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Abstract: Electrocardiograms (ECGs) play a pivotal role in the diagnosis and prediction of cardiovascular
diseases (CVDs). However, traditional methods for ECG classification involve intricate signal processing
steps, leading to high design costs. Addressing this concern, this study introduces the Multiscale
Convolutional Causal Attention network (MSCANet), which utilizes a multiscale convolutional neural
network combined with causal convolutional attention mechanisms for ECG signal classification from
the PhysioNet MIT-BIH Arrhythmia database. Simultaneously, the dataset is balanced by downsampling
the majority class and oversampling the minority class using the Synthetic Minority Oversampling
Technique (SMOTE), effectively categorizing the five heartbeat types in the test dataset. The experimental
results showcase the classifier’s performance, evaluated through accuracy, precision, sensitivity, and
F1-score and culminating in an overall accuracy of 99.35%, precision of 96.55%, sensitivity of 96.73%, and
an F1-recall of 96.63%, surpassing existing methods. Simultaneously, the application of this innovative
data balancing technique significantly addresses the issue of data imbalance. Compared to the data
before balancing, there was a significant improvement in accuracy for the S-class and the F-class, with
increases of approximately 8% and 13%, respectively.

Keywords: electrocardiogram; deep learning; data imbalance; attention mechanism

1. Introduction

Cardiovascular diseases remain a major threat to human health [1], constituting 30%
of global deaths according to a study by the World Health Organization [2]. Among these,
arrhythmias are a common pathophysiological process within the cardiovascular system,
characterized by irregularities in the rhythm and frequency of heartbeats due to disruptions
in the conduction of cardiac electrical activity [3]. Hence, the development of accurate
cardiac diagnostics for timely medical intervention is crucial to saving lives [4,5].

Currently, electrocardiogram (ECG) analysis stands out as the most direct and effective
method for diagnosing cardiac abnormalities [6]. An ECG records the waveform of surface
electrical signals, typically composed of P-waves, QRS complexes, and T-waves [7]. The
electrocardiogram, as a graphical representation of cardiac electrical activity, encompasses
a series of crucial mathematical features, spanning both temporal and spatial dimensions.
In terms of temporal features, the intervals between P-waves, QRS complexes, and T-waves
provide valuable information about the duration of different cardiac phases, aiding in
the assessment of cardiac rhythm and stability. The width of the QRS complex becomes
a pivotal indicator for evaluating ventricular conduction velocity, playing a vital role in
understanding cardiac electrical activity. Concerning spatial features, the ST segment in the
ECG reflects the cardiac state between contraction and relaxation, with its slope providing
crucial information about myocardial ischemia or injury. The electrical axis of the heart,
as a mathematical feature, describes the direction of cardiac signal propagation, while the
amplitude and shape of the T-wave delve into deeper aspects of cardiac electrical activity,
particularly those related to myocardial status. A thorough analysis of temporal and
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spatial features provides a profound understanding of cardiac electrical activity, forming
the basis for arrhythmia detection and comprehension. Changes in electrophysiological
characteristics can alter the propagation patterns, leading to different types of arrhythmias,
manifested as noticeable variations in ECG waveform patterns [8,9]. While ECG serves as a
non-invasive and cost-effective detection tool that is widely used in the clinical diagnosis
of heart diseases, the increasing volume of data and complexity of ECG signals have
rendered traditional manual analysis methods inadequate. In this context, the rise of
deep learning technology presents a new paradigm for the automatic classification of ECG
signals, holding the potential for revolutionary changes in clinical medicine.

With the continuous advancement of artificial intelligence technology, deep learn-
ing techniques have found widespread applications in the detection and classification of
ECG signals, achieving notable success [10,11]. However, despite these accomplishments,
a comprehensive analysis of numerous studies on ECG signal classification reveals per-
sistent challenges. Notably, existing ECG network models often have large parameter
sizes, resulting in a high model complexity that is unfavorable for training and application
in resource-constrained environments. Furthermore, the training of these deep learn-
ing models may encounter difficulties due to the requirement for substantial annotated
data and high computational power. Addressing these challenges is crucial to enhancing
the performance and generalization ability of deep learning models in the field of ECG
signal classification.

The imbalance in datasets on ECG (electrocardiogram) poses a common challenge
for deep learning in arrhythmia classification. An imbalanced dataset refers to a situation
where the number of samples in the arrhythmia categories is significantly lower than that
in the normal category. Rajesh K. N. and Dhuli R [12] proposed a method using resampling
techniques and an AdaBoost ensemble classifier to address the issue of a sparse number
of arrhythmia samples in ECG datasets. Through resampling techniques, they aimed to
balance the distribution of samples across different categories and improved the classifica-
tion accuracy through the AdaBoost ensemble classifier, providing an effective strategy for
handling imbalanced datasets. Niu et al. [13] explored the use of representative notations
and convolutional neural networks from various viewpoints for ECG classification. By
introducing representative notations, they sought to enhance the sensitivity to individ-
ual differences in ECG signals, potentially improving the accuracy of classification. In
the study by Sharma et al. [14], a multiresolution wavelet transformation method was
employed for accurate detection of the starting position of heartbeats and QRS waves in
ECG signals. Feature extraction from each wavelet segment was implemented for data
augmentation, aiming to enhance the adaptability of the model to changes in the QRS
waveform morphology.

