𝑌, *σ

• σ ← 𝑇𝐴𝑑𝑎𝑝𝑡 *σ, 𝑦

• 𝑇𝑉𝑒𝑟𝑖𝑓𝑦 𝑎𝑝𝑘,𝑚, σ = 1

*σ, 𝑎𝑝𝑘

• {𝑃"(𝑝𝑘, 𝑠𝑘")}"∈[%] ← 𝑇𝐾𝐺𝑒𝑛 {𝑃"(1')}"∈[%](𝑌, 𝑦) ∈ 𝑅

(𝑌,𝑚)

• *σ ← 𝑇𝑆𝑖𝑔𝑛 {𝑃"(𝑠𝑘" , 𝑝𝑘,𝑚, 𝑌)}"∈(

𝑃) 𝑃%
…

σ

Figure 2. The flowchart of threshold adaptor signature.

Correctness. A threshold adaptor signature should satisfy pre-signature correctness.

Definition 7. A threshold adaptor signature TASIGR satisfies pre-signature correctness, if for
all m ∈ {0, 1}∗, pk, {ski}i∈[n] generated by TKGen, (Y, y) ∈ R, σ̃ generated by TSign, σ ←
TAdapt(pk, σ̃, y), and y′ ← TExt(pk, σ, σ̃, Y), the following holds:

Pr[pTVerify(pk, m, Y, σ̃) = 1∧ TVerify(pk, m, σ) = 1∧ (Y, y′) ∈ R] ≥ 1− negl(λ).

Electronics 2024, 13, 76 9 of 14

4.2. Security Definitions

A secure threshold adaptor signature scheme TASIGR should satisfy pre-signature
adaptable,unforgeable and witness extractable. We denote Q as the transcript containing
all the interactions between adversary A and OTk, OTs, OTps. When a malicious adversary
corrupts at most t signing players query OTk and OTs, it can obtain the views of the proto-
cols TKGen and TSign on input messages m1, m2, · · · , mqt which the adversary adaptively
chose, respectively. OTps is a pre-signing oracle that for a message mj, j ∈ [qs], returns a
corresponding pre-signature

〈
σ̃j
〉
← TSign

〈
{Pi(ski, pk, mj, Y)}i∈S

〉
.

Definition 8. A threshold adaptor signature TASIGR is pre-signature adaptable, if for all m ∈
{0, 1}∗, pk, (Y, y) ∈ R and σ̃ ← {0, 1}∗, once we have that pTVerify(pk, m, Y, σ̃) = 1, then the
following holds:

Pr[TVerify(pk, m,TAdapt(pk, σ̃, y)) = 1] ≥ 1− negl(λ).

Definition 9. A threshold adaptor signature TASIGR satisfies unforgeable, if for any PPT adversary
A, its advantage in the following experiment

Au f
TASIGR

= Pr[Q = ∅; (Y, y) ∈ R; (m∗, st)← AOTk ,OTs ,OTps(1λ); ⟨σ̃⟩ ←

TSign⟨{Pi(ski, pk, m∗, Y)}i∈S⟩; σ∗ ← AOTs ,OTps(σ̃, Y, st) : m∗ /∈ Q ∧ TVerify(pk, m∗, σ∗) = 1]

is negligible in λ.

Definition 10. A threshold adaptor signature TASIGR is witness extractable, if for any PPT
adversary A, its advantage in the following experiment

Awe
TASIGR

= Pr[Q = ∅; (m∗, Y∗, st)← AOTk ,OTs ,OTps(1λ);

⟨σ̃⟩ ← TSign⟨{Pi(ski, pk, m∗, Y∗)}i∈S⟩; σ∗ ← AOTs ,OTps(σ̃, Y∗, st);

y← TExt(pk, σ∗, σ̃, Y∗) : m∗ /∈ Q∧(Y∗, y) /∈ R∧ TVerify(pk, m∗, σ∗) = 1]

is negligible in λ.

