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Abstract: A multi-modulus architecture based on the radix-8 Booth encoding of a modulo (2n − 1)
multiplier, a modulo (2n) multiplier, and a modulo (2n + 1) multiplier is proposed in this paper. It
uses the original single circuit and shares many common circuit characteristics with a small extra
circuit to carry out multi-modulus operations. Compared with a previous radix-4 study, the radix-
8 architecture can increase the modulation multiplication encoding selection from three codes to
four codes. This reduces the use of partial products from ⌊n/2⌋ to ⌊n/3⌋ + 1, but it increases the
operation complexity for multiplication by three circuits. A hard multiple generator (HMG) is used
to address this problem. Two judgment signals in the multi-modulus circuit can be used to perform
three operations of the modulo (2n − 1) multiplier, modulo (2n) multiplier, and modulo (2n + 1)
multiplier at the same time. The weighted representation is used to reduce the number of partial
products. Compared with previously reported methods in the literature, the proposed approach can
achieve better performance by being more area-efficient, being faster, consuming low power, and
having a lower area-delay product (ADP) and power-delay product (PDP). With the multi-modulus
HMG, the proposed modified architecture can save 34.48–55.23% of hardware area. Compared with
previous studies on the multi-modulus multiplier, the proposed architecture can save 22.78–35.46%,
4.12–11.15%, 12.59–24.73%, 27.88–38.88%, and 20.49–27.85% of hardware area, delay time, dissipation
power, ADP, and PDP, respectively. Xilinx field programmable gate array (FPGA) Vivado 2019.2
tools and the Verilog hardware description language are used for synthesis and implementation. The
Xilinx Artix-7 XC7A35T-CSG324-1 chipset is adopted to evaluate the performance.

Keywords: residue number system; radix-8 Booth encoding; hard multiple generator; multi modulus;
field programmable gate array

1. Introduction

In recent decades, the residue number system (RNS) [1–6] has been increasingly
applied in cryptography [2,7], error correction codes [8], and digital signal processing [3],
owing to its carry-free nature and parallel computation. A reduced power consumption,
shorter latency, and smaller hardware area can be achieved for applications based on RNS
modulation addition [9–13] and multiplication [14–25]. When using the multi-modulus
architecture, multiple modulus operations can be performed at the same time. Many
common hardware circuits can share in the multi-modulus architecture of modulo (2n − 1),
modulo (2n), and modulo (2n + 1) multipliers, owing to the commonality of the modulus
and similarity of hardware circuits in the modulo multiplication, so only different modules
of the circuit need to be additionally designed, which significantly reduces the circuit area.
Diminished-1 representation [9,11,12] and weighted representation [13,25] are the two main
representations in the RNS-based modulo multiplier. A weighted representation is adopted
in the current work.
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The traditional modified Booth-encoded multiplier is also called a radix-4 Booth-
encoded multiplier [20,25,26], which uses a three-code interpretation. A 0 is added after the
least significant bit (LSB), and a 0 is also added in front of the most significant bit (MSB) of
the multiplier, which then encodes it in groups of three bits, so that only ⌊n/2⌋ are needed
for partial products with n bits. This leads to a reduction in the use of full adders and greatly
reduces the circuit area and delay time. Compared with the previous radix-4 research,
the radix-8 [20,22–24] architecture can increase the modulation multiplication encoding
selection from a three-code to a four-code interpretation, which reduces the use of partial
products from ⌊n/2⌋ to ⌊n/3⌋ + 1. As the three-code interpretation (radix-4 multiplier)
increases to a four-code interpretation (radix-8 multiplier), the partial product is reduced
from half of the traditional multiplier to one-third, which further improves the circuit area
and delay time. The radix-4-based multiplicand in the three-code interpretation is only
multiplication by 1 (×1) and multiplication by 2 (×2). Through the carry-free principle
in the RNS, the multiplication by 2 (×2) multiplicand only needs to return the original
multiplicand once (shift left by one bit). However, for the radix-8 multiplier, there will be an
additional multiplication by 3 (×3) and multiplication by 4 (×4) operations to be processed.
The multiplication by 4 (×4) operation can use the same carry-free principle in the RNS to
return twice (shift left by 2 bits). However, multiplication by 3 (×3), which is processed
by the hard multiple generator (HMG), needs to be obtained by adding multiplication by
1 (×1) and multiplication by 2 (×2) of the original multiplicand. This increases the cost of
the hardware area, delay, and power consumption. Therefore, simplifying the HMG for a
triple operation is very important. An area-saving modified multi-modulus HMG is first
presented for this proposed multi-modulus multiplier.

The proposed architecture of the multi-modulus multiplier based on an area-saving
HMG using a radix-8 Booth-encoding scheme can achieve significant improvements in
hardware cost, delay time, and power consumption. The structure of the area-delay-power-
efficient multi-modulus multiplier proposed in this paper can operate the modulo (2n − 1),
modulo (2n), and modulo (2n + 1) multipliers at the same time with only two control
signals sharing the same hardware structure. The proposed multi-modulus HMG circuit
and modular multiplication can also greatly reduce the hardware cost compared to that
of Rama’s [20] method. For FPGA implementation, there are many FPGA families and
many manufacturers. The propagation time in the LUT (Look-Up Table)/ALM (Adaptive
Logic Module) array is different in Xilinx Artix-7, Xilinx Spartan-7, Xilinx Kintex-7, Intel
Cyclone-10, and so on. In the proposed work, the Xilinx Artix-7 XC7A35T-CSG324-1 chipset
is adopted to evaluate the performance.

The rest of this paper is organized as follows. The methods reported in the literature
are described in Section 2. Section 3 presents the proposed multi-modulus HMG and
radix-8 Booth-encoding-based multi-modulus multiplier design, which is area-delay-power
efficient. The results of the proposed scheme in comparison with those of various other
methods are presented in Section 4. Finally, Section 5 concludes the study.

