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Abstract: Traffic Sign Recognition (TSR) plays a vital role in intelligent transportation systems (ITS)
to improve road safety and optimize traffic management. While existing TSR models perform well in
challenging scenarios, their lack of transparency and interpretability hinders reliability, trustworthi-
ness, validation, and bias identification. To address this issue, we propose a Convolutional Neural
Network (CNN)-based model for TSR and evaluate its performance on three benchmark datasets:
German Traffic Sign Recognition Benchmark (GTSRB), Indian Traffic Sign Dataset (ITSD), and Belgian
Traffic Sign Dataset (BTSD). The proposed model achieves an accuracy of 98.85% on GTSRB, 94.73%
on ITSD, and 92.69% on BTSD, outperforming several state-of-the-art frameworks, such as VGG19,
VGG16, ResNet50V2, MobileNetV2, DenseNet121, DenseNet201, NASNetMobile, and EfficientNet,
while also providing faster training and response times. We further enhance our model by incorpo-
rating explainable AI (XAI) techniques, specifically, Local Interpretable Model-Agnostic Explanations
(LIME) and Gradient-weighted Class Activation Mapping (Grad-CAM), providing clear insights
of the proposed model decision-making process. This integration allows the extension of our TSR
model to various engineering domains, including autonomous vehicles, advanced driver assistance
systems (ADAS), and smart traffic control systems. The practical implementation of our model
ensures real-time, accurate recognition of traffic signs, thus optimizing traffic flow and minimizing
accident risks.

Keywords: road safety; traffic sign recognition; traffic management; intelligent transportation
systems; interpretable neural network

1. Introduction

Traffic Sign Recognition (TSR) has emerged as a fundamental component of intelligent
transportation systems, playing a crucial role in enhancing road safety and efficiency.
With recent advancements in artificial intelligence and machine learning (AI&ML), TSR
systems have become capable of automating the detection and classification of traffic signs,
providing drivers with crucial real-time information [1,2]. This technological progress
plays an important role in reducing accidents, optimizing traffic flow, and improving the
safety standards on our roads. Despite these advances, current state-of-the-art TSR models
still face challenges in real-world applications due to factors such as varying lighting,
bad weather, obstructions, and diverse traffic sign designs in different regions [3,4]. Such
challenges underscore the need for TSR systems that are not only adaptable and responsive
in real-time, but also resilient in diverse traffic conditions.

In the field of TSR, deep learning techniques, especially convolutional neural networks
(CNNs), have become a popular choice due to their reliability and accuracy in recognizing
and categorizing traffic signs. However, these models often lack transparency, making it
challenging to understand the rationale behind their outcomes [5,6]. The intricacies of their
internal mechanisms and decision-making processes often lack transparency, resulting in a
“black-box” scenario where the logic behind specific outcomes is not clear. This ambiguity
not only poses challenges in validating and correcting any biases or limitations within TSR
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systems, but also poses significant challenges in safety-critical applications where under-
standing and trusting the system’s decisions are crucial [7–9]. It undermines the trust and
validation of the system decisions that are vital in safety-focused real-world applications.
The importance of having reliable, safe, and efficient decision-making processes in these
systems is vital [10,11]. The need for transparent and interpretable decision-making in
autonomous systems, especially where safety is of utmost importance, is paramount.

Additionally, the lack of transparency in TSR systems complicates the identification
and correction of biases or limitations. The ability to detect and address these biases is
crucial not only for ensuring the accuracy and fairness of the system, but also for improving
user trust and adherence to ethical standards.

In addressing these challenges, Explainable AI (XAI) has emerged as a promising
solution, particularly for safety-critical applications [12]. XAI techniques aim to provide
transparent and interpretable explanations for AI model decisions, enabling a deeper
understanding of their inner workings. In the context of TSR, the application of XAI
techniques can provide valuable insights into how deep learning models recognize and
classify traffic signs, thus addressing the inherent ’black-box’ nature of these models. By
enhancing the transparency and interpretability of the decision-making processes in TSR
systems, XAI not only improves their trustworthiness and fairness, but also contributes to
their overall effectiveness.

In this paper, we introduce an interpretable Neural Network model integrated with
XAI for efficient TSR. This integration of CNN with XAI allows us to effectively address
the prevalent ’black-box’ problem in TSR models. Our research enables us to delve into
the internal workings of the proposed model, identify, and address biases in TSR models,
ensuring their accuracy, fairness, and alignment with the broader ethical imperative of
equity in AI applications.

The primary objective of this research is to improve trust and validation in TSR systems,
which is especially important in areas where safety is critical, such as the development
of autonomous vehicles and intelligent traffic management. By improving the reliability
and transparency of TSR models, our approach addresses the ’black-box’ issue commonly
associated with TSR models and aims to enhance the model’s overall performance.

The paper is organized as follows: in Section 2, we provide an extensive review of the
existing literature, followed by Section 3, which discusses the datasets, data preprocessing
techniques, and the proposed methodology. In Section 4, we discuss the design and
implementation of our proposed methods. The result and evaluation of our framework
are presented in Section 5. Finally, Section 6 concludes the paper, summarizing the key
findings and suggesting future research directions.

2. Related Work

This literature review provides an overview of the significant contributions in the field
of AI and ML-based TSR systems, with a focus on the employed methodologies. It covers
a wide range of methodologies, including traditional machine learning algorithms and
state-of-the-art techniques such as Convolutional Neural Networks and Deep Learning.

TSR systems aim to effectively gather pertinent visual data from input images, achieve
efficient segmentation, and accurately classify traffic signs [13]. The authors of [14] pro-
posed a lightweight traffic sign classification model using an enhanced LeNet-5 network.
The proposed model is lightweight, easily implemented for an embedded application, and
trained on the GTSRB and BTSD datasets. It has achieved an accuracy of 99. 84% in GTSRB
and 98. 37% in BTSD. The reduced number of parameters and the lightness of their model
based on the enhanced LeNet-5 network allowed them to test their model for an embedded
application using a webcam, yielding efficient results. Similarly, a semi-supervised learning
approach is introduced for TSR in IoT-based transport systems, using a fusion of various
features to build different feature spaces [15]. Their approach outperformed others in the
GTSRB dataset, indicating its potential for practical applications.
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In [16], the authors proposed a TSR for the identification and recognition of road signs
using deep learning methods. The proposed method leverages an 8-layer convolutional
neural network (CNN) to detect and classify 43 distinct road signs, demonstrating its
efficacy in real-time road sign recognition, with a classification accuracy of 95%. They used
the focus loss to control the network of regional proposals and the use of three convolutional
and one fully connected layers for the detection of road signs. The authors of [17] presented
a lightweight CNN architecture for TSR and achieved accuracy rates of 98.41% and 92.06%
on the GTSRB and BelgiumTS datasets, respectively. Similarly, in [18], an attention-based
deep CNN is presented and and achieved a testing accuracy rate of 98.56% on the GTSRB
dataset. However, model performance under varying environmental conditions remains a
critical factor in real-world applications.