4.3. Threshold Adaptor Signature Based on Schnorr

Consider a p order cyclic group denoted as G with generator g, and the discrete
logarithm problem in G is hard. We consider the hard relation Rs = {(Y, y)|Y = gy}
and denote Hs as a random oracle. The scheme S.TASIGR=(S.TKGen, S.TSign, S.pTVerify,
S.TAdapt, S.TVerify, S.TExt) can be described as follows:

–
〈
{Pi(pk, ski)}i∈[n]/⊥

〉
← S.TKGen

〈
{Pi(1λ)}i∈[n]

〉
.

Each player Pi, i ∈ [n] performs Pedersen distributed key generation protocol. After
the protocol, each Pi holds a value xi that is their secret signing share ski and a public
key pk = (G, q, g, X).

– ⟨σ̃/⊥⟩ ← S.TSign⟨{Pi(ski, pk, m, Y)}i∈S⟩.
Let S ⊆ [n], |S| = t + 1 be the set of players participating in the signing protocol.
Each player Pi can use S to determine the Lagrangian coefficients λi,S. Let H1 be hash
functions whose outputs are in Z∗qs .
Each signing player Pi samples single-use nonces (di, ei) ← Z∗qs × Z∗qs , computes

commitments (Di, Ei) = (gdi
s , gei

s), then broadcasts (Di, Ei). When given a message
m and a statement Y ∈ LRs

, Pi creates the set B, where B is the ordered list of
tuples

〈
(j, Dj, Ej)

〉
j∈S. Then, Pi computes the set of values ρj = H1(j, m, B), j ∈ S,

the group commitment R = ∏j∈S Dj(Ej)
ρj · Y, the challenge c = Hs(R, pk, m), and

zi = di + (eiρi) + λi,Sskic. Pi securely deletes ((di, Di), (ei, Ei)) from their local storage.

Electronics 2024, 13, 76 10 of 14

Pi broadcasts zi. After received zj, j ̸= i from other players, Pi checks the consistency
of each zj. If no check fails, the signature of m is σ̃ = (R, z̃), where z̃ = ∑j∈S zj.

– b1 ← S.pTVerify(pk, m, Y, σ̃).
Parse σ̃ as (R, z̃), and pk as (G, q, g, X), respectively, then compute c = Hs(R, X, m)
and R′ = gz̃YX−c. Output 1 if and only if R′ = R; otherwise, output 0.

– σ← S.TAdapt(σ̃, y).
Given an adaptor signature σ̃ = (R, z̃) and a witness y, the algorithm outputs the
signature σ = (R, z), where z = z̃ + y.

– b2 ← S.TVerify(pk, m, σ).
Parse σ as (R, z), and pk as (G, q, g, X), respectively, then compute c = Hs(R, X, m)
and R′ = gzX−c. Output 1 if and only if R′ = R; otherwise, output 0.

– y/⊥← S.TExt(σ, σ̃, Y).
Given an adaptor signature σ̃ = (R, z̃), a signature σ = (R, z) and a statement, the
algorithm can return the witness y← z− z̃.

Theorem 3. S.TASIGR=(S.TKGen, S.TSign, S.pTVerify, S.TAdapt, S.TVerify, S.TExt) is a
secure threshold adaptor signature.

Proof. The proof is subsumed by the security proof of S.MASIGR with the only distinction
that we need to provide a reduction to the scheme in [9] instead of scheme in [8] for
unforgeability and witness extractability. If ∃ adversary AST can break the unforgeability
or witness extractability of S.TASIGR, an efficient adversary ATS can be constructed that
can break the unforgeability of scheme in [9].

4.4. Threshold Adaptor Signature Based on Dilithium

For a random matrix Ā← Rk×(l+k)
q , we consider the hard relation Rd = {(X, x)|X =

Āx}. We denote and COM = (CKGen,Commit,Open) as a homomorphic commitment and
H0: {0, 1}∗ → {c ∈ R : ||c||∞ = 1 ∧ ||c||1 = κ}, H1 : {0, 1}∗ → {0, 1}l1 , H2 : {0, 1}∗ →
{0, 1}l2 as random oracles. The scheme D.TASIGR=(D.TKGen, D.TSign, D.pTVerify, D.TAdapt,
D.TVerify, D.TExt) can be described as follows.

