
Citation: Yeh, J.-F.; Lin, K.-M.; Yuan,

L.-C.; Hsu, J.-M. Automatic Counting

and Location Labeling of Rice

Seedlings from Unmanned Aerial

Vehicle Images. Electronics 2024, 13,

273. https://doi.org/10.3390/

electronics13020273

Academic Editors: Charles Tijus,

Kuei-Shu Hsu, Mahmut Reyhanoglu,

Teen-Hang Meen, Po-Lei Lee

and Chun-Yen Chang

Received: 6 November 2023

Revised: 30 December 2023

Accepted: 2 January 2024

Published: 8 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Automatic Counting and Location Labeling of Rice Seedlings
from Unmanned Aerial Vehicle Images
Jui-Feng Yeh *, Kuei-Mei Lin, Li-Ching Yuan and Jenq-Muh Hsu

Department of Computer Science and Information Engineering, National Chiayi University,
Chia-Yi City 60004, Taiwan; s1120311@mail.ncyu.edu.tw (K.-M.L.); s1110326@mail.ncyu.edu.tw (L.-C.Y.);
hsujm@mail.ncyu.edu.tw (J.-M.H.)
* Correspondence: ralph@mail.ncyu.edu.tw

Abstract: Traditional counting of rice seedlings in agriculture is often labor-intensive, time-consuming,
and prone to errors. Therefore, agricultural automation has gradually become a prominent solution.
In this paper, UVA detection, combining deep learning with unmanned aerial vehicle (UAV) sensors,
contributes to precision agriculture. We propose a YOLOv4-based approach for the counting and
location marking of rice seedlings from unmanned aerial vehicle (UAV) images. The detection of tiny
objects is a crucial and challenging task in agricultural imagery. Therefore, we make modifications to
the data augmentation and activation functions in the neural elements of the deep learning model to
meet the requirements of rice seedling detection and counting. In the preprocessing stage, we segment
the UAV images into different sizes for training. Mish activation is employed to enhance the accuracy
of the YOLO one-stage detector. We utilize the dataset provided in the AIdea 2021 competition
to evaluate the system, achieving an F1-score of 0.91. These results indicate the superiority of the
proposed method over the baseline system. Furthermore, the outcomes affirm the potential for
precise detection of rice seedlings in precision agriculture.

Keywords: object detection; YOLOv4; smart agriculture; unmanned aerial vehicle images; precision
agriculture

1. Introduction

The deployment of artificial intelligence technologies in agricultural practices, known
as precision agriculture, has become a significant topic in recent years. Compared to that of
industrial areas, the complex natural environments of agriculture make it more difficult to
adopt automatic technologies, especially in instance segmentation models for detecting
and counting. Traditional rice cultivation encounters numerous challenges. First, with the
escalating issue of rural depopulation, the adoption of automated agricultural activities to
enhance efficiency has become an important concern. Second, due to the impact of extreme
climates, agriculture often encounters water shortage crises. In response to United Nations
Sustainable Development Goal (SDG) 6.4 “substantially increase water-use efficiency across
all sectors to address water scarcity”, precision agriculture, which enables the control of
irrigation water quantity based on the number of plants, has emerged as a potential savior.
Finally, the manual disaster assessment of farmland is time-consuming and should be
assisted by AI to improve efficiency. At the same time, novel image sensor technologies by
Unmanned Aerial Vehicles (UAV) are also widely used in many fields. Unmanned Aerial
Vehicles (UAVs) can capture images over large areas and multiple perspectives, enabling
computer vision to be used for the detection of desired objects. Therefore, the application
of UAV-based detection has become a focal point in precision agriculture research.

In recent studies, precision agriculture typically employed machine learning and
computer vision for target detection and achieved commendable results. Jiang et al. [1] used
the model based on DenseNet to introduce depth-wise separable convolutions to improve
parameter utilization and training speed. By leveraging channel attention mechanisms to
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enhance effective features, the accuracy of rice pest and disease recognition was improved
by 13.8%. Ammar et al. [2] compared several convolutional neural networks, such as
Faster R-CNN, EfficientDet, etc. They integrated geotagged metadata, photogrammetric
concepts, and distance calibration to identify palm trees’ geographical locations. This
enables the automated recognition, counting, and geospatial positioning of palm trees and
other vegetation.