The authors of [19] proposed a CNN based on the k-means method to optimize the
accuracy of TSR. The study proposed a limited CNN to identify difficult traffic signs
through hierarchical classification. The study showed that the algorithm improves the
overall accuracy of TSR more effectively and achieved a test accuracy rate of 98.81%. In [20],
Dense-RefineDet is presented, a deep learning model for detecting and classifying small
traffic signs. By utilizing the RefineDet framework, the model maintains a balance between
accuracy and speed. It incorporates a dense connection-related transfer-connection block
to effectively combine high-level and low-level feature layers, optimizing the utilization
of contextual information. Consequently, the model achieves high-speed detection, with
recall rates of 84.3%, 95.2%, and 92.6% and precision rates of 83.9%, 95.6%, and 94.0% for
small-, medium-, and large-scale traffic signs, respectively.

In [21], a Spike Neural Networks (SNNs)-based approach for energy-efficient and
fast model training in IoV scenarios is proposed. It introduces a novel encoding scheme
using neuron receptive fields to extract information from the traffic sign pixel and spatial
dimensions. The approach achieves a recognition accuracy of 98.5% on the GTSRB dataset,
outperforming traditional federated CNN. The federated SNN excels in accuracy, noise
immunity, and energy efficiency. In [22], a lightweight CNN with residual blocks-based
deep learning model has been proposed for traffic recognition systems. The proposed
model was trained on the GTSRB dataset and achieved a 99.9% accuracy by F1-score.

The authors of [23] highlighted the potential of deep learning models in real-time TSR
and proposed a real-time traffic sign recognition algorithm using the You Only Look Once
(YOLO) v5 model. They prepared and labeled an open-source datase and trained CNN
models with 15 different traffic sign classes. The proposed model was used for a real-time
application and achieved a 98% success rate in the detection of traffic signs. In [24], the
authors evaluate the performance of YOLOv5 for the TSR system through a comprehensive
comparison with the Single Shot Multibox Detector (SSD). YOLOv5 achieves 97.70% in
terms of Mean Average Precision (mAP) for all classes, while SSD obtains 90.14% mAP.

In [25], a systematic pipeline was proposed to generate robust physical adversarial
examples (AE) against real-world object detectors. The authors performed a comprehensive
set of experiments under a variety of environmental conditions, illuminations, and weather.
The experimental results show that the physical AEs generated from their pipeline are
effective and robust when attacking the YOLO v5-based TSR system.

In [26], the authors present a neural network-based deep learning model for traffic sign
retro-reflectivity prediction. A feature-based sensitivity analysis is performed to identify
variables’ relative importance in determining retro-reflectivity. The authors demonstrate
the feasibility and robustness of the proposed neural network-based deep learning model
in predicting the sign retro-reflectivity. Similarly, in [27], the authors present a methodology
for examining the robustness of AI systems, specifically neural networks, and provide
methods and metrics for doing so. The methodology is applied to the example use case of
traffic sign recognition in autonomous driving. The paper highlights the importance of the
robustness of AI systems in security- or safety-critical applications.

In [28], the authors propose an improved deep learning method based on the Faster
RCNN model for traffic sign recognition. The authors designed a multi-channel, parallel,
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full CNN to extract features such as color, shape, and texture from traffic signs in the
original image. The authors train and test their proposed framework on multiple datasets
such as GTSRB, GTSDB, and TT100k to verify the recognition ability of the model.

3. Methodology

This section aims to provide an in-depth and detailed analysis of the proposed method-
ology and its practical implementation. We will begin by discussing the dataset employed
in this study and the preprocessing techniques applied to clean up and convert the data
into a suitable format. Following that, we will discuss the proposed methodology in detail
to better understand and explain the proposed framework and its underlying principles
and operations.

3.1. Dataset Collection

To develop and evaluate the proposed TSR system, we collected three diverse and com-
prehensive datasets: the German Traffic Sign Recognition Benchmark (GTSRB) dataset [29],
Indian Traffic Sign Dataset (ITSD) [30], and the Belgian Traffic Sign Dataset (BTSD) [31].
These datasets offer a diverse range of traffic signs, including those with complex and
challenging characteristics, as well as real-world scenarios.

The GTSRB dataset is a comprehensive collection of over 50,000 images, encompassing
43 different classes of traffic signs. It is divided into three subsets: 31,433 images for
training, 7859 images for validation, and 12,630 images for testing. In addition, the ITSD
dataset consists of 13,971 images with 58 different classes of traffic signs. Among these,
11,176 images are used for training and validation, and 2795 images are selected for testing.
Similarly, the BTSD dataset contains 7095 images, with 4575 allocated for training and
2520 designated for testing. These datasets provide a wide variety of traffic sign samples
(as shown in Table 1), enabling effective model development and evaluation.

Table 1. Overview of GTSRB, ITSD, and BTSD.

Dataset Total Images Classes Data Types Training Set Validation Set Testing Set

GTSRB [29] 51,922 43 PNG 31,433 7859 12,630

ITSD [30] 13,971 58 PNG 11,176 1398 1397

BTSD [31] 7095 62 PPM 3660 915 2520

3.2. Data Preprocessing

The obtained datasets undergo multiple preprocessing steps to improve their quality
and ensure their suitability to train the TSR system.

3.2.1. Image Rescaling and Normalization

The employed datasets have varying aspect ratios, ranging from (25× 25) to (243× 225)
in GTSRB and (20× 37) to (529× 347) in BTSD, as shown in Table 2. To ensure compatibility
with the proposed model, it is essential to standardize the image resolution to a consistent
pixel ratio. It is worth noting that reducing the image size to lower pixel ratios, like 25 × 25
or 32 × 32, would decrease the model complexity. Nevertheless, this could adversely
impact the model’s ability to accurately depict visual information, which could lead to a
decline in classification performance.