2. Previous Work
2.1. Radix-8 Multi-Modulus Multiplier in {2n − 1, 2n, 2n + 1}

A structure in which a multi-modulus multiplier can be operated under the same
hardware architecture has been reported [20]. This design can greatly reduce the area used.
There are three types of modulus multiplication, namely, modulo (2n − 1), modulo (2n),
and modulo (2n + 1) multipliers, which can be processed using two control signals. Let X
be the multiplicand, Y the multiplier and Z the binary product. Weighted representation
is used for modulo m, m = 2n − 1, or 2n; diminish-1 representation is used for m = 2n + 1,
where m is the modulo parameter. The general expression is as follows [20]:

|Z|m =

{
|X · Y|m i f m = 2n − 1 or 2n

|X · Y + X + Y|m i f m = 2n + 1
(1)

where |X · Y|m is denoted as the modulo m residue of X · Y.
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The partial product (PP) can be obtained after taking radix-8 operations of X and Y.
The related equation is expressed as [20]:

|Z|m =



∣∣∣∣∣⌊n/3⌋
∑

i=0
PPi

∣∣∣∣∣
m

i f m = 2n − 1∣∣∣∣∣⌊n/3⌋
∑

i=0
PPi +

⌊n/3⌋
∑

i=0
Ki

∣∣∣∣∣
m

i f m = 2n∣∣∣∣∣⌊n/3⌋
∑

i=0
PPi +

⌊n/3⌋
∑

i=0
Ki + X + Y

∣∣∣∣∣
m

i f m = 2n + 1

(2)

where Ki is the extra compensation parameter. The complete equation of Ki, where KDi is a
dynamic bias and KSi is a static bias, is as follows [20]:

⌊n/3⌋
∑

i=0
Ki =

⌊n/3⌋
∑

i=0
23i(m2i + m4i

)
+

(
m3i + m4i

)
· 23i+1 + 23i+1 · si+︸ ︷︷ ︸

KDi
⌊n/3⌋

∑
i=0

((m2i + m4i) · si)23i+1 + ((m3i + m4i) · si) · 23i+2︸ ︷︷ ︸
KDi

+
⌊n/3⌋

∑
i=0

−23i − 23i+1︸ ︷︷ ︸
KDi

−23i + 1︸ ︷︷ ︸
KSi

(3)

where m2i, m3i, m4i denote the ith partial product row of multiplication by 2 bits, multiplica-
tion by 3 bits, and multiplication by 4 bits, respectively.

The value of the carry bit (ci) for an even carry bit (Equation (4)) and an odd bit
(Equation (5)) are given by [19]:

ci =


(gi

∗, pi
∗)•(gi−2

∗, pi−2
∗)• . . . •(g0

∗, p0
∗)•(gn−2

∗, pn−2
∗)• . . . •(gi+2

∗, pi+2
∗); i f m = 2n − 1

(gi
∗, pi

∗)•(gi−2
∗, pi−2

∗)• . . . •(g0
∗, p0

∗)•(0, 0)• . . . •(0, 0); i f m = 2n

(gi
∗, pi

∗)•(gi−2
∗, pi−2

∗)• . . . •(g0
∗, p0

∗)•(pn−2
∗, gn−2

∗)• . . . •(pi+2
∗, gi+2

∗); i f m = 2n + 1
(4)

and:

ci =


(gi

∗, pi
∗)•(gi−2

∗, pi−2
∗)• . . . •(g1

∗, p1
∗)•(gn−1

∗, pn−1
∗)• . . . •(gi+2

∗, pi+2
∗); i f m = 2n − 1

(gi
∗, pi

∗)•(gi−2
∗, pi−2

∗)• . . . •(g1
∗, p1

∗)•(0, 0)• . . . •(0, 0); i f m = 2n

(gi
∗, pi

∗)•(gi−2
∗, pi−2

∗)• . . . •(g1
∗, p1

∗)•(pn−1
∗, gn−1

∗)• . . . •(pi+2
∗, gi+2

∗); i f m = 2n + 1
(5)

respectively, where (gi*, pi*) is defined as a modified generated–propagated bit pair and
(gi*, pi*)•(gj*, pj*) = (gi*+ pi* gj*, pi* pj*).

For the final adder of this study, a Sklansky-based parallel prefix adder [13] is used.
The study presents multi-modulus modulo (2n − 1), modulo (2n), and modulo (2n + 1)
multipliers [20] that can reuse the same hardware resources. Nevertheless, the performance
of the hardware area, latency, and power consumption still have room for improvement.
The improved method and hardware structure are discussed in the next section.

2.2. Hard Multiple Generators

This subsection discusses the HMG for the modulo (2n − 1) [22], modulo (2n) [23],
and modulo (2n + 1) [24] multipliers in the literature. In the Booth encoder (BE), the
radix-8 Booth-encoding operation, which can reduce the number of partial products to
⌊n/3⌋ + 1 items by means of a four-bit interpretation of the multiplier; multiplication by
1 (×1); multiplication by 2 (×2); multiplication by 3 (×3); multiplication by 4 (×4); and the
sign signal is obtained after the operation. Multiplications by 1 (×1), 2 (×2), and 4 (×4)
are easy to handle, as multiplications by 2 (×2) and 4 (×4) only need to shift one bit and
two bits to the left, respectively. However, multiplication by 3 (×3) is difficult to handle
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and cannot be obtained directly from the multiplicand, so the HMG unit is used to operate
the process.

