
Citation: Xu, E.; Zhu, J.; Zhang, L.;

Wang, Y.; Lin, W. Research on

Aspect-Level Sentiment Analysis

Based on Adversarial Training and

Dependency Parsing. Electronics 2024,

13, 1993. https://doi.org/10.3390/

electronics13101993

Academic Editor: Ioannis

Hatzilygeroudis

Received: 14 April 2024

Revised: 13 May 2024

Accepted: 16 May 2024

Published: 20 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Research on Aspect-Level Sentiment Analysis Based on
Adversarial Training and Dependency Parsing
Erfeng Xu 1,2, Junwu Zhu 1,*, Luchen Zhang 3,*, Yi Wang 1,2 and Wei Lin 1,2

1 School of Information Engineering, Yangzhou University, Yangzhou 225127, China;
mz120220937@stu.yzu.edu.cn (E.X.); mz220220329@stu.yzu.edu.cn (Y.W.);
mx120220559@stu.yzu.edu.cn (W.L.)

2 Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy
of Sciences, Beijing 100190, China

3 National Computer Network Emergency Response Technical Team/Coordination Center of China,
Beijing 100190, China

* Correspondence: jwzhu@yzu.edu.cn (J.Z.); zlc@cert.org.cn (L.Z.)

Abstract: Aspect-level sentiment analysis is used to predict the sentiment polarity of a specific aspect
in a sentence. However, most current research cannot fully utilize semantic information, and the
models lack robustness. Therefore, this article proposes a model for aspect-level sentiment analysis
based on a combination of adversarial training and dependency syntax analysis. First, BERT is used
to transform word vectors and construct adjacency matrices with dependency syntactic relationships
to better extract semantic dependency relationships and features between sentence components. A
multi-head attention mechanism is used to fuse the features of the two parts, simultaneously perform
adversarial training on the BERT embedding layer to enhance model robustness, and, finally, to predict
emotional polarity. The model was tested on the SemEval 2014 Task 4 dataset. The experimental
results showed that, compared with the baseline model, the model achieved significant performance
improvement after incorporating adversarial training and dependency syntax relationships.

Keywords: multi head attention mechanism; dependency syntactic relationships; adjacency matrix;
adversarial training

1. Introduction

The advent of the Internet and the proliferation of social media platforms have led
to an exponential increase in the creation and dissemination of textual content on a daily
basis. These data contain rich emotional information, which are crucial for understanding
users’ attitudes and emotional changes towards products, services, or events. Sentiment
analysis, a core component of natural language processing, seeks to automatically discern
and extract emotional inclinations from textual data. Its significance has grown notably,
finding utility in various sectors including information retrieval, social media analysis, and
public opinion monitoring [1,2].

Aspect-level sentiment analysis is a subtask of text sentiment classification. In contrast
to general sentiment analysis tasks, which focus on predicting the overall sentiment of a text,
aspect-based sentiment analysis tasks necessitate predicting emotional polarity towards
specific aspects mentioned within a sentence [3]. Aspect-level sentiment analysis presents
a unique challenge wherein different aspect words within the same sentence may exhibit
varying emotional polarities. For instance, in the sentence “The food was delicious but the
service was bad”, “food” and “service” represent distinct aspects. While the evaluation
of the food is positive (“delicious”), the evaluation of the service is negative (“bad”). The
presence of multi-sentiment scenarios amplifies the complexities inherent in aspect-level
sentiment analysis. Models tasked with this challenge must possess the capability to
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effectively distinguish between different aspects within a sentence and accurately predict
the emotional polarity associated with each aspect.

Conventional methodologies for aspect-level sentiment analysis often employed sta-
tistical machine learning methods such as naive Bayes or SVM [4], which typically rely on
manually designed features for modeling. While these methods have achieved some success
to a certain extent, they often rely heavily on the quality and quantity of feature engineering.
and struggle with handling complex semantic information and syntactic structures.

The advancement of deep learning, particularly with the emergence of pre-trained
language models, has propelled significant strides in aspect-level sentiment analysis. Mod-
els such as BERT, RoBERTa, and XLNet [5–7], trained on extensive datasets using self-
supervised learning techniques, offer enhanced modeling capabilities for aspect-level
sentiment analysis. Mao et al. conducted an empirical study analyzing biases in pre-trained
language models (PLMs) for calculating sentiment analysis and emotion detection tasks [8].
It found that RoBERTa outperforms other PLMs in these tasks and proposed methods to
mitigate biases.

However, most current aspect-level sentiment analysis methods based on pretrained
language models still have limitations. First, these methods often focus on the overall
emotional polarity of a sentence while ignoring the relationships between words. Second,
the robustness and generalization ability of these models are relatively limited, and they
may lead to incorrect classification when exposed to external perturbations.