To determine the optimal balance between computational complexity and classification
accuracy, we performed experiments with different image sizes. Our evaluation indicated
that resizing the images to dimensions of 50× 50 pixels struck the optimal balance between
computational complexity and classification accuracy. Therefore, we resized all images in
the datasets to ensure consistency and reduce complexity during training. Furthermore,
we normalized pixel intensities to a range of [0, 1] to eliminate variations in brightness
and contrast.
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Table 2. Overview of data preprocessing techniques across the GTSRB, ITSD, and BTSD datasets.

Dataset Image Resolution Data Augmentation Image Segmentation Feature Extraction

GTSRB [29]
Resolution size vary from 25 × 25
to 243 × 225
Number of Resolution sizes = 2924

× ✓
Shape
Color
Texture

ITSD [30] 32 × 32 ✓ ×
Shape
Color
Texture

BTSD [31]
Resolution size vary from 20 × 37
to 529 × 347
Number of Resolution sizes = 3122

✓ ✓
Shape
Color
Texture

3.2.2. Data Augmentation

To augment the datasets and increase their diversity, various augmentation techniques
are applied. These techniques include random rotation, translation, scaling, and flipping.
Augmentation introduces variations in viewpoint, position, and orientation, making the
TSR system more robust to different traffic scenarios.

3.2.3. Image Segmentation and Background Removal

To isolate the traffic sign regions from the background, image segmentation techniques
are employed. Advanced algorithms such as edge detection, color-based segmentation, and
morphological operations are utilized to accurately segment the traffic sign regions. This
step helps to reduce the interference caused by complex backgrounds and extracting the
relevant regions of interest. In the case of GTSRB [29] and BTSD [31], image segmentation
techniques are rigorously employed to isolate traffic sign regions from their respective
backgrounds. Conversely, ITSD [30] inherently comprises pre-segmented traffic sign
regions, negating the need for additional segmentation processes.

3.2.4. Feature Extraction

After the preprocessing steps, the features are extracted from the segmented traffic
sign images. Shape-based features, such as contours and bounding boxes, color-based
features, such as histograms and color moments, and texture-based features, such as local
binary patterns are extracted. These features capture the distinctive characteristics of traffic
signs and provide discriminative information for subsequent classification.

3.3. Proposed Methodology

The field of deep learning has enabled significant improvements in computer vision
tasks, such as traffic sign recognition (TSR). Despite the advent of deeper architectures,
including [32] and [33] with 23.8 million and 143.6 million parameters, respectively, it has
been shown that excessive usage of kernels may cause a decline in performance without
resolving the high variance and high bias issue. Consequently, we have proposed a
lightweight and resource-efficient neural network architecture for TSR that maintains high
precision and accuracy with lower training and inference time.

The proposed methodology utilizes a singular convolutional neural network (CNN)
model that incorporates convolutional, max pooling, and dropout layers, with a GlobalAv-
eragePooling2D layer preceding the dense layers, as delineated in Table 3. These layers
play a crucial role in the feature extraction process, converting the raw pixel data from
the input image into a tensor. The model identifies essential patterns and features within
the image, leading to the classification of the tensor into a specific traffic sign class via
the GlobalAveragePooling2D layer. Furthermore, all layer parameters were collectively
optimized to minimize error across the training set.
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Table 3. Detailed representation of the proposed framework architecture.

Layer Name Output Size Kernel Size Strides Activation Number of Layers

Input 50 × 50 × 3 - - - -

Conv2D 48 × 48 × 64 3 × 3 1 × 1 ReLU 2

MaxPooling2D 24 × 24 × 64 2 × 2 2 × 2 - 1

Dropout 24 × 24 × 64 - - - 1

Conv2D 24 × 24 × 128 3 × 3 1 × 1 ReLU 2

MaxPooling2D 12 × 12 × 128 2 × 2 2 × 2 - 1

Dropout 12 × 12 × 128 - - - 1

Conv2D 12 × 12 × 256 3 × 3 1 × 1 ReLU 2

MaxPooling2D 6 × 6 × 256 2 × 2 2 × 2 - 1

Dropout 6 × 6 × 256 - - - 1

Conv2D 6 × 6 × 512 3 × 3 1 × 1 ReLU 2

MaxPooling2D 3 × 3 × 512 2 × 2 2 × 2 - 1

Dropout 3 × 3 × 512 - - - 1

GlobalAvgPooling 512 - - - 1

Dense 128 - - ReLU 1

Dropout 128 - - - 1

Dense Number of Class - - Softmax 1

Convolutional layers serve as the core elements in neural networks. Every convolu-
tional layer consists of neurons equipped with adjustable biases and weights, enabling the
layer to evolve and adapt through learning over time. Let Fi,j represent the output feature
map at layer i for filter j, xi,k represent the kth feature map in the input of the ith layer, wi,j,k
represent filter weights for filter j on input feature map k at layer i, and bi,j bias for filter j
at layer i. The convolution operation is thus represented as:

Fi,j = σ

(
∑
k
(wi,j,k ∗ xi,k) + bi,j

)
, (1)

where σ represents the ReLU activation function.
Max-pooling layers are crucial in CNNs, as they diminish the spatial dimensions of

feature maps. This reduction leads to fewer parameters and lowers computational expenses.
Moreover, these layers help in preventing overfitting in the model by maintaining invariant
features. The operation of the max-pooling layer can be represented as:

Pi,j(u, v) = max
(m,n)∈R(u,v)

Fi,j(m, n), (2)

where Pi,j(u, v) is the output of the max-pooling operation at location (u, v) in layer i for
filter j, and R(u, v) is the input feature map region around location (u, v).

We incorporated dropout layers into the model to enhance robustness and mitigate
overfitting. During each update in the training phase, these layers randomly nullify a
fraction ρ of the input units. The dropout operation can be represented as:

Di,j = Fi,j ·M, (3)

where Di,j represents the output from the dropout layer for the jth feature map in the ith
layer, and M is the binary mask vector, with the entries being 1 with probability (1− ρ)
and 0 with probability ρ.