Current research extensively applies machine learning algorithms to identify arrhyth-
mias from electrocardiogram (ECG) data. Methods include random forests [15], artificial
neural networks [16], and support vector machines [17]. However, these traditional ma-
chine learning techniques require feature extraction before application, involving the man-
ual extraction of various handcrafted features that influence classification outcomes [18,19].
The manual feature extraction process is time-consuming, underutilizes the underlying
information in the database, and is prone to overfitting issues [20]. In traditional ECG
signal classification studies, manual feature extraction is essential, involving the manual
extraction of signal morphology and the design of feature engineering processes. These
methods typically rely on features such as ECG R-R interval changes and waveform mor-
phology [21], but their adaptability is limited in the presence of dynamic ECG data and
significant noise interference. Contrastingly, the use of traditional machine learning algo-
rithms such as SVM and decision trees [22] performs well on specific sample training and
testing sets. However, when faced with a large amount of unknown test data, challenges
arise, including the need for manual feature extraction and a poor generalization ability.
The introduction of deep learning offers new possibilities for addressing these issues. By
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automatically learning high-level representations of the data, deep learning is expected to
enhance the performance and generalization ability of classification algorithms.

Presently, deep learning has taken significant strides in the field of medical image
analysis, particularly in data analysis [23]. Additionally, some studies explore the appli-
cation of deep learning to the classification of electrocardiogram (ECG) data. Xia et al.
proposed a novel wearable ECG classification system using convolutional neural networks
and active learning [24]. Hannun et al. achieved arrhythmia detection and classification in
long-term dynamic ECG that is comparable to the level of cardiac experts using deep neural
networks [25]. In terms of heartbeat classification, Xiang et al. employed a two-level convo-
lutional neural network and RR interval differences for ECG heartbeat classification [26].
Mathews et al. utilized deep learning for single-lead ECG classification, demonstrating
its potential in medical imaging [27]. Furthermore, Saadatnejad et al. introduced an
ECG classification based on long short-term memory networks (LSTM) that is suitable for
continuous monitoring on personal wearable devices [28]. Kiranyaz et al. implemented
real-time patient-specific ECG classification using one-dimensional convolutional neural
networks [29]. Tan et al. enhanced the recognition accuracy of coronary artery disease
ECG signals by combining convolutional and long short-term memory networks [30]. He
et al. achieved automatic cardiac arrhythmia classification using a combination of deep
residual networks and bidirectional LSTM [31]. Rajpurkar et al. demonstrated cardiologist-
level arrhythmia detection with convolutional neural networks [32]. Cui et al. proposed
a deep learning-based multidimensional feature fusion method for the classification of
ECG arrhythmia [33]. Additionally, some studies have focused on the application of deep
learning in the automatic interpretation of multiview echocardiograms for congenital heart
disease [34]. These studies emphasize the extensive and promising potential for deep
learning in image analysis and the classification of ECG data.

Drawing inspiration from the advancements in electrocardiogram (ECG) classification
outlined above, we have developed an ECG classification mechanism employing multiscale
convolution and causal attention. This study brings forth the following notable contributions:

1. We devised a deep learning model that eliminates the necessity for a distinct feature
extraction program. Instead, it consistently employs deep learning techniques to extract
resilient features from the input ECG signal. This approach permits direct training and
classification of the preprocessed ECG signal, thereby curtailing classification expenses.

2. To address data imbalances, we employed mixed sampling techniques. Most classes
underwent downsampling, while a few classes underwent SMOTE oversampling.
This strategy balanced the dataset, narrowing the sample size disparity across all five
heartbeat categories and heightening classification accuracy.

3. We introduced a Multiscale Convolutional Causal Attention network for ECG clas-
sification. This network leverages multiscale convolution for spatial feature extrac-
tion from signals. Furthermore, the causal convolution attention extraction module
captures temporal features, culminating in precise ECG signal categorization and
enhancing classification performance. This advancement not only elevates accuracy
but also streamlines the model’s complexity.

The paper is structured as follows in the subsequent sections: Section 2 outlines
the materials and methods that were utilized and our proposed model. We discuss our
experimental setup and results in Section 3 and conclude with the main findings in Section 4.
Section 5 summarizes our article.

2. Materials and Methods

The process of arrhythmia classification is illustrated in Figure 1: The initial step
involves preprocessing the raw signals. This begins with noise reduction, followed by
heart beat segmentation, where lengthy sequential signals are divided into individual ones.
Subsequently, the imbalanced dataset is addressed through mixed sampling based on labels.
The balanced dataset is then divided into training and testing sets, which are fed into the
model for processing. Ultimately, this leads to the classification of heart arrhythmias.
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Figure 1. Main procedure involved in the classification of ECG.

2.1. Data Preprocessing

The MIT-BIH database comprises several subdatabases that record specific types
of electrocardiogram (ECG) signals. We utilized the PhysioNet MIT-BIH Arrhythmia
Database [35], a widely used and freely available dataset for assessing the performance of
various ECG classification algorithms. This ECG database consists of 48 dual-channel ECG
signal recordings from 47 observed individuals. The recorded data have lengths and sam-
pling rates of 30 min and 360 Hz, respectively. In the case of ANSI/AAMI [36] pacing beats
are identified in the subject files 102, 104, 107, and 217, following the standard method for
recording arrhythmias. Therefore, these traces are not included in the evaluation database.
Furthermore, in accordance with the ANSI/AAMI standard, the types of heartbeats in
the MIT-BIH Arrhythmia Database are reorganized into 5 distinct categories, totaling
15 categories. Table 1 illustrates the relationship between the categories in the AAMI
standard heartbeat database and the categories in the MIT-BIH Arrhythmia Database.