There are two processing methods; the first is |+X|m + |+2X|m, and the second
is |−X|m + |+4X|m, where X is the multiplicand and |X|m is defined as the modulo
operation of X. The first type is clearly better than the second type because the first one
does not need to process the 1’s compliment operation. The related derivation results of the
reported HMG are as follows. The representation of multiplication by 3 (×3) is as follows:

|+3X|m = |+X|m + |+2X|m;
|+X|m = (xn−1xn−2 . . . x0);

|+2X|m =

{
(xn−2xn−3 . . . x0xn−1), i f m = 2n − 1
(xn−2xn−3 . . . x00), i f m = 2n ;

(6)

The generated bit, propagated bit, half sum bit, and delay half (DH) sum bit are
defined as gi, pi, hi, and dhi, respectively [22–24]:

gi = xi · xi−1
pi = xi + xi−1
hi = xi ⊕ xi−1
dhi = x2i+1 ⊕ x2ih2i

(7)

The equation for the carry bit at the odd position is shown as [22–24]:

c2i−1 = P2i−1
∗H2i−1

∗∗ (8)

where P2i−1
∗ is a modified propagated bit, and H2i−1

∗∗ is a modified Ling bit [22–24]. The
general equation of the modified Ling bit H2i−1

∗∗ is represented as [22–24]:

H2i−1
∗∗ = (G2i−1

∗∗, P2i−3
∗∗)•(G2i−5

∗∗, P2i−7
∗∗)• . . . •(G2i−9

∗∗, P2i−11
∗∗)• . . . (9)

where G2i−1
∗∗ and P2i−1

∗∗ are modified G2i−1
∗ and modified P2i−1

∗ bits, respectively.
H2i−1

∗∗ is used to produce odd carry bits in the HMG and perform HMG prefix opera-
tions between G2i−1

∗∗ and H2i−1
∗∗. G2i−1

∗∗ and P2i−1
∗∗ are used to perform the logic OR

operation and logic AND operation for the modified generated bit (G2i−1
∗) and modified

propagated bit (P2i−1
∗), respectively. The modified generated bit (G2i−1

∗) and modified
propagated bit (P2i−1

∗) are calculated from the generated bit and propagated bit, respec-
tively. H2i−1

∗∗, G2i−1
∗∗, and P2i−1

∗∗ are the intermediate processing units in the HMG
operation and can be used to produce the hard multiple bit. The final equation for the sum
of bits at the even and odd positions in the HMG is as follows [22–24]:

s2i = hi ⊕ (P2i−1
∗H2i−1

∗∗)
s2i+1 = dhi ⊕ (h2i ⊕ (P2i−1

∗H2i−1
∗∗))

(10)

From the above derivation of Equations (6)–(10), the block diagram is HMG was
presented [22–24].

The proposed multi-modulus HMG structure for three types of modulo (2n − 1),
modulo (2n), and modulo (2n + 1) multipliers based on radix-8 operation using the same
hardware circuit is presented in the next section.

3. Proposed Multi-Modulus Multiplier Based on Radix-8 Booth Encoding

Figure 1 shows a block diagram of the system architecture of the proposed multi-
modulus multiplier based on an area-saving HMG using a radix-8 Booth-encoding scheme.
Multi-modulus multipliers are defined to support modulo (2n − 1), modulo (2n), and
modulo (2n + 1) multiplication functions in the same circuit hardware by the control signal
(S1, S0). When (S1, S0) = (0, 0), the modulo (2n − 1) multiplier operation is selected; when
(S1, S0) = (0, 1), the modulo (2n) multiplier operation is selected; and when (S1, S0) = (1, 0),
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the modulo (2n + 1) multiplier operation is selected. In Figure 1, the proposed multi-
modulus multiplier includes the Booth encoder (BE) unit, hard multiple generator (HMG)
unit, Booth selector (BS) unit, compensation unit, an inverse end-around-carry carry-save
adder tree (IEAC CSA tree), and the proposed improved parallel prefix adder unit. The
multiplier is Booth-encoded by 4 bits to generate ×1, ×2, ×3, ×4, and s signals. Such an
encoding can reduce the number of partial products. The multiplicand, +2X (one left shift),
+4X (two left shift), and +3X are generated by the HMG. They then enter the BS unit and
are selected by the output of the Booth encoder and obtain the output of the ith-row partial
product (pp). Afterwards, the partial product (pp) and compensation value C1 and C2 from
the compensation circuit are fed into the IEAC CSA tree and summed to obtain sum (S)
and carry (C). Finally, the obtained S and C are summed through the final parallel prefix
adder to obtain the product O. The proposed multi-modulus HMG and proposed radix-8
multi-modulus multiplier are discussed in the following subsection.
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( I ) EAC CSA Tree

Proposed Parallel Prefix Adder

Booth
Encoder

Multiplicand (x) Multiplier (y)

+3X +1X+2X+4X Compensation
Circuit

C1 C2PPi

O[n-1:0]  
Figure 1. Block diagram of the proposed multi-modulus multiplier. Figure 1. Block diagram of the proposed multi-modulus multiplier.

3.1. Proposed Multi-Modulus Hard Multiple Generator

In this subsection, the modified multi-modulus HMG for the modulo (2n − 1), modulo
(2n), and modulo (2n + 1) multiplier operations is discussed. The proposed structure of
radix-8 multi-modulus HMG (n = 8) is designed as shown in Figure 2. The proposed
structure includes a GP**P* block, DH block, SM1, SM2, prefix operator unit (grey circle),
and post-processing unit (grey square, white square, grey diamond, and white diamond).

In Figures 3 and 4, SM1 and SM2 refer to the special multiplexer 1 and special multi-
plexer 2, respectively. These blocks are used to generate different input signals from the
multi-modulus by selecting (S1, S0).
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tiplexer 2, respectively. These blocks are used to generate different input signals from the 
multi-modulus by selecting (S1, S0). 
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Figure 3. (a) Block diagram of the proposed SM1. (b) Inner circuit of SM1. 
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Figure 4. (a) Block diagram of the proposed SM2. (b) Inner circuit of SM2. Figure 4. (a) Block diagram of the proposed SM2. (b) Inner circuit of SM2.