Electronics 2024, 13, 306 7 of 21

We used dense layers to perform the final classification. Each neuron in a dense layer
computes a weighted sum of all its inputs, incorporates a bias, and subsequently applies
an activation function. This can be represented as:

y = σ

(
∑

i
wixi + b

)
. (4)

In this equation, y is the output of the neuron, wi are the weights associated with the
neuron, xi are the inputs, and b is the bias.

Hyperparameters such as kernel size and output size are optimized using a grid
search method, aiming to strike a balance between the computational complexity and the
overall performance of the model. For each configuration of the model, the selection was
based on the configuration that achieved the highest validation accuracy. By utilizing
the ReLU activation function, the dropout regularization technique, and carefully chosen
hyperparameters, we were able to enhance the accuracy of the proposed TSR system. The
overall working of proposed methodology is presented in detail in Algorithm 1.

Algorithm 1 Pseudocode of the Proposed Model

Require: Input→ (Xtrain, Ytrain), (Xval , Yval), (Xtest, Ytest)
1: Define Sequential model
2: input_shape← (W, H, 3)
3: for i in [64, 128, 256, 512] do
4: Add Conv2D layer with i filters, kernel size (3,3), and input shape if i == 64
5: Add Conv2D layer with i filters, kernel size (3,3)
6: Add MaxPool2D layer with pool size (2, 2)
7: Add Dropout layer with rate i/1024
8: end for
9: Add GlobalAveragePooling2D layer

10: Add Dense layer with 128 neurons and ReLU activation
11: Add Dropout layer with rate 0.5
12: Add Dense layer with “number of classes” neurons and softmax activation
13: Compile SGD optimizer, loss, and accuracy

3.4. Loss Function and Optimizer

We used a stochastic gradient descent (SGD) as an optimizer with a learning rate of
0.01 and a momentum of 0.9, with SGD in the proposed methodology due to its efficiency
and ease of implementation. It updates the parameters using the gradient of the cost
function, with respect to a parameter that needs adaptation. SGD computes the gradient
using a single sample, making it faster and suitable for large datasets and deep networks.

However, a high learning rate can cause SGD to overshoot the minima, while a low
learning rate can cause it to become stuck in undesirable local minima or take too long to
converge. To address these issues and balance the learning rate, we incorporated a learning
rate schedule using the ‘ReduceLROnPlateau‘ function. This function reduces the learning
rate when a metric has stopped improving, which aids in finding a global minimum of the
loss function. In our case, the learning rate is reduced when the validation loss does not
decrease for 10 epochs. By progressively reducing the learning rate, we can fine-tune our
model and achieve better accuracy.

Additionally, the momentum term increases the learning rate for parameters that
consistently have the same sign of error derivatives and reduces the learning rate for
parameters with oscillating error derivatives. This approach accelerates SGD in the relevant
direction and dampens oscillations, leading to faster convergence.

The selection of the optimizer, learning rate, and momentum was made through
experimentation and evaluation, striking a balance between learning efficiency and compu-
tational resources. The ultimate goal was to minimize the categorical cross-entropy loss
function while maintaining high accuracy.
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4. Results

This section provides an in-depth review of the results obtained from the evaluation
of our proposed model. The performance of the model is analyzed using the GTSRB, ITSD,
and BTSD. Key Performance Indicators (KPIs) such as overall accuracy, precision, recall,
and F1-score are used to quantify the performance of the model.

4.1. Experimental Setup

In this study, we conducted a comprehensive analysis using a selected subset of the
German Traffic Sign Recognition Benchmark (GTSRB) dataset to examine the impact of
image resolution variations on the performance of our traffic sign classification model. The
primary objective was to discern the effect of different image sizes on the model’s capability
in accurately classifying traffic signs. This process entailed a systematic evaluation of the
model using a range of image resolutions, specifically, 32 × 32, 50 × 50, 80 × 80, and
100 × 100 pixels. The intent was to establish an optimal balance between computational
complexity and the efficiency of classification performance, as depicted in Figure 1.

After careful consideration, we excluded higher image resolutions of 150 × 150 and
200 × 200 pixels due to their high computational requirements, which exceeded 3000 s.

Figure 1. Impact of image resolution on TSR performance, accuracy, and model complexity.

After thoroughly analyzing these factors, we opted for a 50× 50 pixel image resolution,
finding it to be an optimal balance between classification accuracy and the complexity of
the model. Our experimentation showed that (as shown in Table 4) lower resolution images
led to a notable decrease in the model’s classification accuracy. Meanwhile, high resolution
images led to an increase in the model’s complexity and longer training times.

The primary goals regarding image size focused on attaining high accuracy while
concurrently reducing training durations and resource consumption. After careful delibera-
tion, including examining the accuracy–computational efficiency trade-off, we concluded
that employing 50 × 50 pixel images represented the optimal choice for our proposed TSR
system. Moreover, the proposed model is designed for real-world implementation in safety-
critical scenarios, where accuracy and reliability are of utmost importance. We contend
that using higher resolution images leads to more accurate detection and classification of
traffic signs, a crucial factor in ensuring the safety of drivers and pedestrians. Consequently,
we proceeded to train and evaluate our proposed model on the GTSRB, ITSD, and BTSD
datasets to thoroughly assess its efficacy and reliability in the context of TSR. During the
training process, we employed the Adam optimizer with a learning rate of 0.01.
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Table 4. Comparative analysis of TSR performance on GTSRB.

Image Resolution
Size

Time
(in Seconds)

Resources Usage
(in MByte)

Accuracy (%) F1-Score (%)

32 × 32 700.2 5.2 98.36 98.33

50 × 50 816.1 8.0 98.84 98.40

80 × 80 1507.6 13.9 98.60 98.59

100 × 100 2086.8 20.0 98.92 98.64

Furthermore, we integrated various data enhancement techniques, such as random
rotations, zooming, and horizontal flips, to increase the training set and enhance the gener-
alization capabilities of the model. Our experiments were executed on a Jupyter Notebook
environment powered by a GeForce RTX 2080 Ti GPU. The primary implementation was
accomplished using Python 3.8.

4.2. Evaluation Parameters

The performance of classification models, like our proposed traffic sign recognition
model, is often gauged using key performance indicators (KPIs) such as accuracy, precision,
recall, and the F1-score.