Table 1. Correspondence between 5 classifications under AAMI standard and 15 classifications
in MIT-BIH.

AAMI 5 Classes MIT-BIH 15 Classes

N

Normal beat (N)
Left bundle branch block beat (L)

Right bundle branch block beat (R)
Atrial escape (e)
Nodal escape(j)

S

Atrial premature contraction beat (A)
Supraventricular premature beat (S)
Aberrated atrial premature beats (a)

Contraction nodal premature beats (J)

V
Premature ventricular contraction beat (V)

Ventricular escape (E)

F Fusion of regular and ventricular beat (F)

Q
Paced beat (P)

Fusion of paced and normal beat (f)
Unclassifiable beat (U)
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Original electrocardiogram signals often contain noise such as baseline drift, power-
line interference, and electromyographic interference, which can to some extent affect
the accuracy of the ECG classification. To suppress this noise, the wavelet soft threshold
denoising algorithm [37] is employed. After performing a multiscale decomposition on
the wavelet, thresholding and denoising are applied to the high-frequency coefficients of
each layer. The denoised signal is obtained by performing wavelet reconstruction on each
layer in sequence using inverse wavelet transform, as shown in Figure 2a. Comparing
the original electrocardiogram signal with the denoised signal, as depicted in Figure 2b, it
becomes evident that the wavelet soft threshold denoising algorithm effectively eliminates
noise. The denoised signal appears smoother and retains the essential information.
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Figure 2. (a) is the original signal diagram; (b) is a denoised signal graph.

As our classification method in this paper focuses on heartbeat data, post denoising, it
is essential to perform ECG signal heartbeat segmentation. Following the QRS complex
annotations provided by the MIT-BIH Arrhythmia Database, continuous ECG signals can
be divided into individual heartbeat data points. Considering the characteristics of ECG
signals, the position of the R-wave peak tends to be closer to the P-wave, rather than in
the center of the heartbeat. Taking the R-wave peak as a reference point, we extract a
complete heartbeat by taking 160 data points before and 180 data points after the peak.
This segmentation ensures that a full heartbeat is captured, as shown in Figure 3.
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2.2. Data Balancing

In accordance with ANSI-AAMI standards, approximately 80% of heartbeats fall
under the N class, leaving the remaining 20% for the V, S, F, and Q classes. This significant
disparity in sample distribution leads to a highly imbalanced heartbeat dataset within
MIT-BIH. This class imbalance can lead to misclassification as the decision making process
becomes biased towards the majority class. Addressing the challenge of class imbalance
involves various methods, including balancing at the algorithmic level and the data level,
employing cost-sensitive techniques, and using integration methods [38]. Due to the
algorithm-independent nature and simplified operations, data-level approaches are widely
adopted. These methods primarily involve resampling, encompassing both oversampling
and undersampling techniques. Among the fundamental resampling methods are random
oversampling (ROS) and random undersampling (RUS). Additionally, more advanced
resampling techniques like EasyEnsemble [39], KNNOR [40], and SMOTE [41] are also
utilized to mitigate the class imbalance challenge.

The Synthetic Minority Oversampling Technique (SMOTE) generates new synthetic mi-
nority samples without duplication. The following equation can be utilized for generating
synthetic data:

xsyn = xi +
(

xj − xi
)

δ (1)

In this scenario, xj is randomly selected from the K nearest neighbors of the minority
class instance xi, where xi represents the minority class instance under consideration, and
δ is a random value from the interval (0, 1). It is crucial to emphasize that δ is uniformly
distributed. The newly synthesized instance, xsyn, is generated by combining xi and xj.
This approach helps alleviate overfitting issues and creates a balanced dataset.

According to the AAMI standard, ECG signal databases are categorized into five
classes: Normal, Supraventricular, Ventricular, Fusion, and Unknown. To ensure that each
category (S, V, F, and Q) contains a proportionate number of samples compared to class N,
we employ oversampling for these categories. Simultaneously, we perform random under-
sampling of the majority class N to mitigate its impact. Table 2 below illustrates the changes
in sample numbers within the training dataset after generating synthetic data, achieving a
balanced dataset.

Table 2. The number and proportion of various ECG signals after data balancing.

Category Number Proportion (%)

N 40,000 40
S 10,000 10
V 20,000 20
F 10,000 10
Q 20,000 20

2.3. ECG Classification Using a Multiscale Convolutional Causal Attention Network
2.3.1. Framework of the Proposed Scheme

The overall structure of the arrhythmia classification network is shown in Figure 4.
The spatial characteristics of multiscale convolution extraction signals and the temporal
characteristics of signals extracted by the causal convolution injection extraction module
finally determine the type of ECG signals.
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2.3.2. MultiScale Convolutional Neural Network

This paper introduces a model called the MultiScale Network (MSNet), aimed at
improving the classification accuracy of arrhythmias, particularly in extracting spatial
features from electrocardiogram (ECG) signals. As depicted in Figure 5, the utilized MSNet
comprises multiple multiscale modules and a Global Average Pooling (GAP) layer.
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The crucial component of MSNet is the multiscale module, depicted on the left side
of Figure 2. This module employs convolutions of varying sizes to capture information at
different scales. Initially, a 3 × 1 convolutional layer C is utilized with a stride of 2. The
purpose is to reduce feature dimensions without sacrificing spatial information, addressing
potential issues that might arise from pooling operations.