To address these shortcomings, the presented paper introduces a novel aspect-level
sentiment analysis model that combines adversarial training with dependency parsing.
The model leverages BERT for word vector conversion and employs an adjacency matrix to
capture syntactic dependencies. Multi-head attention combines these features, while ad-
versarial training enhances robustness. This approach enables accurate sentiment polarity
predictions at the aspect level.

The primary contributions of this paper can be summarized as follows:

1. The introduction of dependency parsing information in aspect-level sentiment analy-
sis. By constructing an adjacency matrix of syntactic dependency relations, the model
can more precisely capture the semantic correlations between different aspects in the
text, thereby improving the precision and accuracy of sentiment analysis;

2. To better integrate the features of both BERT and syntactic dependency relations, a
multi-head attention mechanism is adopted. This mechanism considers different
feature word vectors simultaneously, allowing the model to comprehend the semantic
information of the text more comprehensively, thereby enhancing the performance;

3. In order to bolster the robustness and generalizability of the model, an adversarial
training mechanism is introduced. By applying small perturbations to the BERT
embedding layer, FGM (fast gradient method) can make the model better resist
attacks from adversarial samples, thus improving the model’s stability and reliability
in real-world applications.

2. Related Work
2.1. Aspect-Level Sentiment Analysis

Aspect-level sentiment analysis is a vital task within sentiment analysis, concentrating
on the sentiment polarity of particular aspect terms within a sentence. Traditional sentiment
analysis methods often target entire documents or single sentences, whereas aspect-based
sentiment analysis pays closer attention to more refined sentiment evaluations of specific
entities. In past research, the use of traditional machine learning methods for sentiment
classification has been a common practice. For instance, Kiritchenko et al. used SVM to
detect aspect terms and sentiment in customer reviews [9]; Akhtar et al. employed SVM
and CRF for Hindi sentiment classification with good results [10]; Patra et al. used CRF
for aspect-level sentiment classification in the domains of Laptop and Restaurant datasets,
providing valuable references for consumers and manufacturers [11]. However, these
methods require manual feature selection and semantic information extraction, which can
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reduce the error of opinion word matching but still have limitations. For example, feature
extraction from dataset texts requires a significant amount of labor, and the final sentiment
analysis results are highly dependent on feature quality, but are incapable of modeling the
dependencies between the provided aspect terms and their surrounding contexts.

Comparatively, deep neural networks possess more intricate model architectures and
stronger feature extraction capabilities, eliminating the necessity for manual feature extrac-
tion, reducing labor costs. With the improvements in computer hardware performance
and the widespread use of the Internet, deep neural networks are no longer limited by
hardware computing power and data samples. In the realm of sequence models with a
focus on attention, researchers have proposed a variety of methodologies. For example,
Cheng et al. improved the feature extraction capacity of the Transformer bidirectional
encoder through an extended context module and proposed a component focusing module
to address the issue of average pooling [12]. Huang et al. proposed the AGSNP model,
which combined attention mechanisms and achieved good results [13]. Ayetiran proposed
a CNN and BiLSTM variant that combined high-level semantic feature extraction and
sentiment polarity prediction [14]. In models focusing on syntactic information, Zeng et al.
utilized affective knowledge to enhance word representations, forming a heterogeneous
graph based on dependency trees, and designed a multi-level Semantic-HGCN to encode
the graph for sentiment prediction [15]. Gu et al. proposed the EK-GCN model, which uses
an external sentiment dictionary to assign sentiment scores to individual words within a
sentence, constructing an emotional matrix to partially compensate for the shortcomings
of the syntactic dependency tree [16]. In models focusing on contextual modeling, Xiao
et al. proposed a novel GNN-based deep learning model, leveraging a POS-guided syn-
tactic dependency graph for RGAT to eliminate noise and designing a syntactic distance
attention-guided layer for DCGCN to extract semantic dependencies between contextual
words [17]. Mewada et al. utilized affective knowledge to enhance word representations,
forming a heterogeneous graph based on dependency trees, and then designing a multi-
level Semantic-HGCN to encode the graph for sentiment prediction [18]. Xu et al. proposed
a sentiment analysis model based on dynamic local context and dependency clusters, which
dynamically captured the scope of local context and extracted semantic information, achiev-
ing good results [19]. Mao et al. proposed a multi-task learning approach, incorporating a
novel gated bridging mechanism (GBM), which achieved superior performance in aspect-
based sentiment analysis by effectively filtering irrelevant information and dynamically
extracting features for each subtask using a weighted-sum pooling strategy [20].