Accuracy (A) is a fundamental KPI that denotes the overall accuracy of the model’s
predictions. It is determined by the ratio of accurately classified instances relative to the
total count of instances, as depicted in Equation (5). Accuracy provides a holistic view of
the model’s performance, giving an overall success rate of classification.

A =
TP + TN

TP + TN + FP + FN
(5)

Precision (P) is calculated as the ratio of true positives TP (i.e., correct positive pre-
dictions) to all the positive predictions made by the model, calculated in Equation (6).
Precision gives us an understanding of the model’s ability to avoid false positives FP, thus
ensuring that the detected traffic signs are indeed correct.

P =
TP

TP + FP
(6)

Recall (R), also known as sensitivity, gauges the model’s completeness. It measures
the percentage of true positives out of all the actual positive cases present in the dataset, as
outlined in Equation (7). Recall gives insight into the model’s ability to correctly identify
all relevant instances, thus helping avoid false negatives FN , which, in the context of traffic
sign recognition, means missing actual traffic signs.

R =
TP

TP + FN
(7)

The F1-score (F1-score) represents the harmonic mean of precision and recall, accord-
ing to Equation (8). This KPI provides a balanced perspective by considering both precision
and recall, thus presenting a more comprehensive view of the model’s performance. A
high F1-score indicates that the model has a robust performance with a balance between
precision and recall.

F1-score = 2× P×R
P+R (8)

In our experiments, we rely on these KPIs as the key metrics for evaluating our
proposed model’s performance. They provide us comprehensive insights into the proposed
model while maintaining a balance between detecting all relevant signs and avoiding
false detections.
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4.3. Performance Results: GTSRB Dataset [29]

We conducted extensive experiments using the GTSRB dataset to comprehensively
assess the effectiveness and reliability of our proposed model for TSR. GTSRB is widely
recognized and serves as a benchmark for evaluating the TSR framework. To establish
a solid comparison, we compared the performance of our proposed model with several
state-of-the-art frameworks (SOTA), such as VGG19 [33], VGG16 [33], ResNet50V2 [34],
MobileNetV2 [35], DenseNet121 [36], DenseNet201 [36], NASNetMobile [37], and
EfficientNet [38].

The experimental results, as shown in Table 5, clearly demonstrate that the proposed
model outperforms the SOTA frameworks, such as VGG19, VGG16, ResNet50V2, Mo-
bileNetV2, DenseNet121, DenseNet201, NASNetMobile, and EfficientNet, in accurately
classifying traffic signs. The proposed model achieved an accuracy of 98.85%, outperform-
ing the other SOTA frameworks by 0.68%, 0.46%, 3.03%, 3.86%, 0.29%, 0.04%, 1.52%, and
1.21%, respectively. These results highlight the effectiveness of our model in achieving
highly accurate predictions, while, in terms of precision, the proposed model achieves a pre-
cision score of 98.91%, outperforming VGG19 with a precision score of 98.29%, VGG16 with
98.47%, ResNet50V2 with 95.96%, MobileNetV2 with 95.57%, DenseNet121 with 98.63%,
DenseNet201 with 98.83%, NASNetMobile with 97.39%, and EfficientNet with 97.68%. The
proposed model outperforms these state-of-the-art frameworks with percentage differences
ranging from 0.29% to 1.62%. This higher precision score highlights the robustness and
ability of the proposed model to minimize false positives and accurately identify positive
instances of traffic signs. The improved precision further reinforces the effectiveness and
reliability of our model in the classification of traffic signs.

Table 5. Comparative performance analysis of TSR on the GTSRB dataset.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) Training Time
(in Seconds)

Response Time
(in Milliseconds)

Resources Usage
(in MByte)

VGG19 [33] 98.17 98.29 98.17 98.16 1418.0 103.96 15.2

VGG16 [33] 98.39 98.47 98.39 98.29 1176.5 97.41 16.7

ResNet50V2 [34] 95.82 95.96 95.82 95.76 2434.0 174.37 8.4

MobileNetV2 [35] 94.99 95.57 94.99 95.07 1934.6 131.96 10.0

DenseNet121 [36] 98.56 98.63 98.56 98.56 3437.8 232.20 11.6

DenseNet201 [36] 98.81 98.83 98.81 98.80 5081.0 289.43 11.6

NASNetMobile [37] 97.33 97.39 97.33 97.31 4590.2 210.70 11.6

EfficientNet [38] 97.64 97.68 97.64 97.62 2303.8 165.74 12.8

Ours 98.85 98.91 98.85 98.84 840.9 96.95 14.0

Furthermore, our proposed model exhibited a recall performance, achieving a recall
score of 98.85%, outperforming VGG19, VGG16, ResNet50V2, MobileNetV2, DenseNet121,
DenseNet201, NASNetMobile, and EfficientNet with a recall score of 98.17%, 98.39%,
95.82%, 95.82%, 98.56%, 98.81%, 97.33%, 97.64%, respectively. Compared to these SOTA
frameworks, the proposed model outperforms these models with a percentage difference
of 0.68%, 0.46%, 3.03%, 3.86%, 0.29%, 0.04%, 1.52%, and 1.21%.

In evaluating overall balanced performance, we considered the F1-score metric, which
provides a comprehensive assessment, taking into account both precision and recall. Our
model achieved an F1 score of 98.84%, outperforms VGG19 with 98.16%, VGG16 with
98.29%, ResNet50V2 with 95.76%, MobileNetV2 with 95.07%, DenseNet121 with 98.56%,
DenseNet201 with 98.80%, NASNetMobile with 97.31%, and EfficientNet with 97.62%.
The percentage differences between our model and these SOTA frameworks range from
0.68% to 3.82%. These findings emphasize the remarkable balance our model strikes
between precision and recall, solidifying its reliability and excellence in tackling traffic sign
recognition tasks. Figure 2 provides visual evidence of the positive instance capture rates
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achieved by our proposed model, highlighting its exceptional performance in accurately
classifying traffic signs.

Figure 2. Comparative analysis of detection performance on the GTSRB dataset by the pro-
posed model.