Following this, four channels of convolutional layers, denoted as Bi (where i = 1,
2, 3, 4), employ various sizes of convolutional kernels to extract feature information
from different scales of ECG signals. The specifications of these kernels are B1 = 1 × 1,
B2 = 3 × 1, B3 = 2 × 3 × 1, and B4 = 3 × 3 × 1, with each branch further utilizing a
1 × 1 convolutional layer for information aggregation. These parallel convolutional mod-
ules increase the network’s width and enhance its ability to capture insights from multiple
scales. The formula for the MS module is given by

xi+1 = concat(Bi(xi)) (2)

where xi represents the input features of the module, and xi+1 represents the output of
the convolution. The design of the MS module was inspired by the Inception module in
GoogLeNet [42], with the addition of a 7 × 1 large convolutional kernel to extract more
extensive spatial features from the signal.
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Conceptually, a large kernel can be likened to a stack of smaller kernels. For instance, a
7 × 1 kernel is equivalent to three layers of 3 × 1 kernels, i.e., B4 = 3B2 [43]. Nevertheless,
deep layers employing smaller kernels might not capture multiscale information. Further-
more, within the model, the role of max pooling is replaced by the use of convolutions of
different sizes and batch normalization.

Due to the incorporation of multiscale convolutional layers, the model excels in learn-
ing prominent features, thereby improving classification accuracy by mitigating variations
between different classes. However, owing to an intra-class data imbalance, the extracted
features may lack sufficient discriminative power. On the right side of Figure 4, we intro-
duce an additional component named center loss to enhance the learning of discriminative
features. This loss function works by minimizing the distance between extracted features,
thereby reducing information variance. Ultimately, our model exhibits enhanced capability
in extracting multiscale spatial information from ECG signals for the task of abnormal heart
rate classification.

2.3.3. Convolutional Causal Attention Network

The Multihead Attention mechanism is an important attention mechanism in deep
learning that was originally widely used in natural language processing (NLP) tasks,
especially gaining prominence in the Transformer model [44]. It allows models to simulta-
neously focus on different feature subspaces, thereby enhancing the model’s expressive
power and performance. At its core, the attention mechanism is a way to calculate weighted
values for different positions in a sequence, enabling selective emphasis on important parts
when processing sequence data. The Multihead Attention mechanism further extends
this idea by introducing multiple parallel attention “heads” to capture different semantic
information. The key concepts of the Multihead Attention mechanism are as follows:

1. Head Construction: In Multihead Attention, input features are linearly transformed
to generate multiple representations for queries, keys, and values. This allows each
head to focus on the input from different perspectives.

2. Attention Weight Calculation: For each attention head, attention weights are com-
puted by measuring the similarity between queries and keys. This is often achieved by
using a dot product or similar similarity metrics, followed by a scaling operation and
the application of the softmax function to map similarities to a probability distribution.

3. Weighted Summation: By using the computed attention weights, each value is multi-
plied by its corresponding attention weight, and the weighted values are summed to
obtain the attention output for each head.

4. Head Fusion: Finally, the attention outputs from each head are concatenated or paral-
lelly concatenated and then fused through another linear transformation, resulting in
the final output of the Multihead Attention mechanism.

Causal convolution has been introduced as an effective method for extracting features
in time signals [45]. Unlike traditional CNNs, as depicted in Figure 6, causal convolution
specifically considers features from past time data. Importantly, it excludes features from
future data, ensuring that the analysis of the current data is not influenced by predictions
of future values. In sequence-based problems, the goal is to predict the value of yt based
on historical data x1, x2, . . ., xt and previously observed target values y1, y2, . . ., yt−1. The
predictive model employed aims to make yt closely approximate the actual value. Here, x
represents the feature values, and y represents the target values [46].

p(x) =
T

∏
t=1

p(xt | x1, . . . , xt−1) (3)

In our enhanced Multihead Attention (MHA) submodule, we incorporate causal
convolution to obtain local temporal relationships and encode the positional informa-
tion of the input. The role of causal convolution is to maintain the sequential order of
input signals.
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Moreover, causal convolution, similar to traditional convolutional neural networks
(CNNs), possesses properties that enable it to serve the roles of the fully connected layer
and positional encoding in the original model [45]. In comparison to the original approach,
this substitution significantly reduces the computational load of the model. As depicted
in Figure 7, the model takes the output of the fully connected layer as the input for the
Multihead Attention module, employing causal convolution with a lower number of
parameters in each channel. Causal convolutions generate Q, K, and V from Y, specifically,
Q = φ1(Y), K = φ2(Y), and V = φ3(Y). Here, φ1, φ2, and φ3 represent causal convolutions
for the three branches. Q = {Q1,. . ., Qh}, K = {K1,. . ., Kh}, and V = {V1,. . ., Vh}, where Qh, Kh,
and Vh are of size RN× d

H , with 1 ≤ h ≤ H. Within each subspace hy, the attention head is
computed as follows:

Output(Qh, Kh, Vh) = so f tmax

(
Qh.K⊤

h√
d

)
Vh (4)
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In the given equation, ( .) represents the process of multiplication, “dy” indicates
the feature dimension of the query matrix “Q”, and

√
d serves as a normalization factor

to prevent the dot product values from becoming overly large. Subsequently, all “H”
representations, which correspond to the different attention heads, are concatenated to
generate the Multihead Attention (MHA) output as described below:

MHA(Q, K, V) = Concat
(

head1, . . . , headH
)
∈ RN×d (5)

Then, we obtain the output of the module:

C = LayerNorm(MultiHead(Q, K, V) + Y) (6)

Next, the output of the causal Multihead Attention module is processed through
an “add and normalize” operation before being reaching the FC layer. This step aims to
accelerate the convergence of data and enhance training stability in the process of educating
neural networks with deep architectures. Following this, the processed results are then
forwarded to the FC layer. The ReLU activation function is employed to introduce non-
linearity into the model and capture interactions among potential dimensions. Residual
connections are utilized between different layers [47] to address gradient propagation issues.
This design facilitates the easier propagation of gradients through residual connections,
thereby alleviating the vanishing gradient problem and aiding the training of deeper
networks. The formula for residual connections is as follows:

Output = Input + F(Input)− Input = F(Input) (7)

In this phase, we are able to effectively extract temporal features from ECG signals
while simultaneously reducing the number of model parameters during training. This
approach also alleviates the challenges of gradients vanishing and exploding, contributing
to an accelerated training process.

3. Experimental Setup and Results
3.1. Experimental Setup and Evaluation Criteria

The experimental setup utilized a 64-bit Windows 10 system with an NVIDIA
3060 graphics card and an AMD Ryzen 5 5600X CPU. The algorithms presented in this
paper were implemented using the Keras 2.6 and TensorFlow 2.6 frameworks within the
Python 3.7 environment. Our code is released at https://github.com/hdeke/MSCANet
(accessed on 10 December 2023).

ECG signal data often exhibit imbalanced class distributions, where the sample quan-
tities of certain types of cardiac arrhythmias are significantly smaller than others. This
imbalance can lead the model to favor predicting the majority classes, thereby neglecting
the minority classes and impacting classification performance. Focal Loss is a loss function
specifically designed for addressing imbalanced data scenarios [48]. Its fundamental con-
cept involves reducing the weight of the majority class while simultaneously increasing
the weight of challenging-to-classify instances. When applying focal loss to a multiclass
problem, it is necessary to compute the focal loss separately for each class and then aggre-
gate them with appropriate weights. To determine the focal loss weights for each class,
consideration can be given to the importance or imbalance of that particular class. For
samples with lower accuracy rates, we retain a significant portion of their cross-entropy loss.
Conversely, for samples with higher prediction accuracy, we reduce their cross-entropy
loss. This approach directs the learning focus of the model towards difficult-to-classify
samples, which is particularly crucial for ECG signal data due to the limited number of
samples in certain arrhythmia categories. Introducing Focal Loss allows the model to
focus more on those cardiac arrhythmia samples that are harder to classify during training,
thereby enhancing the classification performance for the minority classes. This strategy
helps improve the model’s performance on imbalanced datasets, mitigating the issue of

https://github.com/hdeke/MSCANet
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bias towards majority classes during prediction and ultimately enhancing the accuracy of
classifying imbalanced ECG signal data.

For all the conducted experiments, we will employ a comprehensive set of evaluation
metrics, including overall accuracy (OA), specificity (Spe), sensitivity (Sen), precision (Pre),
and macro-F1 score (Macro-F1). The specific methodologies for computing these metrics
are detailed as follows, drawing from references:

OverallAccuracy(OA) =
TP1+TP2 + . . .+TPN

∑ TP + FN + FP + TN
(8)

Sensitivity(Sen) =
TP

TP + FN
(9)

Precision(Pre) =
TP

TP + FP
(10)

F1 = 2
Pre × Sen
Pre + Sen

(11)

In the equations, true positives (TPs) represent the count of positive samples that are
correctly predicted as positive, while true negatives (TNs) indicate the count of negative
samples that are correctly predicted as negative. False negatives (FNs) refer to the count
of positive samples that are inaccurately predicted as negative, and false positives (FPs)
denote the count of negative samples that are erroneously predicted as positive. Accuracy
is determined by dividing the count of correctly classified samples by the total number of
samples. Specificity quantifies the proportion of true negatives in relation to the sum of
true negatives and false positives. Sensitivity calculates the proportion of true positives in
relation to the sum of true positives and false negatives. Precision assesses the proportion
of true positives to the total of true positives and false positives.

The F1 score is calculated using a harmonic mean formula involving precision and
sensitivity. Overall accuracy gauges the correct classification ratio across the entire sample
set. Specificity gauges the model’s ability to accurately identify actual negatives, repre-
senting the proportion of correctly excluded negative samples by the model. Sensitivity
evaluates the model’s capacity to accurately identify actual positives, representing the
proportion of successfully captured positive samples by the model. Precision reflects the
model’s precision in identifying true positives against all classified positives. Lastly, the
macro-F1 score offers an average F1 value, presenting an integrated assessment of the
model’s performance across various categories. This array of metrics, accompanied by
their corresponding calculation methodologies, furnishes a robust quantitative framework
for evaluating the model’s effectiveness and its performance nuances across different
class categories.