There is much research applying machine learning to Unmanned Aerial Vehicles.
However, targets in UAV images are significantly smaller compared to typical targets,
leading to frequent errors during detection. Therefore, enhancing the performance of
deep learning models in the detection of tiny targets is a crucial challenge. Luo et al. [3]
integrated the network based on YOLOv3, collaborating with the K-means++ algorithm
and soft non-maximum suppression (Soft-NMS) algorithm. They improved the perfor-
mance of detecting tiny targets in UAV images. Wang et al. [4] used a Kalman filter for
tracking the seedling path to support YOLOv3 and improved the performance on detect-
ing tiny targets such as corn seedlings. Luo et al. [5] adopted the Asymmetric ResNet
(ASResNet) module, Asymmetric Enhanced Feature Extraction (AEFE) module, and
Asymmetric Res2Net (ASRes2Net) module to replace the backbone of YOLOv5. They em-
ployed Group Spatial Pyramid Pooling (GSPP) instead of Spatial Pyramid Pooling (SPP)
and incorporated the Efficient Channel Attention (IECA) module to enhance the accuracy
of the UAV image target classification task. Yang et al. [6] created a lightweight model
by using the GhostNet module to replace the relevant convolution in the YOLOv5 and
utilized Efficient Intersection over Union (EIoU) to accelerate convergence to improve
regression performance. The model achieved the requirement to reduce parameters
while simultaneously improving performance.

This study proposes a UAV image-based rice seedling labeling method for precision
agriculture using YOLOv4 [7]. The approach integrates data augmentation, a target de-
tection model based on YOLOv4, and improves activation functions. Simultaneously, we
introduce a formula for assessing the accuracy of predicting the plant center point. Our
approach achieves automatic counting and position labeling functionalities essential for
precision agriculture. This method optimizes automatic irrigation by detecting the coor-
dinates of rice plants in UAV images. Additionally, the plant count serves as a reference
for yield assessment, facilitating UAV image-based precision agriculture applications. The
dataset from the 2021 AIdea “Crop Location Auto-Labeling Competition” is utilized as
the experimental dataset for our system. UAV images are split into different sizes during
training. Then, we use the YOLOv4 one-stage detector to identify, count, and label the exact
coordinates of the rice plants in the UAV images. Finally, for the configuration of YOLO, we
use the Mish activation function to increase the generalization ability and accuracy of the
model. Then, we prove the feasibility and effectiveness of our method through experiments
and participate in the AIdea 2021 competition. To sum up, our contributions are:

1. Improving the accuracy of tiny object detection under the lack of data.
2. Instead of ReLU, the Mish activation function is used in YOLOv4 and achieves better

performance.
3. Proposing a criterion for determining the hit of detecting of the rice seedling.
4. Proposing the application of YOLOv4 for smart agriculture.

The remainder of this paper is organized as follows: Section 2 contains the work on
object detection in UAV images and discusses methods for improving the YOLO series. We
explain the rationale behind choosing a YOLO-based method for our task, introduce the
structure of the YOLOv4 one-stage detector, and describe a modification of the activation
function in Section 3. In Section 4, we analyze the effects of the Mish activation function and
data augmentation for image segmentation at different sizes on the experimental results.
The conclusion is presented in Section 5.
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2. Related Works

Precision agriculture has emerged as common practice in agricultural automation.
Leveraging information technologies such as unmanned aerial vehicles (UAVs) and sen-
sors aims to enhance production efficiency and resource utilization by optimizing crop
requirements. Jiang et al. [1] proposed a rice disease identification method based on an
improved DenseNet network. The approach integrated the channel attention mechanism
squeeze-and-excitation, depth-wise separable convolutions, and the AdaBound algorithm
to accelerate training and enhance accuracy. Ammar et al. [2] proposed a convolutional
neural networks-based framework for the automated counting and geolocation of palm
trees from aerial images. Liu et al. [8] developed a variable-rate spraying system. The
system employed a CNN-based model to classify weeds and strawberries, thereby reducing
pesticide losses. Li et al. [9] proposed a system for predicting the nutritional status of rice
using UAV imagery. The system analyzes multispectral images, including normalized
difference vegetation index (NDVI), normalized difference red edge (NDRE), and plant
nitrogen content to predict the nutritional status of rice. Oliveira et al. [10] employed
machine learning methods such as Extremely Randomized Trees and XGBoost to predict
the yield of corn.