In addition to excellent classification performance, our proposed model exhibited
notable computational efficiency. It achieved a training time of 840.9 s, which is signif-
icantly faster compared to VGG19, VGG16, ResNet50V2, MobileNetV2, DenseNet121,
DenseNet201, NASNetMobile, and EfficientNet, with percentage improvements ranging
from 28.4% to 83.5%. Similarly, the proposed model demonstrated faster response times,
with a response time of 96.95 milliseconds, outperforming competing methods by 6.7% to
63.3%. These results highlight the efficiency of the model in training, real-time processing
of traffic signs, and make it suitable for real-world scenarios, where accurate and efficient
traffic sign classification is of paramount importance to ensure road safety and enable ITS.

4.4. Performance Results: ITSD Dataset [30]

To further validate the performance of the proposed model, we evaluated the pro-
posed model on the ITSD dataset. The proposed model achieves an accuracy of 92.41%,
outperforming VGG19, VGG16, ResNet50V2, MobileNetV2, DenseNet121, DenseNet201,
NASNetMobile, and EfficientNet, with an accuracy of 85.25%, 90.76%, 89.76%, 88.54%,
92.26%, 92.26%, 88.83%, and 90.40%, respectively (as shown in Table 6). It is important
to note that the proposed model shows an improvement of 7.16% compared to VGG19
and other models, with percentage differences ranging from 0.17% to 4.24%. These results
underscore the superior ability of our proposed model to accurately classify traffic signs.

Furthermore, in terms of precision, the proposed model achieves a precision score
of 93.37%, outperforming VGG19, VGG16, ResNet50V2, MobileNetV2, DenseNet121,
DenseNet201, NASNetMobile, and EfficientNet, with precision scores of 84. 61%, 91.76%,
90.77%, 89.26%, 93.07%, 93.19%, 89.90%, and 90.44%, respectively. These results (as shown
in Table 6) highlight the ability of the proposed model to minimize false positives and
accurately identify positive instances of traffic signs.
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Table 6. Comparative performance analysis of TSR on the ITSD dataset.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) Training Time
(in Seconds)

Response Time
(in Millisecond)

Resources Usage
(in MByte)

VGG19 [33] 85.25 84.61 85.25 83.99 483.0 89.42 5.6

VGG16 [33] 90.76 91.76 90.76 90.96 405.5 97.41 5.9

ResNet50V2 [34] 89.76 90.77 89.76 90.01 826.0 172.03 4.9

MobileNetV2 [35] 88.54 89.26 88.54 87.48 672.7 131.74 5.2

DenseNet121 [36] 92.26 93.07 92.26 92.44 1165.6 190.25 6.2

DenseNet201 [36] 92.26 93.19 92.26 92.45 1710.9 329.96 6.2

NASNetMobile [37] 88.83 89.90 88.83 88.93 1544.1 211.33 7.0

EfficientNet [38] 90.40 90.44 90.40 89.24 753.3 170.00 7.1

Ours 92.41 93.37 92.41 92.62 283.3 78.56 6.7

In terms of recall, the proposed model achieves a score of 92.41%, outperforming VGG19,
VGG16, ResNet50V2, MobileNetV2, NASNetMobile, and EfficientNet by 8.63% 1.66%, 2.61%,
5.14% 3.69%, and 3.38%, respectively. Similarly, Figure 3 provides a comprehensive performance
visualization of the proposed model in accurately capturing positive instances of traffic signs.
Additionally, the proposed model excels in the F1-score, achieving a score of 92.62%, outperform-
ing VGG19, VGG16, ResNet50V2, MobileNetV2, DenseNet121, DenseNet201, NASNetMobile,
and EfficientNet, with percentage differences ranging from 0.17% to 10.20%.

Figure 3. Comparative analysis of detection performance on the ITSD dataset by the proposed model.

In addition to exceptional classification performance, the proposed model also shows
its efficiency by achieving a training time of 283.3 s, which is approximately 41.3%,
30.4%, 65.7%, 57.7%, 75.7%, 83.4%, 81.6%, and 64.5% faster compared to VGG19, VGG16,
ResNet50V2, MobileNetV2, DenseNet121, DenseNet201, NASNetMobile, and Efficient-
Net, respectively. Similarly, in terms of response time, the proposed model excels with a
response time of 78.56 milliseconds, which is approximately 12.2%, 19.4%, 54.4%, 40.3%,
58.8%, 65.2%, 62.8%, and 53.8% faster compared to VGG19, VGG16, ResNet50V2, Mo-
bileNetV2, DenseNet121, DenseNet201, NASNetMobile, and EfficientNet, respectively.

In conclusion, the proposed model demonstrates superior performance in multiple as-
pects compared to VGG19, VGG16, ResNet50V2, MobileNetV2, DenseNet121, DenseNet201,
NASNetMobile, and EfficientNet. It achieves a higher accuracy, precision, recall, and F1-
score, with notable percentage differences ranging from 0.17% to 10.20%. Moreover, the
proposed model stands out with its faster training and response times, while maintaining
a balance between runtime and memory consumption. This efficiency makes it highly
effective for TSR and ITS. With faster learning from the dataset and efficient processing
of traffic signs, the proposed model excels in real-time applications. These advantages
highlight its efficacy in efficiently performing TSR tasks, contributing to improved road
safety and advanced ITS.
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4.5. Performance Results: BTSD Dataset [31]

Table 7 presents the results of the comparative performance analysis of TSR on the
BTSD dataset. Our proposed model achieved an accuracy of 92.26%, outperforming
VGG19, VGG16, ResNet50V2, MobileNetV2, DenseNet121, DenseNet201, NASNetMobile,
and EfficientNet, with accuracy scores of 42.89%, 73.92%, 10.43%, 9.32%, 8.88%, 8.45%,
0.75%, and 2.38%, respectively. These results highlight substantial performance differences
between the proposed and SOAT frameworks, demonstrating the superior classification
capability of our model on the BTSD dataset.

Precision, a crucial metric to minimize false positives, was also significantly higher
for our proposed model, achieving a precision score of 93.64%, compared to VGG19,
VGG16, ResNet50V2, MobileNetV2, DenseNet121, DenseNet201, NASNetMobile, and
EfficientNet precision scores of 37.09%, 79.71%, 21.30%, 41.32%, 11.79%, 16.24%, 0.33%,
and 6.24%, respectively. These results underscore the effectiveness of our model in ac-
curately identifying positive instances of traffic signs. Furthermore, compared to these
SOTA frameworks, our model outperformed VGG19, VGG16, ResNet50V2, MobileNetV2,
DenseNet121, DenseNet201, NASNetMobile, and EfficientNet by percentage differences of
51.37%, 18.68%, 18.68%, 88.49%, 83.90%, 91.67%, 83.90%, and 68.49%, respectively.