In the block diagram of the GP**P* function, Xi is the input of the multiplicand, Gi
* and

Pi
* are, respectively, the modified generated and propagated bits in the HMG, and Gi

** and
Pi

** are, respectively, the modified Gi
* and Pi

* bits. The related equations of Gi
**, Pi

**, Gi
*,

and Pi
* are derived from the modulo (2n − 1) multiplier [22], modulo (2n) multiplier [23],

and modulo (2n + 1) [24] multiplier:
Gi

∗∗ = Gi
∗ + Gi−2

∗ , i f i = 1 , f or m = 2n − 1
Gi

∗∗ = Gi
∗ + 0 , i f i = 1 , f or m = 2n

Gi
∗∗ = Gi

∗ + Pi−2
∗ , i f i = 1 , f or m = 2n + 1

(11)
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Pi

∗∗ = Pi
∗Pi−2

∗ , i f i = 1 , f or m = 2n − 1
Pi

∗∗ = Pi
∗ · 0 , i f i = 1 , f or m = 2n

Pi
∗∗ = Pi

∗Gi−2
∗ , i f i = 1 , f or m = 2n + 1

(12)


Gi

∗∗ = Gi
∗ + Gi−2

∗ , i f 1 <i < n , f or m = 2n − 1
Gi

∗∗ = Gi
∗ + Gi−2

∗ , i f 1 <i < n , f or m = 2n

Gi
∗∗ = Gi

∗ + Gi−2
∗ , i f 1 <i < n , f or m = 2n + 1

(13)


Pi

∗∗ = Pi
∗Pi−2

∗ , i f 1 <i < n , f or m = 2n − 1
Pi

∗∗ = Pi
∗Pi−2

∗ , i f 1 <i < n , f or m = 2n

Pi
∗∗ = Pi

∗Pi−2
∗ , i f 1 <i < n , f or m = 2n + 1

(14)

From Equation (11) to Equation (14), when i = 1, Gi
* and Pi

* can be rewritten as:
G1

∗ = x0 · (x1 + x−1) , f or m = 2n − 1
G1

∗ = x0 · (x1 + 0) , f or m = 2n

G1
∗ = x0 · (x1 + x−1 ) , f or m = 2n + 1

(15)


P1

∗ = x0 + (x1 · x−1) , f or m = 2n − 1
P1

∗ = x0 + (x1 · 0) , f or m = 2n

P1
∗ = x0 + (x1 · x−1) , f or m = 2n + 1

(16)

From the above definitions of Gi
*, Pi

*, Gi
**, and Pi

** for the modulo (2n − 1), modulo
(2n), and modulo (2n + 1) multipliers, the block diagram of the proposed GP**P* function is
shown in Figure 5. The Pp7

* signal is used to select the P7
∗, 0, or P7∗ signals for the modulo

(2n − 1), modulo (2n), or modulo (2n + 1) multipliers, respectively.
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For the DH block, multiplication by 2 (×2) for the modulo (2n − 1), modulo (2n), and
modulo (2n + 1) multipliers is expressed as:

|+2X|m =


(xn−2xn−3 . . . x0xn−1) i f m = 2n − 1
(xn−2xn−3 . . . x00) i f m = 2n

(xn−2xn−3 . . . x0xn−1) i f m = 2n + 1
. (17)

Based on Equations (6) and (7) and Equation (17), the DH component is as shown in
Figure 6. In Figure 6a, i = 0 is shown for the end-around-carry bit in the multi-modulus.
Figure 6b is the general circuit implementation for i > 0.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 23 
 

 

X1X0
SM2

X7X3X2 X1

G3
* G1

*

G3
**

X5X4 X3

G5
**

X7X6 X5

G7
**

G5
*G7

*

X1X0
SM2

X7X3X2 X1

P3
* P1

*

P3
**

X5X4 X3

P5
**

X7X6 X5

P7
**

P5
*P7

*

SM1

SM1

P1
**

G1
**

P1
*P3

*P5
*SM2

Pp7
*

 
Figure 5. Proposed block diagram of the GP**P* function for n = 8. 

For the DH block, multiplication by 2 (×2) for the modulo (2n − 1), modulo (2n), and 
modulo (2n + 1) multipliers is expressed as: 

( )
( )
( )

2 3 0 1

2 3 0

2 3 0 1

           2 1
2 0                   2

           2 1

n
n n n

n
n nm

n
n n n

x x x x if m
X x x x if m

x x x x if m

− − −

− −

− − −

 … = −+ = … =
 … = +

. (17)

Based on Equations (6) and (7) and Equation (17), the DH component is as shown in 
Figure 6. In Figure 6a, i = 0 is shown for the end-around-carry bit in the multi-modulus. 
Figure 6b is the general circuit implementation for i > 0. 

X2i+1 X2i X2i-1

h2idh2i

X2i+1 X2i X2i-1

h2idh2i

SM2 S1
S0

(a) (b)  
Figure 6. (a) DH − i for i = 0, and (b) DH − i for 0 < i < n, where i is even. 

In the prefix operator block, *
2 1

*
iH −  (i = 1, 2, 3,…) is the modified Ling bit and is 

expressed at odd positions, which is defined as ** ** ** ** **
2 1 2 1 2 3 2 5 2 7( ,   ) ( ,   )i i i i iH G P G P− − − − −= • , 

Figure 6. (a) DH − i for i = 0, and (b) DH − i for 0 < i < n, where i is even.