To enable the management of irrigation resources and yield assessment in precision
agriculture applications, the integration of UAVs with deep learning has emerged as a
trend in agricultural research. Hu et al. [11] proposed a UAV tiny object detection method
based on fully convolutional one-stage object detection (FCOS). They introduced the
global context module combined with feature pyramid networks (FPN) in ResNet50 as the
backbone to strengthen feature representation. Complete intersection over union (CIOU)
Loss is used and an adaptive feature balancing subnetwork was designed to enhance the
detection performance of tiny objects. Jawaharlalnehru et al. [12] also adopted a YOLOv5-
based method to detect UAV images. They increased three 3 × 3 dimensions to replace the
final convolutional layer in the Darknet 19 backbone, aiming to preserve spatial information.
To enhance the robustness of the model, they utilized their homemade image classification
dataset with varying resolutions for pre-training. During the training phase, the model’s
input size was dynamically adjusted. Tseng et al. [13] achieved precision agriculture
through the detection of rice seedlings in UAV images. They employed transfer learning
with two machine learning models, EfficientDet-D0 and Faster R-CNN to implement a
Support Vector Machine (SVM) classification approach based on a Histogram of Oriented
Gradients (HOG). This approach reduced computational time while achieving outstanding
performance. Liu et al. [14] optimized the residual block on YOLOv3 by concatenating two
ResNet units. Subsequently, convolutional operations were added in the early layers of
the darknet to enhance spatial information, significantly improving the performance of
detecting tiny objects in UAV images. Shen et al. [15] employed YOLOv5-based approach
and estimated the object scale using an inertial measurement unit (IMU) to improve the
performance of the detector. Their proposed method can detect tiny objects in different
scales of UAV images. Amarasingam et al. [16] proposed a system for the automated
inspection of sugarcane white leaf disease using UAV images. The system integrated UAVs
with the YOLOv5 model, achieving promising results in the detection of sugarcane white
leaf disease. Tatini et al. [17] proposed YOLOv4-SUFF for detecting rice fields in UAV
images. YOLOv4-SUFF introduced an additional layer to YOLOv4, enabling the detector
to extract specific feature maps for obtaining more detailed information.

Combining the observations from the aforementioned related works, it can be noted
that in the field of object detection, most tasks opt for utilizing the YOLO series methods
and have achieved commendable results. Nevertheless, in addressing the challenge of
tiny object detection, there is still a need to develop improved methods to enhance the
performance of YOLO in detecting tiny objects. Therefore, the improvement method
of YOLO has been a trend in recent years. Sun et al. [18] employed MobileNetv2 as the
backbone of their YOLOv4-based lightweight model. By incorporating focal loss and
a convolutional block attention module, they improved the performance of detecting
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various varieties of rice panicles in UAV images. Zhang et al. [19] proposed a lightweight
GhostNet-YOLOv4 to identify objects. They embedded the full convolutional attention
module (C-SE) model into the backbone of YOLOv4 and replaced ordinary convolution
by depth-separable convolution. In order to optimize their lightweight model, they
applied an adaptive cosine annealing learning rate and a focal loss function, result-
ing in improved accuracy. Du et al. [20] applied secondary transfer learning to solve
the limitation of insufficient datasets. They also incorporated a hard negative min-
ing block into the YOLOv4 model to solve the problem of detecting a tiny object on a
complex background. Li et al. [21] proposed a YOLOv4-based tiny objects detection
improvement method PF_YOLOv4. PF_YOLOv4 added a soft thresholding module to
the residual structure of the backbone network which can enhance the robustness of
the model. It also used depthwise separable convolution to reduce parameters. Finally,
they added the Convolutional Block Attention Module (CBAM) to strengthen the feature
representation of the network. Zhang et al. [22] proposed a YOLOv5-pole UAV image
detection method. They utilized the mixup data augmentation technique to improve the
model’s generalization ability and robustness, introducing GhostBottleneck to lighten
the model and combine it with the Shuffle Attention (SA) module to focus morew on
tiny objects. Ultimately, the goal was to improve the performance of YOLOv5 while
reducing the number of parameters. Their experiment was successfully mounted on
agricultural UAVs’ onboard equipment and applied to smart agriculture. Wang et al. [23]
proposed a YOLOv5-based lightweight object detection model MFP-YOLO. To address
the challenges of significant scale variations and complex background interference in
UAV images, MFP-YOLO adopted an attention mechanism in the multi-path inverted
residual module. Additionally, it utilized parallelized reverse convolutional spatial pyra-
mid pooling to enhance multi-scale target detection. The Focal-EIoU loss function was
employed to enhance training stability and detection accuracy. By utilizing lightweight
decoupled heads, they also reduced the parameters in YOLOv5, thereby improving
overall performance.