2.2. Dependency Analysis

Dependency parsing, also known as dependency syntax analysis [21], aims to identify
the interdependent relationships between words in a given text and find the corresponding
dependent words (tail nodes) for each word (head node), which facilitates a deeper compre-
hension of the entire sentence’s meaning. This is also one of the more critical technologies in
the field of NLP. The representation is through directed arrows from the central word to its
dependent words, forming directed graphs. Dependency projection trees, and dependency
trees are common ways to express dependency structures. Taking the sentence “The iced
Americano at this airport tastes good” as an example, the expression of its dependency tree
is as follows (Figure 1):
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Dependency syntax analysis is typically represented as a tree structure, where the
nodes of the tree represent words, the edges represent the dependency relationships
between words, and the parent node of the tree indicates the governor. Some commonly
used dependency relation labels, and their meanings in dependency syntax analysis, are
presented in Table 1.

Table 1. Partial dependency relationship labels and their meanings.

Labels Meanings

ROOT Root node
det Dependency

amod Adjectives
nsubj Noun subjects
prep Prepositional modifiers
pobj Object of a preposition

acomp Complement of an adjective

2.3. Adversarial Training

In the domain of computer vision (CV), it is essential to enhance the robustness of
models through adversarial attacks and defenses. For instance, in autonomous driving
systems, it is crucial to prevent models from misclassifying red lights as green due to
random noise. Similarly, in natural language processing (NLP), adversarial training exists,
primarily as a regularization technique aimed at enhancing model generalization.

In 2014, Szegedy et al. introduced the concept of adversarial examples, which is
considered a pioneering work in the field [22]. For models processing text input data,
the added perturbations can be categorized into two types: discrete, where perturbations
are directly applied to the text; and continuous, where tiny perturbations are introduced
into the word vector matrix. This paper employs the latter approach for adversarial
training. Current popular adversarial training methods include the fast gradient sign
method (FGSM) [23], fast gradient method (FGM), projected gradient descent (PGD) [24],
free adversarial training (FreeAT) [25], and free large-batch (FreeLB) [26].

The core of adversarial training lies in constructing perturbations that enable the
model to recognize diverse adversarial examples. Adversarial training algorithms first
generate perturbations using adversarial attacks, then combine these perturbations with
original samples to create adversarial examples. Subsequently, the model parameters are
adjusted via backpropagation to minimize the loss function. This process can be defined
as a max–min optimization problem, where the maximization problem involves finding
perturbations that maximize the loss function for generating adversarial examples, while
the minimization problem involves minimizing the loss function and updating model
parameters, thereby endowing the model with robustness to adapt to such perturbations.
Adversarial training can be uniformly represented as a min-max formula, as shown in the
following equation:

minθE(x,y)∼D [max∆x∈ΩL(x + ∆x, y; θ)] (1)

where D represents the dataset, x represents the inputs, y represents the labels, and θ is the
model parameter that represents the parameter vector of the neural network, L(x + ∆x, y; θ)
is a single sample of loss, ∆x is the perturbation and Ω is the perturbation space. Then after
the neural network function, the loss obtained by comparing with the label y, max∆x∈ΩL()
denotes the optimization objective.

2.4. Attention Mechanisms

In 2014, the Google Mind team’s paper brought attention mechanisms into the spot-
light [27]. Initially introduced for image processing tasks, attention mechanisms have
proven to be effective in other fields as well. Experimental validations have demonstrated
the theoretical feasibility of attention mechanisms, and empirical results in the field of



Electronics 2024, 13, 1993 5 of 16

NLP have shown their efficacy in sentiment analysis tasks, highlighting their significant
research value. This method is capable of effectively extracting key features, and as such, it
is currently widely employed to enhance the performance of sentiment analysis models.
The attention mechanism simulates the cognitive process of the human brain, quickly
extracting valuable information from extensive text data and assigning higher weights to
important information while assigning lower weights to other information.

Bahdanau et al. were the first to introduce attention mechanisms into machine trans-
lation based on the encoder–decoder model, successfully translating long sentences [28].
Despite potential issues with the encoding quality, attention mechanisms addressed this
by allocating distinct weights to words in the encoding module based on their impor-
tance, leading to notable experimental results. The introduction of attention mechanisms
has solved the problem of poor coding module quality for machine translation of long
sentences, and this technology has been widely applied in the field of NLP, playing an
especially important role in sentiment analysis tasks.

The unified computation method of the attention mechanism can be represented as follows:

Attention(Q, K, V) = so f tmax
(

QKT
)

V (2)

In attention mechanisms, Q represents the query vector, K denotes the key vectors
within a sentence, typically used for relevance calculations, and V represents the value
vectors. Attention weights are obtained through a normalization method, which funda-
mentally maps the query vector to a series of relationships among key-value pairs. The
structure can be visualized as follows (Figure 2):
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3. Overall Model Design

This section begins with a description of the aspect-level sentiment analysis task,
followed by the model structure.