In the prefix operator block, H2i−1
∗∗ (i = 1, 2, 3,. . .) is the modified Ling bit and is

expressed at odd positions, which is defined as H∗∗
2i−1 = (G∗∗

2i−1, P∗∗
2i−3)•(G∗∗

2i−5, P∗∗
2i−7),

where H∗∗
−1 = H∗∗

n−1, G∗∗
−i = G∗∗

n−i, and P∗∗
−i = P∗∗

n−i [22–24]. Taking n = 8 as an example,
H2i−1

∗∗ can be shown as Equation (18). The index of H2i−1
∗∗ at position 1 and position 5

is different from the index of H2i−1
∗∗ at position 3 and position 7. Therefore, H2i−1

∗∗ is
separated into two groups: H4k+1

∗∗ and H4k+3
∗∗ [24], where k = 0, 1, 2, 3, . . .. That is to

say, H2i−1
∗∗ = (H1

∗∗, H3
∗∗, H5

∗∗, H7
∗∗, H9

∗∗, H11
∗∗. . .) is divided into two groups: H4k+1

∗∗

= (H1
∗∗, H5

∗∗, H9
∗∗. . .) and H4k+3

∗∗ = (H3
∗∗, H7

∗∗, H11
∗∗. . .). The general expressions of

H2i−1
∗∗ for modulo (2n − 1), modulo (2n), and modulo (2n + 1) are derived from the modulo

(2n − 1) multiplier [22], modulo (2n) multiplier [23], and modulo (2n + 1) multiplier [24],
respectively:

H∗∗
1 = (G∗∗

1 , G∗∗
7 )•(P∗∗

5 , G∗∗
3 )

H∗∗
3 = (G∗∗

3 , P∗∗
1 )•(P∗∗

7 , G∗∗
5 )

H∗∗
5 = (G∗∗

5 , P∗∗
3 )•(G∗∗

1 , G∗∗
7 )

H∗∗
7 = (G∗∗

7 , P∗∗
5 )•(G∗∗

3 , P∗∗
1 )

(18)


H4k+1

∗∗ = (G4k+1
∗∗, P4k−1

∗∗)• . . . •(G1
∗∗, P−1

∗∗)• . . . •(G4k−3
∗∗, P4k−5

∗∗)︸ ︷︷ ︸
n
4

H4k+3
∗∗ = (G4k+3

∗∗, P4k+1
∗∗)• . . . •(G3

∗∗, P1
∗∗)• . . . •(G4k−1

∗∗, P4k−3
∗∗)︸ ︷︷ ︸

n
4

, f or modulo (2n − 1) (19)


H4k+1

∗∗ = (G4k+1
∗∗, P4k−1

∗∗)• . . . •(G1
∗∗, 0)• . . . •(0, 0)︸ ︷︷ ︸

n
4

H4k+3
∗∗ = (G4k+1

∗∗, P4k−1
∗∗)• . . . •(G3

∗∗, P1
∗∗)• . . . •(0, 0)︸ ︷︷ ︸

n
4

, f or modulo 2n (20)
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H4k+1
∗∗ = (G4k+1

∗∗, P4k−1
∗∗)• . . . •

(
G1

∗∗, G−1
∗∗)• . . . •

(
P4k−3

∗∗, G4k−5
∗∗)︸ ︷︷ ︸

n
4

H4k+3
∗∗ = (G4k+3

∗∗, P4k+1
∗∗)• . . . •(G3

∗∗, P1
∗∗)• . . . •

(
P4k−1

∗∗, G4k−3
∗∗)︸ ︷︷ ︸

n
4

, f or modulo(2 n +1) (21)

From Equation (9) and the description of H2i−1
∗∗ above, the relative logic circuit is

obtained as shown in Figure 7.
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Figure 7. (a) Prefix operator (HP) and (b) prefix operator (H) [24].

For the post-processing unit, the block diagrams of the grey square, white square,
grey diamond, and white diamond are shown in Figures 8 and 9. For i = 0, the circuit
implementation of the even-position sum bit and odd-position sum bit is designed as
shown in Figure 8a,b, respectively. For i > 0, the circuit implementation of the even-position
sum bit and odd-position sum bit is designed as shown in Figure 9a,b, respectively.
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The final results of the HMG for the sum bit are expressed as follows. The equa-
tions for the even-position sum bit and odd-position sum bit for i = 0 are expressed as
Equations (22) and (24), respectively, and the equations for the even-position sum bit and
odd-position sum bit for i > 0 are expressed as Equations (23) and (25), respectively:

s2i = h2i ⊕ (P2i−1
∗H2i−1

∗∗), i f i = 0 , f or m = 2n − 1
s2i = h2i ⊕ 0, i f i = 0 , f or m = 2n

s2i = h2i ⊕
(

P2i−1
∗
+ H2i−1

∗∗) , i f i = 0 , f or m = 2n + 1
(22)


s2i = h2i ⊕ (P2i−1

∗H2i−1
∗∗), i f 0 <i < n/2 , f or m = 2n − 1

s2i = h2i ⊕ (P2i−1
∗H2i−1

∗∗), i f 0 <i < n/2 , f or m = 2n

s2i = h2i ⊕ (P2i−1
∗H2i−1

∗∗), i f 0 <i < n/2 , f or m = 2n + 1
(23)


s2i+1 = dhi ⊕ (P2i−1

∗H2i−1
∗∗)h2i, i f i = 0 , f or m = 2n − 1

s2i+1 = dhi ⊕ 0 · h2i, i f i = 0 , f or m = 2n

s2i+1 = dhi ⊕
(

P2i−1
∗
+ H2i−1

∗∗)h2i, i f i = 0 , f or m = 2n + 1
(24)


s2i+1 = dhi ⊕ (P2i−1

∗H2i−1
∗∗)h2i, i f 0 <i < n/2 , f or m = 2n − 1

s2i+1 = dhi ⊕ (P2i−1
∗H2i−1

∗∗)h2i, i f 0 <i < n/2 , f or m = 2n

s2i+1 = dhi ⊕ (P2i−1
∗H2i−1

∗∗)h2i, i f 0 <i < n/2 , f or m = 2n + 1
(25)

From the above design of the sub-circuit in the HMG, the proposed structure of the
radix-8 multi-modulus HMG (n = 8) can be designed as shown in Figure 2. It should be
noted that Equation (11) to Equation (16), Equation (18) to Equation (21), and Equation (22)
to Equation (25) are integrated and modified equations from the modulo (2n − 1) [22],
modulo (2n) [23], and modulo (2n + 1) multipliers [24].