3. Materials and Methods
3.1. System Framework

The framework of the proposed seedling labeling system is shown in Figure 1. The
framework integrates three methods: data augmentation, a YOLOv4-based object detection
model, and an activation function modification. During the training phase, UAV images are
fed into the model. To address the issue of limited data, we employ a data augmentation
method involving image cropping. Additionally, for enhanced model generalization ability
and training speed, we replaced activation functions in the YOLOv4 model with the Mish
activation function.

During the detection phase, users upload the UAV images they want to detect through
the interface. These UAV images are processed by the YOLOv4 one-stage detector, utilizing
trained weights for object labeling. In the YOLOv4 one-stage detector, UAV images are
initially fed into CSPDarknet53 [7]. Subsequently, the Neck component integrates features
using SPPNet and PANet. Finally, the Head component performs Dense Prediction to
predict label results. The rice seedlings’ labels and total counts are displayed in the user
interface, and the positions of the labeled seedlings’ centroids are saved in a text file.
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Figure 1. System framework of the proposed seedling labeling system.

3.2. YOLOv4 One-Stage Detector

The architecture of the YOLOv4 one-stage detector is illustrated in Figure 2. The
detection process comprises four modules: input, backbone, neck, and head. In this
paper, input refers to UAV images containing the target rice seedlings, and the head is
implemented through dense prediction to predict the final labels. We will discuss the
advantages of each stage, starting with the CSPDarknet53 network in the ‘Backbone’ stage.
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3.2.1. Backbone

The Backbone stage of the YOLOv4 One-Stage Detector is implemented using the
CSPDarknet53 network. The architecture of CSPDarknet53 is shown in Figure 3 below.
CSPDarknet53 exhibits excellent performance in feature extraction, a crucial aspect for
accurate object detection. In comparison to CSPResNext50, which excels in image classifi-
cation, CSPDarknet53 demonstrates superior results in object detection. The architecture
of CSPDarknet53 introduces the concept of cross-stage partial connections. At each stage,
features are divided into two parts: one part enters the computation block implemented
by DenseNet, and the other part is directly sent to the next stage. Finally, these two parts
are concatenated. Additionally, a transition layer is added to the backbone to improve
parameter utilization. The cross-stage partially connected architecture of CSPDarknet53
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improves information flow, enhances feature representation, and reduces computation time.
This results in better localization and classification of objects in UAV images.
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3.2.2. Spatial Pyramid Pooling in Neck

The first module in the YOLOv4 architecture’s neck utilizes the spatial pyramid pool-
ing (SPP) architecture proposed by Kaiming He et al. [24] as shown in Figure 4. SPP enables
the model to accommodate feature maps of different sizes, addressing the limitation of
fully-connected layers that traditionally accept feature maps of a fixed size, leading to sub-
optimal performance when presented with images of different resolutions. In YOLOv4, the
SPP module is enhanced by employing max-pooling with a larger k value (k = {1, 5, 9, 13})
and concatenating the output. This modification significantly increases the receptive field,
contributing to improved model performance. The refined SPP mechanism in YOLOv4 is
crucial for handling diverse resolutions in images, resulting in more robust and effective
object detection.
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3.2.3. Path Aggregation Network in Neck