3.1. Task Definition

The model input is the given text W = {w1, w2, . . . a, . . . o, . . . wn}, where a denotes an
aspect word and o denotes an opinion word, and the model outputs the sentiment polarity
y ∈ {positive, negative, neutral} corresponding to the aspect. Our model leverages the
pre-trained language model BERT to generate and train word vectors.

3.2. Model Architecture

The model discussed in the paper comprises the following six main components: a text
embedding layer, BERT encoding layer, syntactic dependency relation information layer,
adversarial training layer, multi-head attention layer, and an output layer. The model’s
overall structure is depicted in Figure 3.
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3.2.1. Text Embedding Layer

For a sentence W = {w1, w2, . . . a, . . . o, . . . wn}, use the pre-training model BERT to
map each word onto an embedding vector ei ∈ Rd×1, where d represents the dimension of
the word vector:

WBert = Bert(W) (3)

To fully leverage the power of BERT in model training, the text is formatted into
the structure of “[CLS] + context + [SEP] + target + [SEP]”. In this format, “[CLS]” and
“[SEP]” are special token markers utilized by BERT. “[CLS]” serves as a unique classification
token marker that encapsulates classification-related information, while “[SEP]” functions
as a separator to demarcate distinct sequences when multiple sequences are input. By
adhering to the formatting requirements specified by BERT for text classification tasks, the
effectiveness of BERT is maximized.

3.2.2. BERT Encoding Layer

The BERT encoder is constructed using Transformer blocks from the Transformer model [29].
For BERT-BASE, these blocks are employed in 12 layers, each consisting of 12 multi-head atten-
tion blocks. After passing through the BERT model, the output is a new sequence with the same
length as WBert, represented as HBert = {hCLS, h1, . . . , hn−1, hSEP, ha, hSEP} as the representation
of hidden vectors. Here, “hCLS” is the hidden vector for the classification token, “h1” to “hn−1”
are the hidden vectors for the context tokens, “hSEP” represents the hidden vectors for the
separator tokens, and “ha” represents the hidden vectors for the aspect words.
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3.2.3. Dependency Syntax Relation Information Layer

The text is simultaneously processed to establish syntactic dependency relations. In
this paper, the StanfordCoreNLP tool is used to obtain the syntactic dependency tree of
the text [30]. This is done by capturing the grammatical structure of sentences to extract
dependency analysis; the output is a list containing multiple tuples. For example, in the
sentence “The iced Americano at this airport tastes good”, the output is [(‘ROOT’,0,3),
(‘det’,3,1), (‘amod’,3,2), (‘nsubj’,7,3), (‘prep’,4,3), (‘pobj’,6,4), (‘det’,6,5), (‘acomp’,8,7)]. In this
sentence, there are a total of eight elements, so (‘amod’,3,2) indicates an adjective, where
“Americano” depends on “iced”. Words in the sentence are encoded starting from 1 to the
end of the sentence. The numbers in the tuple represent the positions of the words, and the
numbers before and after represent the dependency relationship, where the first number is
the head and the second number is the child, indicating that the latter depends on the former.
Then, the dependencies are mapped onto a directed graph. The syntactic dependency tree
can be conceptualized as graph G with n nodes, where the nodes correspond to the words
in the sentence, and the edges represent the syntactic dependencies between words. The
dependency parse tree of a sentence is represented as G = {V, A}, where V stands for all
the nodes, which are the words {w1, w2, . . . a, . . . o, . . . wn}; and A ∈ Rn×n is the adjacency
matrix, where Aij = 1 if there is a syntactic dependency between word wi and word wj,
and Aij = 0 otherwise. Each word in the sentence is adjacent to itself, which implies setting
all diagonal elements of the adjacency matrix to 1 [31].

Here is how the syntactic dependency tree and its transformed adjacency matrix are
depicted (Figure 4):
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Next, the adjacency matrix is expanded into a one-dimensional vector and connected
to the elements in the matrix row by row or column by column. The unfolded vector is
used as an input for the next step of model processing. This converts the information of the
adjacency matrix into a vector Vadj.

3.2.4. Adversarial Training Layer

The model uses the FGM (fast gradient method) for adversarial training on the BERT
embedding layer vectors. FGM stands out from other methods due to its simplicity,
ease of use, and computational efficiency. It generates adversarial samples with minimal
parameter updates, making it practical for real-world applications with low computational
costs, especially with large datasets and complex models. Despite potential variations
in performance, FGM typically enhances model robustness against common adversarial
attacks. Thus, FGM is a practical choice, particularly in resource-constrained scenarios
or where rapid implementation is crucial. By performing gradient ascent based on the
specific gradients, it aims to obtain better adversarial samples without significantly altering
the distribution of the original samples, thereby allowing the model to adapt to such
perturbations. Assuming that the embedding layer vectors V = {v1, v2, . . . , vn } of the input
text sequence are x, the perturbation on the embedding layer is as follows:

∆x = ϵ
g

∥ g ∥2
(4)
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g = ∇xL(x, y; θ) (5)

Vadv = V + ∆x (6)

After the adversarial training, the obtained feature vectors are denoted as Vadv.