Table 7. Comparative performance analysis of TSR on the BTSD dataset.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) Training Time
(in Seconds)

Response Time
(in Millisecond)

Resources Usage
(in MByte)

VGG19 [33] 42.89 37.09 42.89 36.67 351.6 116.31 6.1

VGG16 [33] 73.92 79.71 73.92 72.75 297.1 108.46 6.5

ResNet50V2 [34] 10.43 21.30 10.43 7.52 349.2 144.29 6.6

MobileNetV2 [35] 9.32 41.32 9.32 8.79 273.3 126.82 6.8

DenseNet121 [36] 8.88 11.79 8.88 4.59 474.8 190.35 7.1

DenseNet201 [36] 8.45 16.24 8.45 8.98 682.5 237.49 7.6

NASNetMobile [37] 0.75 0.33 0.75 0.35 635.8 208.11 8.4

EfficientNet [38] 2.38 6.24 2.38 2.27 326.5 169.63 8.9

Ours 92.69 95.05 92.26 93.35 248.9 95.67 9.6

The F1-score, a balanced measure of precision and recall, further reinforces the strength
of our model, achieving an impressive F1-score of 92.01%. Our proposed model outper-
formed VGG19, VGG16, ResNet50V2, MobileNetV2, DenseNet121, DenseNet201, NAS-
NetMobile, and EfficientNet by percentage differences of 1.66%, 19.59%, 15.35%, 45.34%,
60.96%, 83.54%, 17.46%, and 4.20%, respectively. In addition to accuracy, precision, re-
call, and F1-score, our proposed model exhibited efficient computational performance.
It achieved a training time of 248.9 s, outperforming VGG19, VGG16, ResNet50V2, Mo-
bileNetV2, DenseNet121, DenseNet201, NASNetMobile, and EfficientNet by percentage
differences of 29.6%, 9.6%, 28.7%, 28.2%, 53.6%, 67.6%, 28.8%, and 57.4%, respectively (as
shown in Figure 4).

Our model also demonstrated faster response times, with a response time of 95.67
milliseconds, outperforming VGG19, VGG16, ResNet50V2, MobileNetV2, DenseNet121,
DenseNet201, NASNetMobile, and EfficientNet by percentage differences of 13.8%, 26.5%,
39.2%, 29.3%, 44.2%, 58.0%, 49.4%, and 46.4%, respectively. These findings showcase the
efficiency of the model in real-time traffic sign processing on the BTSD dataset.

By outperforming state-of-the-art methods in terms of accuracy, precision, recall, F1-
score, and computational efficiency, our model demonstrates its potential for real-time
traffic sign processing and classification. Our proposed CNN-based model for TSR tasks
has been demonstrated to have exceptional classification performance, efficient computa-
tional performance, and significant improvements over other methods, thus confirming its
robustness and effectiveness.
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Figure 4. Comparative analysis of traffic sign detection performance on the BTSD dataset.

4.6. Feature Visualization and Interpretation

To make our model interpretable and transparent, we employ several explainability tech-
niques, including LIME (Local Interpretable Model-Agnostic Explanations) and Grad-CAM
(Gradient-weighted Class Activation Mapping), to understand how the model arrives at its
predictions. Furthermore, these state-of-the-art techniques enable us to visualize and highlight
the regions of input images that have the most significant influence on the model’s predictions.

LIME is a technique that provides explanations for individual predictions by approxi-
mating the behavior of the model locally. It approximates the behavior of the model around
a specific input by creating perturbations and observing the response of the model. To gain
insight into the proposed model, we implemented LIME to identify the pixel intensities and
patterns that contribute to the model decision-making process. By sampling multiple per-
turbed versions of the input image and measuring the model prediction changes, the most
influential features or regions of the input are identified for GTSRB, ITSD, and BTSD. This
comparative analysis is visually represented in Figure 5, where each figure contains three
graphs representing these scenarios. These graphs illustrate how different features or re-
gions influence model predictions between scenarios, providing a clear and comprehensive
visual representation of the proposed model behavior under varying conditions.

Figure 5. Localized explanations of model decisions on GTSRB, ITSD, and BTSD dataset using LIME.

Furthermore, Grad-CAM highlights the relevant regions of an input image that con-
tribute to the model’s prediction. By computing the gradients of the target class with respect
to the model’s convolutional feature maps, Grad-CAM generates a heat map visualization
of the regions where the model focuses its attention for decision making. We employed
Grad-CAM to gain insight, identify, and view the salient features (as shown in Figure 6)
that are contributing to the proposed model’s prediction. Analyzing these highlighted
regions allows us to gain valuable insights into the image regions the model considers
crucial for accurate TSR decisions.

By leveraging LIME and Grad-CAM techniques, we gain insights into the decision-
making process of our model and gain a better understanding of the features and regions
that are significant in making accurate traffic sign predictions and are able to obtain a
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comparative view of its performance across different scenarios. This comparative approach
(as illustrated in Figures 5 and 6) provides us with a clear comparison across the datasets,
enhances our understanding of the features and regions significant in making accurate
traffic sign predictions, and further explains the proposed model predictions, thereby
enhancing the transparency and interpretability of our proposed CNN-based model.

Figure 6. Visualizing localized explanations on GTSRB, ITSD, and BTSD datasets with Grad-CAM.

5. Discussion

The results of the evaluation of the proposed model in three diverse datasets pro-
vide crucial insights into the capabilities of the proposed model. In this comprehensive
discussion, we delve into the findings in detail and explore their implications and real-
world applications.

The proposed model accuracy across GTSRB, ITSD, and BTSD datasets demonstrates
its generalization capabilities, making it suitable for real-world implementation. By cor-
rectly classifying the traffic signs, the proposed model exhibits its efficiency and reliability
of traffic management in ITS. Appendix A presents the confusion matrix of the proposed
model for the GTSRB, providing a breakdown of the predicted labels against the ground
truth labels. Similarly, Appendix B and Appendix C present the confusion matrix for
ITSD and BTSD, respectively. These matrices provide a granular representation of the
classification results, facilitating a thorough evaluation of the accuracy and performance
characteristics of the proposed model. By analyzing these matrices, we can identify specific
classes where the models excel or struggle, providing valuable insights into their strengths
and areas for potential enhancement.