The second module in the YOLOv4 architecture’s neck incorporates the Path Aggrega-
tion Network (PANet). The architecture of PANet is shown in Figure 5. In comparison to
alternative methods that establish interconnections between layers, the Feature Pyramid
Network (FPN) tends to traverse longer paths during information propagation. To address
this, PANet is modified by introducing an additional direct path from the bottom to the top.
This adjustment facilitates the efficient transmission of information from lower to higher
layers, reducing the length of the transmission path. Furthermore, YOLOv4 introduces a
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modification to the original PANet architecture. Unlike the original PANet, which adds the
feature map to the adjacent layer, YOLOv4 adopts a concatenation approach for the added
components. This adjustment aims to reduce computations when the required number of
features is fixed. Concatenating adjacent layers not only streamlines computations but also
enhances processing speed without significant loss of accuracy.
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3.3. Activation Function Replacement

In this paper, we propose a modification to the YOLOv4 model by replacing some
of the activation functions. The original YOLOv4 configurations predominantly employ
Rectified Linear Unit (ReLU) and leaky ReLU in most layers. We conduct a comparative
analysis between our modified configuration and the original settings, elucidating the
advantages of each activation function employed in our proposed configuration.

3.3.1. ReLU and Leaky ReLU

The activation functions used in the original YOLOv4 are ReLU and leaky ReLU. ReLU,
defined by Equation (1), stands out as one of the most widely used activation functions
in deep learning models due to its simplicity and effectiveness in solving the vanishing
gradient problem and enhancing neural network performance. However, ReLU suffers
from the issue of “dead neurons” during training, adversely affecting learning capability
and model performance. To solve this concern, leaky ReLU introduces a small slope for
negative inputs. The leaky ReLU function, defined by Equation (2), behaves similarly
to ReLU for positive inputs, passing them through unchanged. Conversely, for negative
inputs, it multiplies the input by a small slope ‘a’, introducing a non-zero gradient that
enables the flow of some information. Leaky ReLU effectively prevents the occurrence
of “dead neurons”. It also improves the gradient flow during backpropagation, leading
to faster convergence, and enhancing model performance. In general, Leaky ReLU helps
the model learn to be more stable and robust. However, the effectiveness of Leaky ReLU
depends on the correct selection of the ‘negative slope’ parameter. Poor parameter selection
may even result in the opposite effect of gradient disappearance. Therefore, Leaky ReLU is
not widely adopted across various models.

f (x) = max(0, x) (1)

f (x) = max(ax, x) (2)

3.3.2. Mish Function

We replaced the activation function with Mish. The Mish activation function is defined
by Equation (3). It introduces non-linearity and maps the input values to the range [−1, 1].
The softplus function is employed to smooth out the curve, preventing it from saturating at
extreme values. In comparison to ReLU, Mish exhibits a smoother and more continuous
behavior. The smoothness of Mish’s activation curve contributes to stable and consistent
gradient flow, avoiding abrupt transitions and saturation effects that can occur with ReLU
during backpropagation. This characteristic can lead to improved convergence and opti-
mization performance. Furthermore, Mish has demonstrated enhanced model performance
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and generalization capabilities despite its larger computational cost compared to ReLU. In
our task, the use of the Mish activation function results in a significant improvement [25].

f (x) = x × tanh(softplus(x)) (3)

In particular, we have modified the activation function in the convolutional layers
following the shortcut in YOLOv4 to use Mish. Additionally, Mish is employed during
up-sampling in the deep layers of the network. Through this approach, especially in
the up-sampling layers deep within the network, it facilitates the model in learning
complex mappings more effectively. The inclusion of Mish in the convolutional layers
following the shortcut is intended to enhance the model’s ability to capture fine details
and features of objects.

4. Experiments
4.1. Data Preparation

As mentioned earlier, the detection of plant seedlings holds significant potential in
agriculture. However, there is still room for improvement in applying object detection to
identify tiny objects such as rice seedlings. The prevailing method enhances the labeling
performance of rice seedlings through image preprocessing and configuration adjustments
in the object detection model. Our experiments on the 2021 AIdea “Crop Location Auto-
Labeling Competition” datasets demonstrate the enhanced performance of our method
compared to existing approaches. A description of the dataset is provided in Table 1.