3.2.5. Multi-Head Attention Mechanism Layer

After flattening the hidden features HBert obtained from BERT’s output, we obtain
H′

Bert. Then, we concatenate it with the feature vector obtained after adversarial training to

obtain the new hidden feature Z =
[

H′
Bert, Vadj

]
. Z represents the input to the multi-head

attention module. By utilizing three different weights Wq, Wk, Wv in the attention layer, we
can calculate the resulting vector q, k, v. The steps of the multi-head attention mechanism
involve linearly transforming the query (Q), key (K), and value (V) through parameter
matrices. Then, scaled dot-product operations are performed multiple times before con-
catenating the results. First, the score for each input feature is calculated: score = k × q.
Then, each score is normalized by dividing it by the square root of the dimension of the
weight matrix

√
dk. Next, the softmax function is applied to the normalized scores. Finally,

the softmax result is multiplied by the value V. The formula is as follows:

a = so f tmax
(

QKT
√

dk

)
V (7)

The multi-head attention mechanism assigns weighted attention scores to each word
in the sentence using multiple attention mechanisms. By increasing the weight coefficients
of important information, the model focuses more on words crucial for sentiment analysis,
thus further enhancing the accuracy of sentiment analysis. The multi-head attention mecha-
nism consists of multiple heads, each capable of generating different attention distributions,
thereby addressing long-range dependencies. Built upon the attention mechanism, the
multi-head attention mechanism significantly outperforms standard attention mechanisms,
allowing for parallel processing of information in different positional and representational
subspaces. With each set of attention projected into different spaces, and considering m as
the number of attention heads, the calculation formula is as follows:

headi = ai (8)

e = MultiHead(Q, K, V) = Concat(head1, head2, . . . , headm)WO (9)

Wherein, WO represents the weight vector, which can be learned through the training
process. The Concat function indicates the concatenation of the vectors after the attention
computation, and headi represents the i-th attention mechanism.

Finally, all encoding vectors are weighted and summed to obtain a comprehensive
hidden expression e.

3.2.6. Output Layer

Considering that the adversarial perturbations in adversarial training are relatively
small values, to prevent the word vectors from becoming too large, which could cause the
tiny perturbations to lose their effectiveness, it is necessary to normalize the word vectors.
Normalization ensures that the values of the word vectors remain within a reasonable
range, allowing the model to be sensitive to the small adversarial perturbations. It is
described as follows:

V′
adv =

Vadv − E(Vadv)√
Var(Vadv)

(10)

E(Vadv) =
K

∑
i=1

fiVadvi (11)
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Var(Vadv) =
K

∑
i=1

fi(Vadvi − E(Vadv))
2 (12)

where Vadv denotes the original word vector V′
adv denotes the normalized word vector and

fi denotes the frequency of the ith word in the training sample.
The fused features and adversarial features of the multi-head attention mechanism are,

respectively, used as inputs to the Softmax classifier, after which the fused features of the
multi-head attention mechanism and the real labels can be calculated as the classification
loss Lossmha, which is calculated by the following formula:

Lossmha =
N

∑
i=1

{
yilog

ˆ
yi + (1 − yi)log

(
1 − ˆ

yi

)}
(13)

Wherein yi represents the true category,
ˆ
yi represents the predicted category, and N is

the overall number of samples.
Subsequently, the adversarial features and the true labels are used as inputs to the

classifier for calculating the adversarial training loss Lossadv, with the following formula:

Lossadv = − 1
N

N

∑
n=1

logp(yn | x + ∆x, θ) (14)

In this loss function, the variable is x + ∆x, where ∆x represents the adversarial
perturbation, N is the overall number of samples, yn is the corresponding label, and θ is the
model’s parameters that represents the parameter vector of the neural network. Therefore,
the actual loss of the model is as follows:

Loss = Lossmha + Lossadv (15)

Furthermore, the gradients of Lossmha and Lossadv with respect to the model parameters
are computed first. Subsequently, these gradients, along with a predefined learning rate, are
utilized to update the model parameters, aiming to progressively decrease the overall loss.
Until it satisfies the predetermined maximum number of iterations, this iterative process
continues. The generated adversarial training samples are used together with the original
samples for model training. This approach can expand the dataset size and effectively
enhance the model’s generalization performance and classification accuracy.