3.2. Proposed Radix-8 Multi-Modulus Multiplier

In this subsection, the proposed radix-8 multi-modulus multiplier is discussed. Let X
be the multiplicand and Y the multiplier. The modulo m of X × Y is expressed as |X × Y|m.
Using the representation of radix-8, Y can be expressed as Y = 23i(y3i −1 + y3i + 2y3i +1 −
4y3i +2), and the modulo m of X × Y can be expressed as:

|X × Y|m =
∣∣∣X × 23i(y3i−1 + y3i + 2y3i+1 − 4y3i+2

∣∣∣
m

(26)
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The truth table of the four-codes interpretation based on radix-8 is presented in
Table 1 [20]. The multiplication by 1 (×1), multiplication by 2 (×2), multiplication by 3 (×3),
multiplication by 4 (×4), and sign signal are obtained from the BE circuit, which is shown
in Figure 10 [20]. The BS is designed as shown in Figure 11a based on the corresponding
signals from the BE. In order to reduce the gate count of the BS in the (⌊n/3⌋ + 1)th row,
when n = 6k + 4 and n = 6k, where k is a positive integer, the BE of the {⌊n/3⌋ + 1}th row
is [Y3i −1 Y3i −2 0 0] and [Y3i −1 0 0 0], the BS can be redesigned as shown in Figure 11b,c,
respectively. The hardware area can be effectively reduced as shown in Figure 11b,c.
In the BS block, the input signal is multiplication by 1 (×1), multiplication by 2 (×2),
multiplication by 3 (×3), multiplication by 4 (×4), and the sign bit (s). Multiplication by
2 (×2) and multiplication by 4 (×4) shift one bit and two bits of the original signal to the
left, respectively. Multiplication by 3 (×3) is produced from the proposed multi-modulus
HMG structure. The sign bit is used to produce the positive or negative multiple. The
output of the BS block is the partial product (pp). The end-around-carry is operated based
on modulo {2n − 1, 2n, 2n+1} = {x−1, 0, x−1} regulation. SM2 (S1, S0), as depicted in
Figure 4, is used to select the modulo multiplier, which is (S1, S0) = {00, 01, 10} = modulo
{2n − 1, 2n, 2n+1} = {pp, 0, pp}. A weighted representation of the system structure is
adopted for the proposed modulo (2n − 1), modulo (2n), and modulo (2n + 1) multipliers.

Table 1. Truth table for the proposed radix-8 Booth encoder [20].

Y3i +2 Y3i +1 Y3i Y3i −1 Operation

0000 1111 0

0001 0010 ×(+1)

0011 0100 ×(+2)

0101 0110 ×(+3)

0111 ×(+4)

1000 ×(−4)

1001 1010 ×(−3)

1011 1100 ×(−2)

1101 1110 ×(−1)
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For the modulo (2n + 1) multiplier, the compensation value is used to compensate
for the general output of the partial product. The compensation circuit that produces the
compensation value of C1 and C2 in the proposed approach is discussed below. From
Equation (3), the compensation for circuit Ki can be rewritten as follows and divided into
two parts, denoted as C′

1(the first two rows of the equation) and C′
2:

⌊n/3⌋
∑

i=0
Ki = {

⌊n/3⌋

∑
i=0

23i(m2i + m4i
)
+

(
m3i + m4i

)
· 23i+1

︸ ︷︷ ︸
C′

1

+
⌊n/3⌋

∑
i=0

si(m2i + m4i)2
3i+1 + si(m3i + m4i) · 23i+2

︸ ︷︷ ︸
(C′

1)

}

+{
⌊n/3⌋

∑
i=0

23i+1 · si +
n/3

∑
i=0

−23i − 23i+1 − 23i + 1︸ ︷︷ ︸
C′

2

}

(27)

From Equation (27), C2
′ can be rewritten as:

C2′ =
⌊n/3⌋

∑
i=1

23i · 1 +
⌊n/3⌋

∑
i=0

23i+1 · si +
⌊n/3⌋−1

∑
i=0

23i+2si (28)

For C1
′ in Equation (27), the 23i +1 terms can be summed as:

⌊n/3⌋

∑
i=0

[
(
m3i + m4i

)︸ ︷︷ ︸
K1i

· 23i+1 + si(m2i + m4i)︸ ︷︷ ︸
K2i

· 23i+1] (29)

where K1i and K2i are defined as
(
m3i + m4i

)
and si(m2i + m4i), respectively.

K1i + K2i can be written as:

K1i + K2i= (K1i ⊕ K2i)20 + (K1i•K2i)21 (30)

where “⊕” represents the logic Exclusive OR gate, and “•” represents the logic AND gate.
The (23i+1)th term of K1i + K2i is 0 when (K1i, K2i) = (0, 0) or carry out when

(K1i, K2i) = (1, 1). Therefore, the (23i +1)th term can be rewritten as:
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⌊n/3⌋

∑
i=0

(
m3i + m4i

)︸ ︷︷ ︸
K1i

· 23i+1 ⊕ si(m2i + m4i)︸ ︷︷ ︸
K2i

· 23i+1 (31)

And by merging the (23i +2)th term in Equation (27), it can be rewritten as:

⌊n/3⌋−1

∑
i=0

23i+2[((m3i + m4i) · si)⊕ (K1i · K2i)] (32)

The exclusive OR logic symbol is used in Equation (32) because (m3i + m4i) and K1i do
not appear simultaneously.