Table 1. Description of the dataset provided from “Crop Location Auto-Labeling Competition”.

Resolution Training Set Testing Set Total

3000 × 2000 25 30 55
2304 × 1728 19 20 39

Total 44 50 94

This paper utilizes the full-color rice UAV imagery dataset provided by the AIdea
competition, consisting of 25 rice images with a resolution of 3000 × 2000 and 19 images
with a resolution of 2304 × 1728. Due to the large size of the images in the dataset making
them impractical for model training, the paper employed a strategy to split the images into
smaller, more manageable sizes. Recognizing the inadequacy of the provided training data
and the high resolution of the data provided, we augmented the dataset by cropping the
images. Starting from the top-left coordinates of the images, we divided the images into
non-overlapping segments of sizes 224 × 224 and 896 × 896. Ultimately, the dataset was
expanded to a total of 4162 images.

In the initial phase, considering the commonly used default input size of 224 × 224
in backbone networks, our first approach was to employ 224 × 224 as the segmentation
size for data augmentation. Additionally, we took into account the computational
resources of the hardware, the variation in drone altitude for each image affecting the
apparent size of rice plants, and the row spacing in rice cultivation. Since the competition
dataset only includes fully visible rice plants for counting, through observations it was
noted that using the dimensions of 896 × 896 possesses the of covering a substantial
number of plants while preserving the integrity of complete rice plants. This enhances
the recognition ability of the model.

4.2. Evaluation Metrics

Since the detection of the rice seedling is not a pixel-to-pixel problem, we must first
define a criterion to hit the center of rice seedling by a bounding box. In determining
the accuracy of the detection about the rice seedling, we utilize the criterion defined by
Equation (4):

Euclidean Distance = D(|GT(x, y)− P(x, y)|) < ε (4)
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Here, GT(x, y) represents the correct plant center coordinates in the dataset, P(x, y)
denotes the plant center coordinates predicted by the model, and ε signifies a predefined
tolerance threshold. Through experimentation, we observed that the average bounding box
size for rice plants was often around 60 × 120. Consequently, we set ε to 90, representing
the length from the center to the corner of a bounding box of size 60 × 120. This threshold
serves as the criterion for determining whether the predicted center point falls within an
acceptable margin of error relative to the ground truth.

The evaluation metrics used in the competition is F1-score. The detailed calculation
method for precision, recall, and F1-score is outlined in Equations (5) to (7). Precision
and recall are derived through the Euclidean distance between the rice seedling locations
predicted by the model and the corresponding ground truth.

Precision =
Total points correctly predicted as seedlings (TP)

Total points predicted as seedlings (TP + FP)
(5)

Recall =
Total points correctly predicted as seedlings (TP)

Total points annotated as seedlings in the data (TP + FN)
(6)

F1-Score = 2 × Precision × Recall
Precision + Recall

(7)

And to evaluate the seedling counting function, we refer to the accuracy definition
used by Wu et al. [26] as Equation (8):

Accuracy =

(
1 − 1

n

n

∑
1

|Predictedn − Groundtruthn|
Groundtruthn

)
(8)

Here, Groundtruthn and Predictedn represent the “Total points annotated as seedlings
in the data” and the “Total points correctly predicted as seedlings by the model”, respec-
tively, in the nth image.

4.3. Data Augmentations

From Table 1 above, it can be found that the amount of training data provided by the
competition is relatively small. To address this limitation, we augmented the training data
by isotopically cropping the images, thereby enhancing the learning of the target. After
the cropping process, we divided the original dataset, expanding it to 3930 images. The
example of data augmentation is shown in Figure 6.
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4.4. Experimental Results

To evaluate the performance of the developed facial expression recognition system,
we equipped a computer with an Intel Core i7-6700 CPU @ 3.40 GHz (8 cores) processor,
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an NVIDIA GeForce RTX 2080 Ti GPU, and 32 GB of RAM as the hardware platform for
conducting our experiments.

Our experimental design is divided into three parts. First, we use the initial YOLOv4
as a baseline for comparison to assess the effectiveness of the proposed method (ablation
study). Next, we compare our plant counting approach with others. Finally, we compare
with state-of-the-art methods using average precision as the evaluation metric.