4. Experimental Analysis
4.1. Experimental Dataset and Experimental Environment

The model in this paper was mainly evaluated on the SemEval2014 Task4 public
dataset, which consists of reviews from two domains, Laptops and Restaurants [32]; these
datasets are partitioned into a training set and a test set. The aspect words and their
corresponding sentiment polarity in the dataset have been labelled, where −1 represents
negative, 0 represents neutral and 1 represents positive. The dataset’s fundamental statistics
are provided in Table 2.

Table 2. Basic statistical information of the dataset.

Datasets
Negative Neutral Postive

Train Test Train Test Train Test

Laptops 851 128 455 167 976 337
Restaurants 807 196 637 196 2164 727

Table 3 illustrates the pertinent configuration of the experimental environment in this paper.
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Table 3. Configuration of experimental environment.

Experimental Environment Configuration Table Configuration Information

Operating System CPU AMD Ryzen 7 7735H with Radeon Graphics 3.20 GHz
Graphics card NVIDIA GeForce RTX 4060

Deep Learning Framework Pytorch
Development Environment Pycharm

4.2. Experimental Parameter Setting

The experiment used the pretrained language model BERT to generate word vectors.
The generated word vectors have a dimension of 768, with a hidden-layer dimension of
300. The dropout rate is set to 0.1, and the learning rate is 2 × 10−5. The batch size for each
input data is 32, and the optimizer used is Adam [33].

4.3. Evaluation Indicators

In the experiment, the evaluation metrics used were Accuracy and Macro-averaged F1
score [34,35]. Accuracy denotes the proportion of correctly classified positive and negative
samples to the total number of samples. The F1 score is the harmonic mean of precision
and recall, encompassing both precision and recall in the evaluation of the model. The
macro-averaged F1 score is the average of the F1 scores for each category, which helps to
avoid the issue of artificially high accuracy due to imbalanced data. The specific formulas
are as follows:

Accurary =
TP + TN

TP + TN + FP + FN
(16)

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FP
(18)

F1 =
2·Precision·Recall
Precision + Recall

(19)

MF1 =
1
C

c

∑
k=1

F1k (20)

wherein TP represents the number of positive samples correctly predicted as positive,
FN denotes the number of positive samples mistakenly predicted as negative, FP indi-
cates the number of negative samples erroneously predicted as positive, and TN signifies
the number of negative samples accurately predicted as negative. Precision and Recall
denote the precision rate and recall rate, respectively, while C represents the number of
sentiment categories.

To evaluate the significance of the improved results, we also added kappa consistency
as a statistical test indicator. The Kappa coefficient, which is a statistical measure of
consistency ranging between 0 and 1, is elaborated upon in Table 4. A larger coefficient
signifies greater precision in data classification. Its calculation formula is as follows:

K =
Po − Pe

1 − Pe
(21)

Table 4. Kappa coefficient table.

Coefficient 0.8–1.0 0.6–0.8 0.4–0.6 0.2–0.4 0–0.2

Level Almost
perfect Substantial Moderate Fair Slight
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Po represents the overall classification accuracy. The calculation formula for Pe is as follows:

Pe =
a1 × b1 + a2 × b2 + · · ·+ ak × bk

n × n
(22)

ak represents the actual sample size of class k, bk represents the predicted sample size
of class k, and the total sample size is n.

4.4. Comparative Experiments

The paper selected seven representative aspect-level sentiment analysis models to
compare with the model provided in this paper, and their descriptions are as follows:

(1) LSTM [36] is an aspect-level sentiment analysis model based on long short-term
memory networks that uses a recurrent neural network structure for modeling and
can capture temporal information in text. It performs sentiment classification by
integrating the target word and context relationships through two LSTM layers that
depend on the target;

(2) TD-LSTM [37] utilizes LSTM to encode the contexts on both sides of the aspect term
from different directions, and performs sentiment classification by concatenating the
resulting feature representations;

(3) MemNet [38] is a deep memory network model combined with an attention mech-
anism. By constructing multiple computational layers, each input layer adaptively
selects deeper-level information and captures the correlation between each context
word and the aspect via attention layers. The output of the final attention layer is
utilized for sentiment polarity assessment;

(4) IAN [39] utilizes two LSTM layers to acquire the hidden representations of the context
and aspect terms. To precisely capture the semantic relationship between context
words and the aspect term, an interactive attention mechanism is incorporated;

(5) RAM [40] is a memory neural network model based on a recurrent attention mech-
anism that can effectively obtain the sentiment features between words that are
farther apart;

(6) AEN [41] utilizes an encoder with an attention mechanism to establish a sentiment
analysis model between the context and its corresponding aspect term;

(7) ASGCN [42] constructs a graph convolutional network on the sentence’s dependency
tree to extract syntactic information. By integrating attention with masked aspect
vectors and semantic information, it enhances sentiment classification performance;

(8) GPT3+Prompt [43] is a language model that can be guided to perform aspect-level
sentiment analysis tasks and generate relevant text by adding prompts.