A high recall score indicates the potential of the proposed model to correctly identify the
actual traffic signs present in the scenes, thereby minimizing false negatives. In real-world
scenarios, missing or misclassifying a traffic sign can have severe safety implications, especially
in autonomous vehicle systems. Meanwhile, F1-scores obtained from all three datasets provide
insight into the proposed model balance between precision and recall. Maintaining this balance
is crucial, as both false positives and false negatives can have serious consequences for traffic
safety and efficiency. Traffic sign designs, weather conditions, and lighting can vary considerably
between different regions. Therefore, the high recall and F1-score of our model underscores its
effectiveness in promoting road safety and ensuring accurate TSR.

In our study, we integrated Explainable AI (XAI) techniques, specifically LIME and
Grad-CAM, to enhance the performance of our traffic sign recognition model. These
techniques have proven instrumental not only in providing interpretability, but also in
substantially improving the accuracy, reliability, and generalization capabilities of the
proposed model. By employing LIME, we have been able to dissect and understand the
salient features in traffic sign images that are prioritized by our model, as shown in Figure 5.
These insights have been the key to improving our model to identify pertinent attributes
and features, leading to a more accurate classification. In particular, we observed that
our model focused on distinct shapes and colors pertinent to traffic signs, allowing us
to fine-tune the feature extraction layers to improve detection and classification accuracy.
Grad-CAM has been a crucial tool in providing visual explanations through heat maps, as
illustrated in Figure 6. These heat maps highlight areas within the images that are integral
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to the proposed model decision-making process. These insights have been critical for
optimizing the convolutional layers within our model. Concentrating on salient patterns
and textures has significantly improved the model reliability and robustness, especially
under challenging conditions, such as variable lighting, sign occlusion, and scenarios
involving partially visible signs.

In real-world applications, the increased interpretability and transparency provided
by these XAI techniques are invaluable. This helps to build between users and stakeholders
by making the decision-making process more transparent and simplifying the identification
and correction of errors. This aspect is particularly crucial in dynamic and diverse traffic
environments, where the accuracy of traffic sign recognition directly impacts safety and
efficiency. For autonomous vehicles operating in diverse real-world conditions, the ability
of the model to accurately interpret traffic signs is paramount. Misinterpretation or failure
to recognize traffic signs can lead to serious safety implications [39–41]. The insights
provided by LIME and Grad-CAM are particularly valuable in these scenarios. They ensure
that the model not only performs with high accuracy, but also demonstrates robustness and
adaptability to the complexities and variabilities of different road and weather conditions.
Therefore, by employing these XAI techniques, the safety and efficiency of autonomous
transportation systems are significantly improved by enhancing the ability of the model to
recognize traffic signs accurately and reliably.

Although our proposed model exhibits impressive performance, it is essential to
acknowledge potential limitations. The proposed model demonstrates good generalizabil-
ity across the three datasets; however, further investigation is necessary to evaluate its
performance on additional datasets from different regions and under various conditions.
Furthermore, the computational resources required to train and implement the proposed
model could be a challenge for real-time applications on edge devices. Striking a balance
between accuracy and computational efficiency will be crucial for practical deployment.

6. Conclusions

In this paper, we present an interpretable, robust, and computationally efficient neural
network-based model for traffic sign recognition (TSR), achieving an accuracy rate of 98.85%
on the German Traffic Sign Recognition Benchmark (GTSRB), 94.73% on the Indian Traffic Sign
Dataset (ITSD), and 92.26% on the Belgian Traffic Sign Dataset (BTSD). Our model outperforms
several state-of-the-art frameworks, including DenseNe, NASNetMobile, EfficientNet, and
others in key metrics such as precision, recall, and F1-score. Its notable computational
efficiency, characterized by reduced training and inference times, combined with its ability
to handle diverse traffic signs and adapt to various environmental conditions, makes it well-
suited for real-time applications in Intelligent Transportation Systems (ITS), where rapid
decision-making is critical. The incorporation of Explainable AI (XAI) techniques, such
as Local Interpretable Model-Agnostic Explanations (LIME) and Gradient-weighted Class
Activation Mapping (Grad-CAM), significantly enhances the transparency and interpretability
of the model, providing deeper insights into its decision-making process. In the future, we will
focus on further refining the interpretability features of the model by exploring Brain-inspired
Modular Training for enhanced XAI capabilities and considering the integration of Large
Language Models (LLM). Additionally, we aim to investigate how Visual Language Models
(VLMs) and LLMs can be effectively combined to provide richer, context-aware explanations,
improving the model performance and reliability in real-world traffic scenarios.
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Appendix A. German Traffic Sign Benchmark Classification Confusion Matrix

Figure A1. Confusion Matrix for the German Traffic Sign Dataset: Comprehensive Classification
Accuracy Analysis. This matrix provides a detailed view of the model’s performance, illustrating the
accuracy in classifying each traffic sign category. The varied shades in the matrix indicate different
levels of classification accuracy, with darker shades representing higher accuracy rates. This visual
representation allows for an immediate understanding of the model’s strengths and areas needing
improvement in traffic sign recognition.
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Appendix B. Indian Traffic Sign Dataset Classification Confusion Matrix

Figure A2. Confusion Matrix for the Indian Traffic Sign Dataset: Detailed View of Classification
Accuracy. This matrix provides an in-depth analysis of the proposed model’s efficacy in classifying
each class of Indian Traffic Sign Dataset. The diverse color variations within the matrix correspond to
the varying levels of accuracy achieved in recognizing traffic signs of each class.
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Appendix C. Belgian Traffic Sign Dataset Classification Confusion Matrix

Figure A3. Confusion Matrix for the Belgian Traffic Sign Dataset: Detailed View of Classification
Accuracy. This matrix provides a class-specific accuracy for Belgian Traffic Sign Dataset. Each unique
color represents varying levels of accuracy for recognizing different traffic sign classes. The confusion
matrix provides a detailed analysis of the model’s classification results, highlighting areas of strength
and areas that may require further improvement.
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