–
〈
{Pi(pk, ski)}i∈[n]/⊥

〉
← D.TKGen

〈
{Pi(1λ)}i∈[n]

〉
.

Each player Pi samples a random matrix share Ai ← Rk×l
q and generates a commit-

ment gi ← H1(Ai, i), broadcasts gi. After receiving gj for all j ̸= i, Pi broadcasts Ai.
After receiving gj for all j ̸= i, Pi checks H1(Aj, j) = gj. If the check fails for some j,

broadcasts Abort; otherwise Pi computes A← ∑j∈[n] Aj and sets Ā = [A|I] ∈ Rk×(l+k)
q .

Pi samples si ← Sl+k
η and computes ti ← Āsi, respectively, generates a random or-

acle commitment g′i ← H2(ti), then broadcasts g′i . After receiving g′i for all j ̸= i, Pi
broadcasts ti. After receiving tj for all j ̸= i, Pi check H2(tj, j) = g′j. If the check fails
for some j, Pi broadcasts Abort; otherwise, the public key pk = (t, A), and Pi’s secret
key is ski = si.

– ⟨σ̃/⊥⟩ ← D.TSign
〈
{Pi(ski, pk, m, X)}i∈[n]

〉
.

Given a message m and a statement X ∈ LRd
, each player samples yi ← Dl+k

s and
computes wi ← Āyi, com← Commitck(wi, ri) with ri ← D(Sr), and broadcasts comi.
After receiving comj for all j ̸= i and a random r′ ← D(Sr), Pi sets com← ∑j∈[n] comk,
derives a challenge c← H0(t, com + Commitck(X, r′), m, pk) and computes a signature
share zi ← csi + yi. Then, Pi runs the rejection sampling on input (csi, zi), broad-
casts (zi, ri) with probability min{1, Dl+k

s (zi)/(M · Dl+k
csi ,s(zi))}; otherwise broadcasts

Restart. If some player broadcast Restart, Pi restart from sampling yi; otherwise Pi
reconstructs wj ← Āzj − ctj then checks ||zj||2 ≤ B and Openck(comj, rj, wj) = 1. If
the check fails for some j, Pi broadcasts Abort; otherwise, Pi computes z̃ ← ∑j∈[n] zj
and r ← ∑j∈[n] rj. The signature of m is σ̃ = (com, z̃, r, r′).

– b1 ← D.pTVerify(pk, m, X, σ̃).

Electronics 2024, 13, 76 11 of 14

Given a public key pk = (t, A), a message m, an adaptor signature σ̃ = (com, z̃, r, r′),
and statement X ∈ LRd

, the algorithm derives a challenge c← H0(t, com+Commitck(X,
r′), m, pk) and reconstructs w = Āz̃− ct. Then, outputs b1 = 1 if Openck(com, r, w) = 1
and ||z̃||2 ≤ Bn.

– σ← D.TAdapt(σ̃, x).
Given an adaptor signature σ̃ = (com, z̃, r, r′), and a witness x, the algorithm outputs
the signature σ = (com′, z, r, r′), where z = z̃ + x and com′ = com + Comck(Āy, r′).

– b2 ← D.TVerify(pk, m, σ).
Given a message m, a signature σ = (com′, z, r, r′), a public key pk = (t, A), the
algorithm derives a challenge c ← H0(t, com′, m, pk) and reconstructs w = Āz− ct.
Then, outputs b1 = 1 if Openck(com′, r, w) = 1 and ||z||2 ≤ Bn.

– x/⊥← D.TExt(σ, σ̃, X).
Given an adaptor signature σ̃ = (com, z̃, r, r′), a signature σ = (com′, z, r, r′), the
algorithm can return z̃− z as the witness x.

Theorem 4. D.TASIGR=(D.TKGen, D.TSign, D.pTVerify, D.TAdapt, D.TVerify, D.TExt) is a
secure threshold adaptor signature.

Proof. The proof is subsumed by the security proof of D.MASIGR, differing only in present-
ing a reduction to the (n− 1, n) scheme, instead of the multi-signature scheme in [10] for
unforgeability and witness extractability.