Among all comparison models, the accuracy of the ASGCN model reached 75.55% and
80.77% on both datasets, respectively. This is because the ASGCN model constructs a graph
convolutional network on the dependency tree of sentences, utilizing syntactic information
to extract semantic relationships and improving the accuracy of sentiment classification.

The accuracy rates of LSTM and TD-LSTM on the two datasets reached 66.77% and
74.29%; and 67.71%, 75.36%, respectively. TD-LSTM improved the LSTM model, but
because LSTM cannot reflect the interaction information between aspect words and text
sentences, and LSTM processes sentences in the order of text sequences, the semantic
information learned is not comprehensive enough, and too-long sentences can cause slow
the gradient descent. The MemNet model’s attention mechanism for selecting deeper-
level information may falter in filtering out noisy context words, potentially leading to
reduced classification performance. Despite the IAN model’s precise capture of semantic
relationships, it may face challenges with highly ambiguous context terms. The AEN
model’s focus on context information might overlook subtle sentiment nuances. Lastly, the
RAM model’s recurrent attention mechanism may introduce computational complexity and
training instability. The above reasons have led to the poor performance of these models.
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As indicated in Table 5, the BAMD model surpasses other models in both Accuracy
and Macro-F1 scores. On the two datasets, the accuracy rates of the BAMD model reached
76.02% and 83.04%, respectively. Our model offers several advantages over baseline models:
first, by integrating dependency parsing information, we accurately capture semantic
correlations between different aspects in the text. Second, employing a multi-head attention
mechanism enables a comprehensive understanding of semantic information within the
text. Lastly, the introduction of adversarial training enhances the model’s stability and
reliability in real-world applications.

Table 5. Comparing the experimental results of the model on two publicly available datasets.

Comparative
Models

Laptops Restaurants

Accurary Macro-F1 Kappa Accurary Macro-F1 Kappa

LSTM 66.77 61.78 - 74.29 62.58 -
TD-LSTM 68.81 64.67 - 76.00 64.51 -
MemNet 70.64 65.17 - 79.61 69.64 -

IAN 71.20 66.69 - 76.86 66.71 -
RAM 72.32 67.90 0.6745 76.92 68.71 0.7148
AEN 73.69 68.59 0.6886 77.06 69.35 0.7262

ASGCN 75.55 71.05 0.6904 80.77 72.02 0.7377
GPT3 +
Prompt 77.87 73.04 - 85.45 78.96 -

BAMD(Ours) 76.02 71.54 0.7171 83.04 76.61 0.7853

Although our model is only 1 to 2.5 percentage points less effective than the closed-
source GPT3+Prompt, we acknowledge this difference. Our research suggests that, while
our model may be lightweight, with fewer parameters and a smaller memory footprint,
this lightweight nature makes it more feasible for deployment and operation in resource-
constrained environments, with lower computational costs. While our model may slightly
lag behind larger models in performance, its lightweight characteristics provide greater
flexibility and feasibility for specific applications in certain scenarios. We will continue to
strive for improvement and look forward to achieving better results in future research.

Moreover, it can be clearly seen from the chart that our model’s Kappa value is
significantly better than the compared models. This indicates that our model can still
maintain high classification consistency while considering randomness. The significance of
this improvement is not only reflected in the Kappa value, but also in the robustness and
generalization ability of the model on different datasets. Therefore, our model performs
more reliably and stably in solving this classification task. The optimal performance metrics
of each model on two datasets have been bolded in the table.

4.5. Ablation Experiment

To verify the importance of the three major modules designed in this paper, a series of
ablation experiments were conducted.

For each ablation experiment, we can infer the importance of each component to
model performance by the degree of degradation in the evaluation metrics:

The ablation experiment without Adversarial Training (w/o AT) exhibited a decrease
in performance when compared to the original model. This is because adversarial training
plays a crucial role in enhancing model robustness and generalization capabilities. Without
adversarial training, the model is more susceptible to the influence of biased or noisy
samples, leading to a decrease in performance. Therefore, adversarial training is vital for
improving the robustness of the model.

Our model significantly outperformed the version without multi-head attention (w/o
MHA). The multi-head attention mechanism aids in better integrating features from BERT
and syntactic dependency relations, enhancing the model’s attention to different aspects of
the text and its representational power. If the multi-head attention mechanism is removed,
the model may not effectively capture sentiment information across different aspects,
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resulting in a decline in performance. It is evident that multi-head attention is important
for enhancing the model’s representational capabilities.