3.2. Results

The achievement of optimal accuracy in automated electrocardiogram (ECG) clas-
sification is significantly influenced by the choice of learning rate and batch size. After
conducting several rounds of experimentation, it was determined that a learning rate of
0.001, a batch size of 64, and an epoch count of 100 yielded the best results. During the
experimental process, the average training time per epoch was 25 s, and prediction took
2 s. The model has a parameter count of 34 k, with the main contributions being 4.1 k from
convolution and 28.8 k from the attention mechanism. These parameters were selected in
combination with the Adam optimizer. The learning rate plays a pivotal role in controlling
the step size during gradient descent, influencing how quickly the model converges. On
the other hand, the batch size affects the trade-off between computational efficiency and
model generalization. In this context, the chosen values of learning rate and batch size
were arrived at through systematic tuning, achieving a harmonious trade-off between the
speed of convergence and the stability of the model.
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Throughout the training and testing phases of the MSCANet model, we closely moni-
tored the variations in the loss function and accuracy curves to assess the model’s perfor-
mance and convergence. The curves depicting the changes in training and testing losses
reflect the model’s behavior during both the training and testing phases. Specific data are
illustrated in Figure 8. As training progressed, we observed a gradual reduction in the
training loss, indicating that the model is gradually learning the features and patterns of
the training data. Conversely, after a certain point, the testing loss stabilizes, showcasing
the model’s effectiveness on unseen data. This is apparent in the initial fluctuations in the
loss curves, which tend to converge and stabilize after the 16th epoch. Simultaneously,
the accuracy curve illustrates how the model’s accuracy changes across different stages.
During the early stages of training, due to the model’s process of learning data features,
accuracy might be relatively low. However, with continued training, accuracy gradually
improves, indicating an enhanced understanding of the data and improved classification
ability by the model. The accuracy during the testing phase is also a pivotal metric, as
it reflects the model’s performance in real-world scenarios. As depicted in Figure 9, the
accuracy experiences some fluctuations in the initial epochs but later stabilizes. A small
gap between the training and testing accuracies implies that the learned features are effec-
tively generalizing to new data, highlighting the model’s strong generalization capability.
Ultimately, we achieved an overall accuracy of 99.35%, showcasing the significant role
of MSCANet in classifying cardiac arrhythmias from ECG signals. By analyzing the loss
and accuracy curves, we could ascertain whether the model converges properly, identify
potential overfitting or underfitting issues, and determine the point during training where
the model achieves its best performance. Such insights are crucial for optimizing the model
and driving further improvements, aiding us in better understanding and utilizing the
characteristics of the MSCANet model.

Figure 10 illustrates the performance of the five categories with and without normal-
ization using a confusion matrix. The elements on the diagonal represent the successfully
classified categories, while the off-diagonal elements indicate misclassifications. In the
normalized confusion matrix, the average of the diagonal values provides the system’s
average accuracy. Ultimately, we achieved accuracies of 99.65% for class N, 91.96% for class
S, 98.56% for class V, 93.75% for class F, and 99.75% for class Q. Additionally, we observed
cases where one class was incorrectly recognized as another. As class N constitutes the
majority, it demonstrates the highest recognition accuracy, and misclassified samples from
other classes are inclined to be assigned to the N class.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 8. The Loss function of MSCANet model on MIH-BIH dataset. 

Figure 10 illustrates the performance of the five categories with and without normal-
ization using a confusion matrix. The elements on the diagonal represent the successfully 
classified categories, while the off-diagonal elements indicate misclassifications. In the 
normalized confusion matrix, the average of the diagonal values provides the system’s 
average accuracy. Ultimately, we achieved accuracies of 99.65% for class N, 91.96% for 
class S, 98.56% for class V, 93.75% for class F, and 99.75% for class Q. Additionally, we 
observed cases where one class was incorrectly recognized as another. As class N consti-
tutes the majority, it demonstrates the highest recognition accuracy, and misclassified 
samples from other classes are inclined to be assigned to the N class. 

 
Figure 9. The accuracy of MSCANet models on the MIH-BIH dataset. 

Figure 8. The Loss function of MSCANet model on MIH-BIH dataset.



Electronics 2024, 13, 326 13 of 19

Electronics 2024, 13, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 8. The Loss function of MSCANet model on MIH-BIH dataset. 

Figure 10 illustrates the performance of the five categories with and without normal-
ization using a confusion matrix. The elements on the diagonal represent the successfully 
classified categories, while the off-diagonal elements indicate misclassifications. In the 
normalized confusion matrix, the average of the diagonal values provides the system’s 
average accuracy. Ultimately, we achieved accuracies of 99.65% for class N, 91.96% for 
class S, 98.56% for class V, 93.75% for class F, and 99.75% for class Q. Additionally, we 
observed cases where one class was incorrectly recognized as another. As class N consti-
tutes the majority, it demonstrates the highest recognition accuracy, and misclassified 
samples from other classes are inclined to be assigned to the N class. 

 
Figure 9. The accuracy of MSCANet models on the MIH-BIH dataset. Figure 9. The accuracy of MSCANet models on the MIH-BIH dataset.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 19 
 

 

  
(a) (b) 

Figure 10. Probability matrix (a) and confusion matrix (b) of MIT-BIH Dataset after data balance. 