5. Application

In this section, we present further applications for multi-adaptor signature and thresh-
old adaptor signature.

5.1. n to n Atomic Swap

When cryptographic assets from two different blockchain networks need to be ex-
changed, atomic swaps can be utilized. This technology allows two parties to securely and
verifiably exchange without relying on third-party trust.

We have constructed an atomic swap system (Figure 3) using multi-adaptor signature,
which includes two entities, the transacting parties U0 and U1. To mitigate the risk of
economic loss in the event of the loss of a single secret key holding a substantial amount,
U0 and U1 can distribute cryptographic coins and their corresponding secret keys across
n locations.

• Setup: U0 publicly discloses statement Y, and both U0 and U1 invoke algorithm MKGen
to generate their keys {(pk0i, sk0i)}i∈[n] and {(pk1i, sk1i)}i∈[n̄] for their participation in
this transaction.

• Locking Assets: The exchanging parties use a time-lock to restrict the pending cur-
rencies, with the time-lock primarily granting U1 sufficient time to complete the
exchange. That also prevents U0 from withdrawing their currency after withdrawing
U1’s currency.

• Generating Transactions: U0 utilizes MSign to generate a pre-signature σ̃0 for the
exchange transaction tx0 (i.e., U0 transferring c0 to U1) based on statement Y, and
invokes MAgg to generate an aggregated key apk0, then sends apk0, σ̃0 to U1. After U1
verifies σ̃0 by pMVerify, U1 generate the aggregated key apk1 and pre-signature σ̃1 for
the exchange transaction tx1 base on Y, where tx1 is that U1 transferring c1 to U0, then
sends apk1, σ̃1 to U0.

• Broadcasting Transactions: U0 verifies σ̃1 and adapts the σ̃1 into a complete signature
value σ1 using MAdapt, then broadcasts σ1 to obtain c1. Based on σ̃1 and σ1, U1 can
extract witness y using MExt, then U1 adapts σ̃0 into a complete signature value σ0. U1
broadcasts σ0 to obtain the c0.

Henceforth, n to n atomic swaps are able to be processed in batches simultaneously.

Electronics 2024, 13, 76 12 of 14

𝑐! 𝑐!

𝑐" 𝑐"Chain B

Chain A

𝑈! 𝑈"

𝑠𝑘!" 𝑠𝑘!#
𝑠𝑘!$ 𝑠𝑘!%

𝑠𝑘"" 𝑠𝑘"#
𝑠𝑘"$ 𝑠𝑘"%

MSign

MSign

MAdapt
MExt
MAdapt

Off-Chain

MAgg pMVerify

MAgg

!𝜎!, 𝑎𝑝𝑘!, 𝑌, 𝑡𝑥!

!𝜎", 𝑎𝑝𝑘", 𝑡𝑥"

(𝑌, 𝑦) ∈ 𝑅

𝜎"

𝜎!

Figure 3. The atomic swap system with multi adaptor signature.

5.2. Oracle-Based Conditional Payment

Oracle-based conditional payments are a financial mechanism or smart contract ar-
rangement that relies on external data oracles to trigger and execute a payment or trans-
action when specific conditions are met. The conditions can be anything that can be
determined or verified by external data, such as the outcome of a sports event, weather
conditions, stock prices, or any other event. These conditional payments are commonly
used in blockchain and smart contract environments to automate financial agreements
based on real-world events or data.

For example, Alice and Bob bet on a sports match. Alice bets USD 30 on team C,
with the USD 30 held in escrow by oracles until the end of the game. Oracles serve as an
intermediary layer connecting the blockchain with the real world. Once the match results
are disclosed, oracles fetch the outcome from external data sources and execute payments
based on the results. In the event that team C loses the match, oracles will transfer the USD
30 from Alice’s account to Bob’s account.

We now give an oracle-based conditional payment system using threshold adaptor
signature and verifiable time signature. The system consists of a payer (A), a payee (B),
and a set of (t, n) oracles ({Oi}i∈[n]) utilized as watchtowers.