In Equation (32), when n = 3k + 2 bits for k = 1, 2, 3, . . ., the sum of K1i and K2i at
the highest bit position in 23i +1 carry out to 23i +2 when (K1i, K2i) = (1, 1). It cannot also
be represented for n bits. Therefore, for i = ⌊n/3⌋, it should appear at the upper bound of
i = ⌊n/3⌋. Taking n = 8 as an example, the upper bound of ⌊n/3⌋ is 2. For the (27)th bit, the
sum of K1i and K2i probably carries out to 28. Therefore, merging the (23i +1)th term of C2

′

in Equation (28) for C1
′ at i = ⌊n/3⌋ yields:

⌊n/3⌋

∑
i=⌊n/3⌋

23i+1[(m3i + m4i
)
+ ((m2i + m4i) · si)

]
(33)

and for C2
′ at i = ⌊n/3⌋, it yields:

⌊n/3⌋

∑
i=⌊n/3⌋

23i+1[si ⊕ (K1i · K2i)] (34)

Here, the weighted representation is adopted to replace the original diminish-1 repre-
sentation. Therefore, the extra circuit for adding 2 should be processed in the compensation
circuit for the modulo (2n + 1) multiplier. Merging the circuit for adding 2 and C2

′ in
Equation (28), which makes i = 0, the modified value is obtained as follows:

0
∑

i=0
(23i+1 · si)+2+

0
∑

i=0
23i+2si =

0
∑

i=0
23i+1(1 + si) +

0
∑

i=0
23i+2si

=
0
∑

i=0
23i+1 · (si ⊕ 1) +

0
∑

i=0
23i+2(si + 1)

(35)

For the modulo (2n) multiplier, the compensation value is described as follows [20]:

C1 =
⌊n/3⌋

∑
i=0

23i · si (36)

According to the derivation in this subsection, for the modulo (2n + 1) multiplier, the
final compensation of C1 (replacing C1

′) can be obtained as follows:

C1 =
⌊n/3⌋−1

∑
i=0

23i+2[((m3i + m4i) · si)⊕ (K1i · K2i)] +
⌊n/3⌋

∑
i=0

23i(m2i + m4i
)

+



⌊ n
3 ⌋
∑

i=0
23i+1

(m3i + m4i
)︸ ︷︷ ︸

K1i

⊕ ((m2i + m4i) · si)︸ ︷︷ ︸
K2i


, when n ̸= (3k + 2) bit, k = 1, 2, 3, . . .

⌊ n
3 ⌋−1
∑

i=0
23i+1

(m3i + m4i
)︸ ︷︷ ︸

K1i

⊕ ((m2i + m4i) · si)︸ ︷︷ ︸
K2i

+
⌊ n

3 ⌋
∑

i=⌊ n
3 ⌋

23i+1[(m3i + m4i
)
+ ((m2i + m4i) · si)

]
, when n = (3k + 2) bit, k = 1, 2, 3, . . .

(37)
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For modulo 2n + 1, the final compensation of C2 (replacing C2
′) is obtained as follows:

C2 =
⌊n/3⌋

∑
i=1

23i · 1 +
0
∑

i=0
23i+1 · (si ⊕ 1) +

0
∑

i=0
23i+2(si + 1) +

⌊n/3⌋−1
∑

i=1
23i+2 · si

+


⌊n/3⌋

∑
i=1

23i+1 · si , when n ̸= (3 k + 2) bit, k = 1, 2, 3, . . .

⌊n/3⌋−1
∑

i=1
23i+1 · si +

⌊n/3⌋
∑

i=⌊n/3⌋
23i+1[si ⊕ (K1i · K2i)], whenn= (3k + 2) bit, k = 1, 2, 3, . . . .

(38)

The final result of |Z|m can be represented as:

|Z|m =

{∣∣∣∣∣⌊n/3⌋

∑
i=0

PPi + C1 + C2

∣∣∣∣∣
m

(39)

The compensation value C2 is only needed to compensate for the modulo (2n + 1)
multiplier. Therefore, two input AND gates are used with the selected signal S1 (Mod S1).
The compensation value C1 is needed to compensate for the modulo (2n) and modulo
(2n + 1) multipliers. The compensation circuit for n = 8 is shown in Figure 12. It should
be noted that the modulo (2n − 1) multiplier need not be compensated for by the extra
compensation circuit. The final proposed structure of the radix-8 multi-modulus multiplier
for 8 bits (n = 8) is shown in Figure 13, which includes a partial product unit, IEAC unit, and
parallel prefix adder. The Lander–Fisher [12] structure is used for the improved parallel
prefix adder circuit, which is shown in Figure 14 (n = 8).
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Taking n = 8 as an example for the proposed multi-modulus multiplier based on
radix-8 Booth encoding, Figure 15 shows the operational processes of the proposed modulo
(2n − 1), modulo (2n), and modulo (2n + 1) multipliers. For n = 8, for the modulo (2n − 1)
multiplication operation with (S1, S0) = (0, 0), A = 141, and B = 221, the final result is 51; for
the modulo (2n) multiplication operation with (S1, S0) = (0, 1), A = 141, and B = 221, the
final result is 185; and for the modulo (2n +1) multiplication operation with (S1, S0) = (1, 0),
A = 141, and B = 221, the final result is 64.
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To summarize, this section presents the design for the multi-modulus HMG and pro-
posed a radix-8 Booth-encoding-based multi-modulus multiplier. The experimental results
and comparisons of the hardware area, delay time, dynamic power, area-delay product
(ADP), and power-delay product (PDP) with other methods reported in the literature are
presented in the next section.
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4. Experimental Results and Comparison

The proposed structure of the multi-modulus HMG and multi-modulus multipliers
based on radix-8 Booth encoding, which is covered in Section 3, is discussed in this section,
along with the experimental results and comparison. The proposed multi-modulus HMG
structure integrates and improves the HMG used by the modulo (2n − 1) multiplier [22],
modulo (2n) multiplier [23], and modulo (2n + 1) multiplier [24] proposed in the reported
studies. The area-saving multifunction based on these three moduli is proposed, and it
shares the same hardware architecture. The proposed modified multi-modulus HMG can
save 34.48–55.23% of hardware area compared with the reported work [20], as shown in
Table 2.
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Table 2. Comparison of area of the proposed modified HMG with Muralidharan and Chang [20].