We compared the accuracy and other metrics (such as specificity, sensitivity, preci-
sion, F1 score, and overall accuracy of each class classification) before and after data bal-
ancing. Figure 11 illustrates the normalized confusion matrix before and after data aug-
mentation. Overall, there was an improvement in accuracy, particularly for the classes 
with fewer samples, namely, the S-class and F-class. Their accuracy increased from 84.05% 
and 80.36% to 91.96% and 93.75%, respectively. Although the number of samples in the 
most abundant class, the N-class, decreased after data balancing, its accuracy remained 
largely unchanged. Similarly, there were improvements in other classes such as the V-
class and Q-class, though not as pronounced as in the S-class and F-class. This outcome 
underscores the significance of data balancing in enhancing classification results for mi-
nority classes. Additionally, despite the reduction in the number of N-class samples, its 
accuracy remained steady, further affirming the effectiveness of data balancing. 

When considering specific metrics such as specificity, sensitivity, precision, F1 score, 
and overall accuracy for each class (as shown in Tables 3 and 4), we conducted a compre-
hensive analysis and compared the performance before and after data augmentation to 
reveal changes and improvements in model performance. We observed improvements in 
the specificity for all classes after data augmentation. This indicates an increased accuracy 
of the model in recognizing negative class samples, leading to an enhancement in overall 
performance. Sensitivity is an indicator of the model’s accurate identification of positive 
class samples. After data augmentation, especially for classes with fewer samples (such as 
the S class and N class), sensitivity notably improved. This suggests that data augmenta-
tion positively contributes to enhancing the model’s recognition ability for minority clas-
ses. Following data augmentation, precision increased, indicating a reduction in errone-
ous positive predictions and an improved accuracy of positive predictions. The F1 score 
combines precision and sensitivity. After data augmentation, the F1 scores for various 
classes exhibited an upward trend, further substantiating the enhancement of the overall 
proficiency of the algorithm. In the analysis of the overall accuracy for each class, data 
augmentation effectively addressed the issue of class imbalance, resulting in increased 
accuracy for all classes, particularly for classes with fewer samples. Although the class 
with the most samples (the N class) experienced a reduction in sample count after data 
balancing, its accuracy remained largely unchanged, further validating the effectiveness 
of data augmentation. In conclusion, the data augmentation strategy significantly im-
proved the model’s performance across various metrics. This improvement was particu-
larly pronounced for classes with fewer samples. The enhancements in specificity, 
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We compared the accuracy and other metrics (such as specificity, sensitivity, precision,
F1 score, and overall accuracy of each class classification) before and after data balancing.
Figure 11 illustrates the normalized confusion matrix before and after data augmentation.
Overall, there was an improvement in accuracy, particularly for the classes with fewer
samples, namely, the S-class and F-class. Their accuracy increased from 84.05% and 80.36%
to 91.96% and 93.75%, respectively. Although the number of samples in the most abundant
class, the N-class, decreased after data balancing, its accuracy remained largely unchanged.
Similarly, there were improvements in other classes such as the V-class and Q-class, though
not as pronounced as in the S-class and F-class. This outcome underscores the significance
of data balancing in enhancing classification results for minority classes. Additionally,
despite the reduction in the number of N-class samples, its accuracy remained steady,
further affirming the effectiveness of data balancing.
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When considering specific metrics such as specificity, sensitivity, precision, F1 score,
and overall accuracy for each class (as shown in Tables 3 and 4), we conducted a compre-
hensive analysis and compared the performance before and after data augmentation to
reveal changes and improvements in model performance. We observed improvements in
the specificity for all classes after data augmentation. This indicates an increased accuracy
of the model in recognizing negative class samples, leading to an enhancement in overall
performance. Sensitivity is an indicator of the model’s accurate identification of positive
class samples. After data augmentation, especially for classes with fewer samples (such as
the S class and N class), sensitivity notably improved. This suggests that data augmentation
positively contributes to enhancing the model’s recognition ability for minority classes.
Following data augmentation, precision increased, indicating a reduction in erroneous pos-
itive predictions and an improved accuracy of positive predictions. The F1 score combines
precision and sensitivity. After data augmentation, the F1 scores for various classes exhib-
ited an upward trend, further substantiating the enhancement of the overall proficiency
of the algorithm. In the analysis of the overall accuracy for each class, data augmentation
effectively addressed the issue of class imbalance, resulting in increased accuracy for all
classes, particularly for classes with fewer samples. Although the class with the most
samples (the N class) experienced a reduction in sample count after data balancing, its
accuracy remained largely unchanged, further validating the effectiveness of data augmen-
tation. In conclusion, the data augmentation strategy significantly improved the model’s
performance across various metrics. This improvement was particularly pronounced for
classes with fewer samples. The enhancements in specificity, sensitivity, precision, F1 score,
and overall accuracy collectively highlight the efficacy of data augmentation in optimizing
classification outcomes.