• Setup: A publishes its statement Y, and each oracle Oi, i ∈ [n], runs the key generation
protocol TKGen to generate pk and its own secret key ski.

• Escrowing funds: (t, n) oracles generate a verifiable time signature and send it to A,
ensuring that A can redeem its funds after time T if the predefined conditions have
yet to be fulfilled. Once A receives the verifiable time signature and checks its validity,
A sends its signature to the oracles, which claims that the funds are escrowed in the
address pk, then {Oi}i∈[n] check its validity.

• Condition monitoring: The oracles continuously monitor to determine whether the
predefined conditions are met.

• Payment execution: When the conditions are met before time T, the oracles automati-
cally execute the payment as per the agreed terms. t + 1 oracles collectively perform
TASIG to generate a pre-signature σ̃ and send it to A. A calls TpVerify to verify σ̃,
and for the valid σ̃, A uses its witness y and invokes TAdapt, transforming it into a
signature that can be publicly verified. After B receives the signature, B can publish
the signature σ and miners utilize TVerify to verify the signature.

We can observe that the securities of the threshold adaptor signature ensure that
a single malicious oracle cannot disrupt the payment. Additionally, A has the right to
be informed that the funds are being transferred to the payee. Only when A adapts the
pre-signature into a publicly verifiable signature can B complete the receipt of funds.

Electronics 2024, 13, 76 13 of 14

6. Conclusions

Adaptor signatures have lots of applications in cryptocurrencies and blockchain, but
may encounter issues such as secret key loss and single-point failure. To address this, we
introduce multi-adaptor signatures and threshold adaptor signatures. We propose their se-
curity models and give four schemes based on Schnorr and Dilithium, respectively. Finally,
two interesting applications are present, demonstrating that multi-adaptor signature and
threshold adaptor signature can prevent system disruptions caused by the loss of a single
secret key. In the future, for long-term security and broader application scenarios, we will
focus on lattice-based (t, n)-threshold adaptor signatures.

Author Contributions: Methodology, Y.J. and B.G.; Writing (original draft preparation), Y.J. and Y.X.;
Writing (review and editing), R.Z. and Y.X. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (Grant
No. 62202458).

Data Availability Statement: Data supporting this study are included within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
q A prime number
Zq The interval [− q

2 , q
2) ∩Z

Boldface small letters (e.g., x) Column vectors over R and Z
Boldface capital letters (e.g., A) Matrices
A1||A2 The concatenation of matrices A1 and A2

R = Z[x]/(f (x))
A polynomial ring for an irreducible monic polynomial
f (x) = xN + 1, where N is a power of 2

Rq Zq[x]/(f (x))
Λ A lattice in Zn

⟨A(ao); B(bo)⟩ ← Pro⟨A(ai); B(bi)⟩
In an interactive protocol Pro between parties A and
B, A’s (resp. B’s) input is ai (resp. bi), where A’s (resp.
B’s) output at the end of the execution is ao (resp. bo).

⟨y⟩ ← Pro
〈
{Pi(xi)}i∈[n]

〉
A protocol with all parties receive the same output y.

LR An NP language and R as the associated binary relation

References
1. Decker, C.; Wattenhofer, R. A fast and scalable payment network with bitcoin duplex micropayment channels. In Proceedings of

the SSS 2015, Edmonton, AB, Canada, 18–21 August 2015; Springer: Cham, Switzerland, 2015; pp. 3–18. [CrossRef]
2. Malavolta, G.; Moreno-Sanchez, P.; Schneidewind, C.; Kate, A.; Maffei, M. Anonymous multi-hop locks for blockchain scalability

and interoperability. In Proceedings of the NDSS 2019, San Diego, CA, USA, 24–27 February 2019. [CrossRef]
3. Aumayr, L.; Ersoy, O.; Erwig, A.; Faust, S.; Hostkov, K.; Maffei, M.; Moreno-Sanchez, P.; Riahi, S. Generalized channels from

limited blockchain scripts and adaptor signatures. In Proceedings of the ASIACRYPT 2021, Singapore, 6–10 December 2021;
Springer: Cham, Switzerland, 2021; pp. 635–664. [CrossRef]