Muralidharan and
Chang [20] Proposed Modified HMG

n Area (LUT) Area (LUT) Area Saving

8 29 19 34.48%

16 101 46 54.46%

24 174 96 44.83%

32 267 136 49.06%

40 373 167 55.23%

48 484 230 52.48%

The proposed multi-modulus modulo (2n − 1), modulo (2n), and modulo (2n + 1)
multiplexers can support the aforementioned modular multiplication functions in the same
circuit hardware. By integrating the individual functions of the modulo (2n − 1), modulo
(2n), and modulo (2n + 1) multiplexers into a single multi-modulus multiplier, the proposed
approach can save 22.78–35.46% of hardware area compared with previous work [20],
as tabulated in Table 3. In addition, the proposed approach can reduce delay time by
4.12–11.15% compared with previous work [20], as tabulated in Table 4. The dynamic
power consumption can be reduced by 12.59–24.73% of dissipation power compared with
previous work [20], as tabulated in Table 5. Moreover, it can save 27.88–38.88% of ADP
compared with previous work [20], as shown in Table 6. Finally, it can save 20.49–27.85%
of PDP compared with previous work [20], as tabulated in Table 7.

Table 3. Comparison of area of the proposed multiplier with Muralidharan and Chang [20].

Muralidharan
and Chang [20] This Work

n Area (LUT) Area (LUT) Area Saving

8 197 133 32.5%

16 597 461 22.78%

24 1461 943 35.46%

32 2190 1491 31.92%

40 3481 2621 24.71%

48 4970 3560 28.37%

Table 4. Comparison of delay of the proposed multiplier with Muralidharan and Chang [20].

Muralidharan
and Chang [20] This Work

n Delay (ns) Delay (ns) Delay Saving

8 19.488 17.37 10.87%

16 25.047 22.254 11.15%

24 31.024 29.74 4.14%

32 33.583 32.166 4.22%

40 39.271 37.614 4.22%

48 39.723 38.086 4.12%
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Table 5. Comparison of dynamic power of the proposed multiplier with Muralidharan and
Chang [20].

Muralidharan
and Chang [20] This Work

n Power (W) Power (W) Power Saving

8 0.054 0.047 13%

16 0.135 0.118 12.59%

24 0.279 0.21 24.73%

32 0.406 0.318 21.67%

40 0.565 0.469 17%

48 0.735 0.584 20.54%

Table 6. Comparison of area-delay product of this work with Muralidharan and Chang [20].

Muralidharan and Chang [20] This Work ADP
Savingn Delay (ns) Area (LUT) ADP Delay (ns) Area (LUT) ADP

8 19.488 197 3780.04 17.37 133 2310.21 38.88%

16 25.047 597 14,953.06 22.254 461 10,259.09 31.39%

24 31.024 1461 45,326.06 29.74 943 28,044.82 38.13%

32 33.583 2190 73,546.77 32.166 1491 47,959.51 34.80%

40 39.271 3481 136,702.35 37.614 2621 98,586.29 27.88%

48 39.723 4970 197,423.31 38.086 3560 135,586.16 31.32%

Table 7. Comparison of power-delay product of this work with Muralidharan and Chang [20].

Muralidharan and Chang [20] This Work PDP
Savingn Delay (ns) Power (W) PDP Delay (ns) Power (W) PDP

8 19.488 0.054 1.0524 17.37 0.047 0.8164 22.42%

16 25.047 0.135 3.3813 22.254 0.118 2.6260 22.34%

24 31.024 0.279 8.6557 29.74 0.21 6.2454 27.85%

32 33.583 0.406 13.6347 32.166 0.318 10.2288 24.98%

40 39.271 0.565 22.1881 37.614 0.469 17.6410 20.49%

48 39.723 0.735 29.1964 38.086 0.584 22.2422 23.82%

In Table 2 to Table 7, it is clear that the proposed multi-modulus multiplier based on
radix-8 Booth encoding achieves better performance with a lower power, faster operation,
greater area-efficiency, and lower ADP and PDP compared with a similar method reported
in the literature [20]. The system structure of the proposed approach is compared with
that of Muralidharan and Chang [20] in Table 8, showing the weighted system structures
adopted for all the modulo multipliers. There are several methods of implementing a
multiplier in FPFAs. It can be performed by using LUT, built-in multipliers, internal
memory block, and DSP blocks. The LUT method is used in the proposed work. Xilinx field
programmable gate array (FPGA) Vivado 2019.2 tools and Verilog hardware description
language were used for synthesis and implementation. The Xilinx Artix-7 XC7A35T-
CSG324-1 chipset was adopted to evaluate the performance.
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Table 8. Comparison of system structure of the proposed multiplier with the work of Muralidharan
and Chang [20].

Item System Structure

Muralidharan and Chang
[20]

Modulo 2n − 1 Weighted

Modulo 2n Weighted

Modulo 2n + 1 Diminished-1

This
work

Modulo 2n − 1 Weighted

Modulo 2n Weighted

Modulo 2n + 1 Weighted

5. Conclusions

A radix-8 weighted Booth-encoded multi-modulus multiplier based on an area-saving
hard multiple generator (HMG) is proposed in this paper. Compared with the methods
previously reported in the literature, the proposed work can achieve better performance
with a circuit design that has a lower power, a faster operation, area-saving, and a lower
area-delay product (ADP) and power-delay product (PDP). With the multi-modulus HMG,
the proposed architecture can save up to 55.23% (n = 40) of hardware area. With the multi-
modulus multiplier, the proposed architecture can save up to 35.46% (n = 24) of hardware
area, up to 11.15% (n = 16) of delay time, up to 24.73% (n = 24) of dissipation power, up to
38.88% (n = 8) of ADP, and up to 27.85% (n = 24) of PDP compared with previously reported
approaches. The Xilinx field programmable gate array Artix-7 XC7A35T-CSG324-1 chipset
was used for synthesis and implementation. The proposed approach can be applied in
cryptography, error correction codes, digital signal processors, and other fields.
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