The experimental results of the ablation study are presented in Table 2. Initially, we
trained the model using the original data and the original YOLOv4 configurations as
our baseline. Subsequently, we conducted experiments by augmenting the data through
various sizes of image cropping and adjusting the configurations for comparative analysis.

Table 2. Ablation study experimental results.

Experiments Data Augmentation Configurations F1-Score Acc

Model 1 (baseline) Original dataset Original YOLOv4 0.63 0.68

Model 2 Splits into 224 × 224 Width:1024
Height:1024 0.65 0.73

Model 3 Splits into 224 × 224
+Original dataset

Width:1024
Height:1024 0.69 0.78

Model 4 Splits into 896 × 896 Width:1024
Height:1024 0.72 0.85

Model 5 Splits into 896 × 896
+Original dataset

Width:1024
Height:1024 0.84 0.91

Model 6 Splits into 896 × 896
+Original dataset

Width:1024
Height:1024

+Mish
0.91 0.97

Upon examining Table 2, it is evident that this method enhances the F1-score by
0.28 compared to the baseline model using the original dataset and configuration. In the
data augmentation experiments, we can observe that employing larger sizes for image
segmentation yields better results. This is attributed to the high density of rice seedlings
in UAV images; using excessively small sizes to segment images may inadvertently cut
through rice plant boundaries, negatively impacting learning. Conversely, larger sizes
improve the ability to distinguish and exclude other objects. Furthermore, it is observed
that despite the lack of original data, the performance of using small-sized cuttings is
still superior to using the original dataset. Irrespective of the cutting size, combining the
cut data with the original dataset achieves better performance. Finally, the model using
Mish as the activation function has achieved a significant improvement in F1-score. In
the course of our model development, the training phase spanned a total duration of
20 h, wherein the model underwent iterative learning processes. Subsequently, during
the testing phase, the annotation of each image demonstrated an impressive efficiency,
averaging a mere 200 milliseconds per image. This noteworthy performance underscores
the efficacy of our proposed methodology in achieving swift and accurate results in
real-world applications.

Table 3 provides a reference for accuracy, where it is observed that our approach has
improved the accuracy by 0.29 compared to the baseline YOLOv4. When compared to the
work of Wu et al. [26], our method outperforms theirs in terms of accuracy. Additionally,
in comparison to Wu et al., our model is capable of annotating the coordinates of
the targets.
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Table 3. Comparing other models with counting accuracy.

Experiments Main Method Position Labeling Accuracy

Model 1 (baseline) Yolov4 + 0.68

Wu et al. [26] Regress the density map − 0.81

Model 6 Modified YOLOv4 with Mish + 0.97
+/− means the approach with/without the position labeling capability separately.

Table 4 presents average precision as the evaluation metric and compares it with the
one proposed by Tatini et al. [17]. It can be observed that our approach has achieved a
4.96% improvement in average precision compared to Tatini et al.

Table 4. Comparing other models with average precision.

Experiments Main Method Recall Average Precision

Model 1 (baseline) YOLOv4 0.58 84.64%

Tatini et al. (2022) [17] YOLOv4-SUFF − 86.78%

Model 6 YOLOv4 with Mish 0.90 91.74%
− means the approach without the recall.

5. Conclusions

This study proposes a UAV image-based rice seedling labeling method for precision
agriculture using YOLOv4. By segmenting the dataset, we increase the quantity of images
for a limited amount of training data, thereby improving the recognition performance for
tiny objects in UAV images. The activation function Mish replaces the activation function
used in YOLOv4, thereby enabling YOLOv4 to overcome limitations in detecting tiny
objects. Furthermore, we propose a criterion for determining the detection accuracy of rice
seedlings, aiming to evaluate the system. In the experiments, compared to the original
YOLOv4 model, the F1-Score achieved was 0.91, showing an improvement of 0.28 over the
baseline YOLOv4. There were also enhancements in accuracy and precision, with increases
of 0.29 and 7.1%, respectively. This not only validates the effectiveness of our system but
also establishes it as a state-of-the-art model. Beyond the agricultural domain, our approach
is expected to apply to other applications such as crowd counting [27]. Therefore, in the
future, we plan to extend our methodology to develop applications in various domains.
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