4. Chaum, D.; Pedersen, T.P. Wallet Databases with Observers. In Proceedings of the CRYPTO 1992, Santa Barbara, CA, USA, 16–20
August 1992; Springer: Berlin/Heidelberg, Germany, 1993; pp. 89–105. [CrossRef]

5. Erwig, A.; Faust, S.; Hostáková, K.; Maitra, M.; Riahi, S. Two-party adaptor signatures from identification schemes. In Proceedings
of the PKC 2021, Virtual, 10–13 May 2021; Springer: Cham, Switzerland, 2021; pp. 451–480. [CrossRef]

6. Moreno-Sanchez, P.; Kate, A. Scriptless Scripts with ECDSA. 2018. Available online: https://lists.linuxfoundation.org/pipermail/
lightning-dev/attachments/20180426/fe978423/attachment-0001.pdf (accessed on 6 December 2023).

7. Esgin, M.F.; Ersoy, O.; Erkin, Z. Post-quantum adaptor signatures and payment channel networks. In Proceedings of the European
Symposium on Research in Computer Security, Guildford, UK, 14–18 September 2020; Springer: Cham, Switzerland, 2020;
pp. 378–397. [CrossRef]

8. Nick, J.; Ruffing, T.; Seurin, Y. MuSig2: Simple two-round Schnorr multi-signatures. In Proceedings of the CRYPTO 2021, Virtual,
16–20 August 2021; Springer: Cham, Switzerland, 2021; pp. 189–221. [CrossRef]

http://doi.org/10.1007/978-3-319-21741-3_1
http://dx.doi.org/10.14722/ndss.2019.23330
http://dx.doi.org/10.1007/978-3-030-92075-3_22
http://dx.doi.org/10.1007/3-540-48071-4_7
http://dx.doi.org/10.1007/978-3-030-75245-3_17
https://lists.linuxfoundation.org/pipermail/lightning-dev/attachments/20180426/fe978423/attachment-0001.pdf
https://lists.linuxfoundation.org/pipermail/lightning-dev/attachments/20180426/fe978423/attachment-0001.pdf
http://dx.doi.org/10.1007/978-3-030-59013-0_19
http://dx.doi.org/10.1007/978-3-030-84242-0_8

Electronics 2024, 13, 76 14 of 14

9. Komlo, C.; Goldberg, I. FROST: Flexible round-optimized Schnorr threshold signatures. In Proceedings of the SAC 2020, Brno,
Czech Republic, 30 March–3 April 2020; Springer: Cham, Switzerland, 2021; Volume 12804, pp. 34–65. [CrossRef]

10. [CrossRef] Damgrd, I.; Orlandi, C.; Takahashi, A.; Tibouchi, M. Two-round n-out-of-n and multi-signatures and trapdoor
commitment from lattices. J. Cryptol. 2022, 35, 14. [CrossRef]

11. Thyagarajan, S.A.; Malavolta, G.; Moreno-Sanchez, P. Universal atomic swaps: Secure exchange of coins across all blockchains.
In Proceedings of the 2022 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 22–26 May 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 1299–1316. [CrossRef]

12. Desmedt, Y.; Frankel, Y. Shared generation of authenticators and signatures. In Proceedings of the CRYPTO 1991, Santa Barbara,
CA, USA, 11–15 August 1991; Springer: Cham, Switzerland, 1991; Volume 576, pp. 457–469. [CrossRef]

13. Gennaro, R.; Goldfeder, S. Fast multiparty threshold ECDSA with fast trustless setup. In Proceedings of the CCS 2018, Toronto,
ON, Canada, 15–19 October 2018; pp. 1179–1194. [CrossRef]

14. Castagnos, G.; Catalano, D.; Laguillaumie, F.; Savasta, F.; Tucker, I. Bandwidth-efficient threshold EC-DSA. In Proceedings of the
PKC 2020, Edinburgh, UK, 4–7 May 2020; Springer: Cham, Switzerland, 2020; Volume 12111, pp. 266–296. [CrossRef]