The absence of syntactic dependency relations resulted in varying degrees of decline
in both Accuracy and Macro-F1 scores. Syntactic dependency relations provide structural
information between words in the text, which helps the model to better understand the
semantic and logical relationships within sentences. If syntactic dependency relations
are removed, the model may not effectively utilize the structural information of the sen-
tence, leading to a decrease in performance. Therefore, syntactic dependency relations are
important for enhancing the model’s semantic comprehension.

In summary, adversarial training, multi-head attention mechanism, and syntactic de-
pendency relations each play a significant role in improving model performance. Together,
they constitute the key components of the model proposed in this paper.

4.6. Analysis of Model Parameters

To investigate the impact of the constraint radius of the perturbation constraint space
S, i.e., the value of ε, on model performance in adversarial training, this paper set ε values
to 0.01, 0.1, 0.5, 1, and 2. The accuracy and MF1 scores were tested on both the 14Lap and
14Rest datasets (Figure 5). The experimental results, as shown in the figure below, indicate
that introducing adversarial samples during the training stage can enhance the model’s
resilience to attacks. The model performs optimally when the ε value is 0.1; however, when
the ε value is too large, both the model’s accuracy and MF1 scores exhibit a downward trend.
This phenomenon may be due to the larger perturbation values added, which resulted in
significant differences between the generated adversarial samples and the original samples.
Although they shared the same label, the model’s accuracy in identifying these adversarial
samples decreased, subsequently leading to a decline in model performance.
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4.7. Case Study

In order to reflect the effectiveness of the proposed approach, several specific examples
were analyzed. Based on Table 6, we extracted the classification results of some typical
examples for comparative analysis (Table 7).

Table 6. Results of ablation experiment.

Models
Laptops Restaurants

Accurary Macro-F1 Accurary Macro-F1

w/o DS 74.52 70.31 80.57 76.22
w/o AT 73.45 69.63 78.63 73.25

w/o MHA 73.58 69.97 79.78 74.56
BAMD 76.02 71.54 83.04 80.26
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Table 7. Typical data experiment examples.

Num Examples TD-LSTM ASGCN BAMD Label

1 The food is great but the service
was dreadful!

Negative
(×)

Positive
(
√

)
Positive

(
√

) Positive

2
I’m delighted to return to the

familiar embrace of Apple’s
operating system.

Positive
(
√

)
Negative

(×)
Positive

(
√

) Positive

3 Did not enjoy the new Windows
8 and touchscreen functions. Natural (×) Positive

(×)
Negative

(
√

) Negative

“
√

” in the table represents the model’s correct judgment of emotional polarity, while “×” represents the model’s
incorrect judgment of emotional polarity.

For the first example sentence, due to the existence of two aspect terms, namely “food”
and “service”, TD-LSTM focused on the opinion word “dreadful” related to “service”, con-
sidering it as the opinion word for the aspect term “food”, leading to an incorrect matching
between aspect terms and opinion words, resulting in a negative sentiment judgment. In
the second example sentence, the syntactic distance between “Apple’s operating system”
and its opinion word “delighted” is too great. The aspect sentiment graph convolutional
network (ASGCN) model failed to capture the relationship between them based on syn-
tactic information, which resulted in an incorrect sentiment polarity judgment. The third
example also contains two aspect terms, where TD-LSTM failed to accurately match aspect
terms with opinion words, and ASGCN failed to capture the feature representation of
the negation word “did not”. In contrast, BAMD combines both adversarial training and
dependency syntax information, and thus can make accurate judgments.

5. Conclusions

This paper introduces an aspect-level sentiment analysis model that leverages ad-
versarial training in conjunction with dependency syntax parsing. By employing BERT
for word vector transformation, integrating feature extraction from syntactic dependency
relations, and utilizing multi-head attention mechanisms along with adversarial training
techniques, the proposed model is capable of predicting the sentiment polarity of specific
aspects within sentences. On two public aspect-level sentiment analysis datasets, our model
achieves higher accuracy and MF1 scores compared to the baseline models, validating the
effectiveness of our approach. However, the model presented in this paper has certain
limitations. For instance, the generated dependency syntax relations may contain data
noise, and the influence of part-of-speech tags and other syntactic information on the task is
not considered. The choice of the adversarial training method can be adjusted to optimize
model performance for specific datasets. Future work will focus on further improving and
enhancing the model to address these challenges. Specifically, we will explore methods
to reduce data noise in generated dependency relations, incorporate part-of-speech tags
and other syntactic information, and optimize adversarial training methods for specific
datasets. These advancements aim to enhance the model’s performance and applicability
in aspect-level sentiment analysis, thereby promoting its development and application in
various domains.
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