To validate the effectiveness of the multiscale convolutional module and causal convo-
lutional attention module, we conducted a series of ablation experiments, and the results
are presented in Table 5. These experiments were designed to systematically analyze the
impact and contributions of each module to the overall performance of the model. The
experimental data indicate that, compared to traditional CNNs, MSCNN demonstrates an
overall accuracy improvement of approximately 1%. Due to the multiscale convolution
enhancing the model’s perceptual ability for features at different scales in the input data,
MSCNN exhibits superior performance in utilizing spatial information such as T-waves’
amplitude and ST-wave’s slope in electrocardiograms. Furthermore, when MSCNN is
combined with the causal convolution attention module, the model demonstrates superior
performance in accuracy and other metrics. This enhancement is attributed to the causal
convolution attention module, enabling the model to focus on temporal features like the
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duration and interval times of segments within the electrocardiogram signals. With the
incorporation of causal convolution, the causal convolution attention module is more effec-
tive in capturing temporal relationships and features within the input sequences compared
to traditional attention modules. By comprehensively considering temporal and spatial in-
formation in electrocardiograms, our proposed model achieves favorable results in the task
of classifying cardiac arrhythmias. These findings highlight the effectiveness of our model
in capturing and leveraging both temporal and spatial features of electrocardiographic
signals, leading to improved performance in arrhythmia classification tasks.

Table 3. MSCANet classification performance metrics on raw data.

Class ACC% Sp% Sen% Prec% F1%

N 96.65 95.50 99.65 99.28 99.47

S 84.05 99.81 84.05 91.53 97.63

V 96.80 99.82 96.80 97.57 97.19

F 80.36 99.91 80.36 86.54 83.33

Q 99.01 99.98 99.01 99.58 99.29

Average 91.97 99.01 91.97 94.90 93.38

Overall accuracy 98.92

Table 4. MSCANet classification performance metrics on data augmentation datasets.

Class ACC% Sp% Sen% Prec% F1%

N 99.65 97.90 99.65 99.66 99.66

S 91.96 99.87 91.96 94.62 93.27

V 98.56 99.83 98.56 97.70 98.13

F 93.75 99.93 93.75 90.91 92.31

Q 99.75 99.99 99.75 99.83 99.79

Average 96.73 99.51 96.73 96.55 96.63

Overall accuracy 99.35

Table 5. The performance metrics of different models on data augmentation datasets.

Model OA% Sp% Sen% Prec% F1%

CNN 97.31 98.12 86.23 92.35 90.32

MSCNN 98.40 98.36 89.52 93.52 92.36

MSCNN + CCNMHA 99.35 99.51 96.73 96.55 96.63

4. Discussion

In previous studies, researchers have extensively explored the MIT-BIH Arrhythmia
Database (MIT-BIH AD) to develop enhanced machine learning and artificial neural net-
work approaches for arrhythmia classification. In recent years, various deep learning
techniques have been employed for arrhythmia categorization, such as CNN+LSTM [49]
and UNET [50], among others. Table 6 presents a performance comparison of various
ECG classification algorithms published in the literature, including overall accuracy (OA),
specificity (Spe), sensitivity (Sen), and Macro F1. All of these studies utilized the MIT-BIH
AD, and the methods proposed in this section outperform many others regarding OA and
Spe. In terms of parameter quantity, our proposed model falls within a moderate scale com-
pared to similar studies. Successfully achieving a strong classification performance without
excessively increasing the parameter count highlights the efficiency of our model. From the
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results of the MSCA model, the following conclusions can be drawn: The proposed MSCA
model excels at extracting features from ECG signals and effectively utilizing them for ar-
rhythmia classification according to the AAMI criteria. This improvement can be attributed
to the multiscale convolutional module and causal convolutional attention module that
are employed in MSCANet. Compared to previous models, these two components better
capture signal features. Moreover, the data balancing technique used in the study plays a
significant role in enhancing arrhythmia classification during the process.

Table 6. Comparison results with existing models.

Authors Year Method and
Parameters

OA
(%)

Spe
(%)

Sen
(%)

F1
(%)

Acharya et al. [51] 2017 Deep CNN (20 k) 94.03 91.54 96.71 -

Oh et al. [49] 2018 CNN+ LSTM (3 k) 98.1 98.7 97.5 -

Kachuee et al. [52] 2018 Deep CNN 93.4 - - -

Pandey SK et al. [53] 2019 11-layer CNN 98.3 - 95.51 -

Yildirim et al. [54] 2019 CAE + LSTM (56 k) 99.23 - - -

Shi et al. [50] 2020 U-Net model 97.32 - - -

Xu et al. [55] 2020 CNN + BLSTM 95.90 - 95.90 95.92

Luo et al. [56] 2021 HCRNet++ 98.70 - 99.28 99.38

Li et al. [57] 2022 1D CNN model (12 k) 99.00 99.41 96.36 -

Proposed 2023 MSCANet (34 k) 99.35 99.51 96.73 96.63

5. Conclusions

In this study, we introduced a novel approach named MSCANet for ECG signal
classification. This method effectively automates the extraction of both temporal and
spatial features from ECG signals, simultaneously reducing computational complexity.
Utilizing the ANSI-AAMI criteria, the proposed model categorizes ECG signals into five
distinct groups. Leveraging the MIT-BIH ECG database, we developed and evaluated a
deep learning classification model for training and testing. Moreover, we addressed the
issue of data imbalance using a hybrid sampling technique, which significantly improved
the accuracy of arrhythmia classification. The achieved results demonstrated a remarkable
balanced accuracy of 99.35%, outperforming other models across various metrics. The
proposed method is employed for the classification of individual heartbeats, with the final
analysis of ECGs remaining the task of healthcare professionals. Looking ahead, we aim to
explore different datasets and further optimize the model’s complexity while maintaining
its accuracy, with the ultimate goal of enhancing its applicability in the clinical diagnosis
and treatment of cardiovascular diseases.
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