15. Canetti, R.; Gennaro, R.; Goldfeder, S.; Makriyannis, N.; Peled, U. UC non-interactive, proactive, threshold ECDSA with
identifiable aborts. In Proceedings of the CCS 2020, Virtual, 9–13 November 2020; pp. 1769–1787. [CrossRef]

16. Castagnos, G.; Catalano, D.; Laguillaumie, F.; Savasta, F.; Tucker, I. Bandwidth-efficient threshold EC-DSA revisited: On-
line/offline extensions, identifiable aborts proactive and adaptive security. Theor. Comput. Sci. 2023, 939, 78–104. [CrossRef]

17. Bendlin, R.; Krehbiel, S.; Peikert, C. How to share a lattice trapdoor: Threshold protocols for signatures and (H) IBE. In Proceedings
of the ACNS 2013, Banff, AB, Canada, 25–28 June 2013; Springer: Cham, Switzerland, 2013; Volume 7954, pp. 218–236. [CrossRef]

18. Nicolosi, A.; Krohn, M.N.; Dodis, Y.; Mazieres, D. Proactive Two-Party Signatures for User Authentication. In Proceedings of the
NDSS 2003, San Diego, CA, USA, 27 February–3 March 2003.

19. Bellare, M.; Neven, G. Multi-signatures in the plain public-key model and a general forking lemma. In Proceedings of the CCS
2006, Alexandria, VA, USA, 30 October–3 November 2006; pp. 390–399.

20. Bagherzandi, A.; Cheon, J.H.; Jarecki, S. Multisignatures secure under the discrete logarithm assumption and a generalized
forking lemma. In Proceedings of the CCS 2008, Alexandria, VA, USA, 27–31 October 2008; pp. 449–458. [CrossRef]

21. Ma, C.; Weng, J.; Li, Y.; Deng, R. Efficient discrete logarithm based multi-signature scheme in the plain public key model. Des.
Codes Cryptogr. 2010, 54, 121–133. [CrossRef]

22. Syta, E.; Tamas, I.; Visher, D.; Wolinsky, D.I.; Jovanovic, P.; Gasser, L.; Gailly, N.; Khoffi, I.; Ford, B. Keeping authorities “honest or
bust” with decentralized witness cosigning. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose,
CA, USA, 22–26 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 526–545. [CrossRef]

23. Aumayr, L.; Ersoy, O.; Erwig, L.; Faust, S.; Hostkov, K.; Maffei, M.; Moreno-Sanchez, P.; Riahi, S. Generalized Bitcoin-Compatible
Channels. Cryptology ePrint Archive, Report 2020/476. Available online: http://hdl.handle.net/20.500.12708/40215 (accessed on
6 December 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-030-81652-0_2
http://dx.doi.org/10.1007/s00145-022-09425-3
http://dx.doi.org/10.1007/s00145-022-09425-3
http://dx.doi.org/10.1109/SP46214.2022.9833731
http://dx.doi.org/10.1007/3-540-46766-1_37
http://dx.doi.org/10.1145/3243734.3243859
http://dx.doi.org/10.1007/978-3-030-45388-6_10
http://dx.doi.org/10.1145/3372297.3423367
http://dx.doi.org/10.1016/j.tcs.2022.10.016
http://dx.doi.org/10.1007/978-3-642-38980-1_14
http://dx.doi.org/10.1145/1180405.1180453
http://dx.doi.org/10.1007/s10623-009-9313-z
http://dx.doi.org/10.1109/SP.2016.38
http://hdl.handle.net/20.500.12708/40215

	Introduction
	Our Results and Technical Overview
	Related Work

	Preliminary
	Multi Adaptor Signature
	Syntax
	Security Definitions
	Multi Adaptor Signature Based on Schnorr
	Multi Adaptor Signature Based on Dilithium

	Threshold Adaptor Signature
	Syntax
	Security Definitions
	Threshold Adaptor Signature Based on Schnorr
	Threshold Adaptor Signature Based on Dilithium

	Application
	n to n Atomic Swap
	Oracle-Based Conditional Payment

	Conclusions
	References

